linux-stable/rust/kernel/sync/condvar.rs
Alice Ryhl e283ee2392 rust: kernel: add reexports for macros
Currently, all macros are reexported with #[macro_export] only, which
means that to access `new_work!` from the workqueue, you need to import
it from the path `kernel::new_work` instead of importing it from the
workqueue module like all other items in the workqueue. By adding
reexports of the macros, it becomes possible to import the macros from
the correct modules.

It's still possible to import the macros from the root, but I don't
think we can do anything about that.

There is no functional change. This is merely a code cleanliness
improvement.

Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20240129145837.1419880-1-aliceryhl@google.com
[ Removed new `use kernel::prelude::*`s, reworded title. ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-02-18 21:22:27 +01:00

239 lines
8.5 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! A condition variable.
//!
//! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition
//! variable.
use super::{lock::Backend, lock::Guard, LockClassKey};
use crate::{
bindings,
init::PinInit,
pin_init,
str::CStr,
task::{MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE},
time::Jiffies,
types::Opaque,
};
use core::ffi::{c_int, c_long};
use core::marker::PhantomPinned;
use core::ptr;
use macros::pin_data;
/// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class.
#[macro_export]
macro_rules! new_condvar {
($($name:literal)?) => {
$crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
};
}
pub use new_condvar;
/// A conditional variable.
///
/// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to
/// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And
/// it wakes up when notified by another thread (via [`CondVar::notify_one`] or
/// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up
/// spuriously.
///
/// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such
/// instances is with the [`pin_init`](crate::pin_init) and [`new_condvar`] macros.
///
/// # Examples
///
/// The following is an example of using a condvar with a mutex:
///
/// ```
/// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex};
///
/// #[pin_data]
/// pub struct Example {
/// #[pin]
/// value: Mutex<u32>,
///
/// #[pin]
/// value_changed: CondVar,
/// }
///
/// /// Waits for `e.value` to become `v`.
/// fn wait_for_value(e: &Example, v: u32) {
/// let mut guard = e.value.lock();
/// while *guard != v {
/// e.value_changed.wait(&mut guard);
/// }
/// }
///
/// /// Increments `e.value` and notifies all potential waiters.
/// fn increment(e: &Example) {
/// *e.value.lock() += 1;
/// e.value_changed.notify_all();
/// }
///
/// /// Allocates a new boxed `Example`.
/// fn new_example() -> Result<Pin<Box<Example>>> {
/// Box::pin_init(pin_init!(Example {
/// value <- new_mutex!(0),
/// value_changed <- new_condvar!(),
/// }))
/// }
/// ```
///
/// [`struct wait_queue_head`]: srctree/include/linux/wait.h
#[pin_data]
pub struct CondVar {
#[pin]
pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>,
/// A condvar needs to be pinned because it contains a [`struct list_head`] that is
/// self-referential, so it cannot be safely moved once it is initialised.
///
/// [`struct list_head`]: srctree/include/linux/types.h
#[pin]
_pin: PhantomPinned,
}
// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread.
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl Send for CondVar {}
// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads
// concurrently.
unsafe impl Sync for CondVar {}
impl CondVar {
/// Constructs a new condvar initialiser.
pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
pin_init!(Self {
_pin: PhantomPinned,
// SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
// static lifetimes so they live indefinitely.
wait_queue_head <- Opaque::ffi_init(|slot| unsafe {
bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr())
}),
})
}
fn wait_internal<T: ?Sized, B: Backend>(
&self,
wait_state: c_int,
guard: &mut Guard<'_, T, B>,
timeout_in_jiffies: c_long,
) -> c_long {
let wait = Opaque::<bindings::wait_queue_entry>::uninit();
// SAFETY: `wait` points to valid memory.
unsafe { bindings::init_wait(wait.get()) };
// SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
unsafe {
bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state)
};
// SAFETY: Switches to another thread. The timeout can be any number.
let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) });
// SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) };
ret
}
/// Releases the lock and waits for a notification in uninterruptible mode.
///
/// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
/// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by
/// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up
/// spuriously.
pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) {
self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
}
/// Releases the lock and waits for a notification in interruptible mode.
///
/// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may
/// wake up due to signals. It may also wake up spuriously.
///
/// Returns whether there is a signal pending.
#[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"]
pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool {
self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
crate::current!().signal_pending()
}
/// Releases the lock and waits for a notification in interruptible mode.
///
/// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
/// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or
/// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal.
#[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"]
pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>(
&self,
guard: &mut Guard<'_, T, B>,
jiffies: Jiffies,
) -> CondVarTimeoutResult {
let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT);
let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies);
match (res as Jiffies, crate::current!().signal_pending()) {
(jiffies, true) => CondVarTimeoutResult::Signal { jiffies },
(0, false) => CondVarTimeoutResult::Timeout,
(jiffies, false) => CondVarTimeoutResult::Woken { jiffies },
}
}
/// Calls the kernel function to notify the appropriate number of threads.
fn notify(&self, count: c_int) {
// SAFETY: `wait_queue_head` points to valid memory.
unsafe {
bindings::__wake_up(
self.wait_queue_head.get(),
TASK_NORMAL,
count,
ptr::null_mut(),
)
};
}
/// Calls the kernel function to notify one thread synchronously.
///
/// This method behaves like `notify_one`, except that it hints to the scheduler that the
/// current thread is about to go to sleep, so it should schedule the target thread on the same
/// CPU.
pub fn notify_sync(&self) {
// SAFETY: `wait_queue_head` points to valid memory.
unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) };
}
/// Wakes a single waiter up, if any.
///
/// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
/// completely (as opposed to automatically waking up the next waiter).
pub fn notify_one(&self) {
self.notify(1);
}
/// Wakes all waiters up, if any.
///
/// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
/// completely (as opposed to automatically waking up the next waiter).
pub fn notify_all(&self) {
self.notify(0);
}
}
/// The return type of `wait_timeout`.
pub enum CondVarTimeoutResult {
/// The timeout was reached.
Timeout,
/// Somebody woke us up.
Woken {
/// Remaining sleep duration.
jiffies: Jiffies,
},
/// A signal occurred.
Signal {
/// Remaining sleep duration.
jiffies: Jiffies,
},
}