linux-stable/drivers/iommu/dma-iommu.c
Robin Murphy 452e69b58c iommu: Allow enabling non-strict mode dynamically
Allocating and enabling a flush queue is in fact something we can
reasonably do while a DMA domain is active, without having to rebuild it
from scratch. Thus we can allow a strict -> non-strict transition from
sysfs without requiring to unbind the device's driver, which is of
particular interest to users who want to make selective relaxations to
critical devices like the one serving their root filesystem.

Disabling and draining a queue also seems technically possible to
achieve without rebuilding the whole domain, but would certainly be more
involved. Furthermore there's not such a clear use-case for tightening
up security *after* the device may already have done whatever it is that
you don't trust it not to do, so we only consider the relaxation case.

Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/d652966348c78457c38bf18daf369272a4ebc2c9.1628682049.git.robin.murphy@arm.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2021-08-18 13:27:49 +02:00

1444 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* A fairly generic DMA-API to IOMMU-API glue layer.
*
* Copyright (C) 2014-2015 ARM Ltd.
*
* based in part on arch/arm/mm/dma-mapping.c:
* Copyright (C) 2000-2004 Russell King
*/
#include <linux/acpi_iort.h>
#include <linux/device.h>
#include <linux/dma-map-ops.h>
#include <linux/dma-iommu.h>
#include <linux/gfp.h>
#include <linux/huge_mm.h>
#include <linux/iommu.h>
#include <linux/iova.h>
#include <linux/irq.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/swiotlb.h>
#include <linux/scatterlist.h>
#include <linux/vmalloc.h>
#include <linux/crash_dump.h>
#include <linux/dma-direct.h>
struct iommu_dma_msi_page {
struct list_head list;
dma_addr_t iova;
phys_addr_t phys;
};
enum iommu_dma_cookie_type {
IOMMU_DMA_IOVA_COOKIE,
IOMMU_DMA_MSI_COOKIE,
};
struct iommu_dma_cookie {
enum iommu_dma_cookie_type type;
union {
/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
struct iova_domain iovad;
/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
dma_addr_t msi_iova;
};
struct list_head msi_page_list;
/* Domain for flush queue callback; NULL if flush queue not in use */
struct iommu_domain *fq_domain;
};
static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
bool iommu_dma_forcedac __read_mostly;
static int __init iommu_dma_forcedac_setup(char *str)
{
int ret = kstrtobool(str, &iommu_dma_forcedac);
if (!ret && iommu_dma_forcedac)
pr_info("Forcing DAC for PCI devices\n");
return ret;
}
early_param("iommu.forcedac", iommu_dma_forcedac_setup);
static void iommu_dma_entry_dtor(unsigned long data)
{
struct page *freelist = (struct page *)data;
while (freelist) {
unsigned long p = (unsigned long)page_address(freelist);
freelist = freelist->freelist;
free_page(p);
}
}
static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
{
if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
return cookie->iovad.granule;
return PAGE_SIZE;
}
static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
{
struct iommu_dma_cookie *cookie;
cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
if (cookie) {
INIT_LIST_HEAD(&cookie->msi_page_list);
cookie->type = type;
}
return cookie;
}
/**
* iommu_get_dma_cookie - Acquire DMA-API resources for a domain
* @domain: IOMMU domain to prepare for DMA-API usage
*
* IOMMU drivers should normally call this from their domain_alloc
* callback when domain->type == IOMMU_DOMAIN_DMA.
*/
int iommu_get_dma_cookie(struct iommu_domain *domain)
{
if (domain->iova_cookie)
return -EEXIST;
domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
if (!domain->iova_cookie)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(iommu_get_dma_cookie);
/**
* iommu_get_msi_cookie - Acquire just MSI remapping resources
* @domain: IOMMU domain to prepare
* @base: Start address of IOVA region for MSI mappings
*
* Users who manage their own IOVA allocation and do not want DMA API support,
* but would still like to take advantage of automatic MSI remapping, can use
* this to initialise their own domain appropriately. Users should reserve a
* contiguous IOVA region, starting at @base, large enough to accommodate the
* number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
* used by the devices attached to @domain.
*/
int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
{
struct iommu_dma_cookie *cookie;
if (domain->type != IOMMU_DOMAIN_UNMANAGED)
return -EINVAL;
if (domain->iova_cookie)
return -EEXIST;
cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
if (!cookie)
return -ENOMEM;
cookie->msi_iova = base;
domain->iova_cookie = cookie;
return 0;
}
EXPORT_SYMBOL(iommu_get_msi_cookie);
/**
* iommu_put_dma_cookie - Release a domain's DMA mapping resources
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
* iommu_get_msi_cookie()
*
* IOMMU drivers should normally call this from their domain_free callback.
*/
void iommu_put_dma_cookie(struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iommu_dma_msi_page *msi, *tmp;
if (!cookie)
return;
if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
put_iova_domain(&cookie->iovad);
list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
list_del(&msi->list);
kfree(msi);
}
kfree(cookie);
domain->iova_cookie = NULL;
}
EXPORT_SYMBOL(iommu_put_dma_cookie);
/**
* iommu_dma_get_resv_regions - Reserved region driver helper
* @dev: Device from iommu_get_resv_regions()
* @list: Reserved region list from iommu_get_resv_regions()
*
* IOMMU drivers can use this to implement their .get_resv_regions callback
* for general non-IOMMU-specific reservations. Currently, this covers GICv3
* ITS region reservation on ACPI based ARM platforms that may require HW MSI
* reservation.
*/
void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
{
if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
iort_iommu_msi_get_resv_regions(dev, list);
}
EXPORT_SYMBOL(iommu_dma_get_resv_regions);
static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
phys_addr_t start, phys_addr_t end)
{
struct iova_domain *iovad = &cookie->iovad;
struct iommu_dma_msi_page *msi_page;
int i, num_pages;
start -= iova_offset(iovad, start);
num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
for (i = 0; i < num_pages; i++) {
msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
if (!msi_page)
return -ENOMEM;
msi_page->phys = start;
msi_page->iova = start;
INIT_LIST_HEAD(&msi_page->list);
list_add(&msi_page->list, &cookie->msi_page_list);
start += iovad->granule;
}
return 0;
}
static int iova_reserve_pci_windows(struct pci_dev *dev,
struct iova_domain *iovad)
{
struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
struct resource_entry *window;
unsigned long lo, hi;
phys_addr_t start = 0, end;
resource_list_for_each_entry(window, &bridge->windows) {
if (resource_type(window->res) != IORESOURCE_MEM)
continue;
lo = iova_pfn(iovad, window->res->start - window->offset);
hi = iova_pfn(iovad, window->res->end - window->offset);
reserve_iova(iovad, lo, hi);
}
/* Get reserved DMA windows from host bridge */
resource_list_for_each_entry(window, &bridge->dma_ranges) {
end = window->res->start - window->offset;
resv_iova:
if (end > start) {
lo = iova_pfn(iovad, start);
hi = iova_pfn(iovad, end);
reserve_iova(iovad, lo, hi);
} else if (end < start) {
/* dma_ranges list should be sorted */
dev_err(&dev->dev,
"Failed to reserve IOVA [%pa-%pa]\n",
&start, &end);
return -EINVAL;
}
start = window->res->end - window->offset + 1;
/* If window is last entry */
if (window->node.next == &bridge->dma_ranges &&
end != ~(phys_addr_t)0) {
end = ~(phys_addr_t)0;
goto resv_iova;
}
}
return 0;
}
static int iova_reserve_iommu_regions(struct device *dev,
struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
struct iommu_resv_region *region;
LIST_HEAD(resv_regions);
int ret = 0;
if (dev_is_pci(dev)) {
ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
if (ret)
return ret;
}
iommu_get_resv_regions(dev, &resv_regions);
list_for_each_entry(region, &resv_regions, list) {
unsigned long lo, hi;
/* We ARE the software that manages these! */
if (region->type == IOMMU_RESV_SW_MSI)
continue;
lo = iova_pfn(iovad, region->start);
hi = iova_pfn(iovad, region->start + region->length - 1);
reserve_iova(iovad, lo, hi);
if (region->type == IOMMU_RESV_MSI)
ret = cookie_init_hw_msi_region(cookie, region->start,
region->start + region->length);
if (ret)
break;
}
iommu_put_resv_regions(dev, &resv_regions);
return ret;
}
static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
{
struct iommu_dma_cookie *cookie;
struct iommu_domain *domain;
cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
domain = cookie->fq_domain;
domain->ops->flush_iotlb_all(domain);
}
static bool dev_is_untrusted(struct device *dev)
{
return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
}
/* sysfs updates are serialised by the mutex of the group owning @domain */
int iommu_dma_init_fq(struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
int ret;
if (cookie->fq_domain)
return 0;
ret = init_iova_flush_queue(&cookie->iovad, iommu_dma_flush_iotlb_all,
iommu_dma_entry_dtor);
if (ret) {
pr_warn("iova flush queue initialization failed\n");
return ret;
}
/*
* Prevent incomplete iovad->fq being observable. Pairs with path from
* __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
*/
smp_wmb();
WRITE_ONCE(cookie->fq_domain, domain);
return 0;
}
/**
* iommu_dma_init_domain - Initialise a DMA mapping domain
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
* @base: IOVA at which the mappable address space starts
* @limit: Last address of the IOVA space
* @dev: Device the domain is being initialised for
*
* @base and @limit + 1 should be exact multiples of IOMMU page granularity to
* avoid rounding surprises. If necessary, we reserve the page at address 0
* to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
* any change which could make prior IOVAs invalid will fail.
*/
static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
dma_addr_t limit, struct device *dev)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
unsigned long order, base_pfn;
struct iova_domain *iovad;
if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
return -EINVAL;
iovad = &cookie->iovad;
/* Use the smallest supported page size for IOVA granularity */
order = __ffs(domain->pgsize_bitmap);
base_pfn = max_t(unsigned long, 1, base >> order);
/* Check the domain allows at least some access to the device... */
if (domain->geometry.force_aperture) {
if (base > domain->geometry.aperture_end ||
limit < domain->geometry.aperture_start) {
pr_warn("specified DMA range outside IOMMU capability\n");
return -EFAULT;
}
/* ...then finally give it a kicking to make sure it fits */
base_pfn = max_t(unsigned long, base_pfn,
domain->geometry.aperture_start >> order);
}
/* start_pfn is always nonzero for an already-initialised domain */
if (iovad->start_pfn) {
if (1UL << order != iovad->granule ||
base_pfn != iovad->start_pfn) {
pr_warn("Incompatible range for DMA domain\n");
return -EFAULT;
}
return 0;
}
init_iova_domain(iovad, 1UL << order, base_pfn);
/* If the FQ fails we can simply fall back to strict mode */
if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
domain->type = IOMMU_DOMAIN_DMA;
return iova_reserve_iommu_regions(dev, domain);
}
/**
* dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
* page flags.
* @dir: Direction of DMA transfer
* @coherent: Is the DMA master cache-coherent?
* @attrs: DMA attributes for the mapping
*
* Return: corresponding IOMMU API page protection flags
*/
static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
unsigned long attrs)
{
int prot = coherent ? IOMMU_CACHE : 0;
if (attrs & DMA_ATTR_PRIVILEGED)
prot |= IOMMU_PRIV;
switch (dir) {
case DMA_BIDIRECTIONAL:
return prot | IOMMU_READ | IOMMU_WRITE;
case DMA_TO_DEVICE:
return prot | IOMMU_READ;
case DMA_FROM_DEVICE:
return prot | IOMMU_WRITE;
default:
return 0;
}
}
static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
size_t size, u64 dma_limit, struct device *dev)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
unsigned long shift, iova_len, iova = 0;
if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
cookie->msi_iova += size;
return cookie->msi_iova - size;
}
shift = iova_shift(iovad);
iova_len = size >> shift;
/*
* Freeing non-power-of-two-sized allocations back into the IOVA caches
* will come back to bite us badly, so we have to waste a bit of space
* rounding up anything cacheable to make sure that can't happen. The
* order of the unadjusted size will still match upon freeing.
*/
if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
iova_len = roundup_pow_of_two(iova_len);
dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
if (domain->geometry.force_aperture)
dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
/* Try to get PCI devices a SAC address */
if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
iova = alloc_iova_fast(iovad, iova_len,
DMA_BIT_MASK(32) >> shift, false);
if (!iova)
iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
true);
return (dma_addr_t)iova << shift;
}
static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
{
struct iova_domain *iovad = &cookie->iovad;
/* The MSI case is only ever cleaning up its most recent allocation */
if (cookie->type == IOMMU_DMA_MSI_COOKIE)
cookie->msi_iova -= size;
else if (gather && gather->queued)
queue_iova(iovad, iova_pfn(iovad, iova),
size >> iova_shift(iovad),
(unsigned long)gather->freelist);
else
free_iova_fast(iovad, iova_pfn(iovad, iova),
size >> iova_shift(iovad));
}
static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
size_t size)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
size_t iova_off = iova_offset(iovad, dma_addr);
struct iommu_iotlb_gather iotlb_gather;
size_t unmapped;
dma_addr -= iova_off;
size = iova_align(iovad, size + iova_off);
iommu_iotlb_gather_init(&iotlb_gather);
iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
WARN_ON(unmapped != size);
if (!iotlb_gather.queued)
iommu_iotlb_sync(domain, &iotlb_gather);
iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
}
static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
phys_addr_t phys;
phys = iommu_iova_to_phys(domain, dma_addr);
if (WARN_ON(!phys))
return;
__iommu_dma_unmap(dev, dma_addr, size);
if (unlikely(is_swiotlb_buffer(phys)))
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
}
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
size_t size, int prot, u64 dma_mask)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
size_t iova_off = iova_offset(iovad, phys);
dma_addr_t iova;
if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
iommu_deferred_attach(dev, domain))
return DMA_MAPPING_ERROR;
size = iova_align(iovad, size + iova_off);
iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
if (!iova)
return DMA_MAPPING_ERROR;
if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
iommu_dma_free_iova(cookie, iova, size, NULL);
return DMA_MAPPING_ERROR;
}
return iova + iova_off;
}
static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
size_t org_size, dma_addr_t dma_mask, bool coherent,
enum dma_data_direction dir, unsigned long attrs)
{
int prot = dma_info_to_prot(dir, coherent, attrs);
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
size_t aligned_size = org_size;
void *padding_start;
size_t padding_size;
dma_addr_t iova;
/*
* If both the physical buffer start address and size are
* page aligned, we don't need to use a bounce page.
*/
if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
iova_offset(iovad, phys | org_size)) {
aligned_size = iova_align(iovad, org_size);
phys = swiotlb_tbl_map_single(dev, phys, org_size,
aligned_size, dir, attrs);
if (phys == DMA_MAPPING_ERROR)
return DMA_MAPPING_ERROR;
/* Cleanup the padding area. */
padding_start = phys_to_virt(phys);
padding_size = aligned_size;
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
(dir == DMA_TO_DEVICE ||
dir == DMA_BIDIRECTIONAL)) {
padding_start += org_size;
padding_size -= org_size;
}
memset(padding_start, 0, padding_size);
}
iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(phys))
swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs);
return iova;
}
static void __iommu_dma_free_pages(struct page **pages, int count)
{
while (count--)
__free_page(pages[count]);
kvfree(pages);
}
static struct page **__iommu_dma_alloc_pages(struct device *dev,
unsigned int count, unsigned long order_mask, gfp_t gfp)
{
struct page **pages;
unsigned int i = 0, nid = dev_to_node(dev);
order_mask &= (2U << MAX_ORDER) - 1;
if (!order_mask)
return NULL;
pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
if (!pages)
return NULL;
/* IOMMU can map any pages, so himem can also be used here */
gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
/* It makes no sense to muck about with huge pages */
gfp &= ~__GFP_COMP;
while (count) {
struct page *page = NULL;
unsigned int order_size;
/*
* Higher-order allocations are a convenience rather
* than a necessity, hence using __GFP_NORETRY until
* falling back to minimum-order allocations.
*/
for (order_mask &= (2U << __fls(count)) - 1;
order_mask; order_mask &= ~order_size) {
unsigned int order = __fls(order_mask);
gfp_t alloc_flags = gfp;
order_size = 1U << order;
if (order_mask > order_size)
alloc_flags |= __GFP_NORETRY;
page = alloc_pages_node(nid, alloc_flags, order);
if (!page)
continue;
if (order)
split_page(page, order);
break;
}
if (!page) {
__iommu_dma_free_pages(pages, i);
return NULL;
}
count -= order_size;
while (order_size--)
pages[i++] = page++;
}
return pages;
}
/*
* If size is less than PAGE_SIZE, then a full CPU page will be allocated,
* but an IOMMU which supports smaller pages might not map the whole thing.
*/
static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
unsigned long attrs)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
bool coherent = dev_is_dma_coherent(dev);
int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
struct page **pages;
dma_addr_t iova;
if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
iommu_deferred_attach(dev, domain))
return NULL;
min_size = alloc_sizes & -alloc_sizes;
if (min_size < PAGE_SIZE) {
min_size = PAGE_SIZE;
alloc_sizes |= PAGE_SIZE;
} else {
size = ALIGN(size, min_size);
}
if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
alloc_sizes = min_size;
count = PAGE_ALIGN(size) >> PAGE_SHIFT;
pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
gfp);
if (!pages)
return NULL;
size = iova_align(iovad, size);
iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
if (!iova)
goto out_free_pages;
if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
goto out_free_iova;
if (!(ioprot & IOMMU_CACHE)) {
struct scatterlist *sg;
int i;
for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
arch_dma_prep_coherent(sg_page(sg), sg->length);
}
if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
< size)
goto out_free_sg;
sgt->sgl->dma_address = iova;
sgt->sgl->dma_length = size;
return pages;
out_free_sg:
sg_free_table(sgt);
out_free_iova:
iommu_dma_free_iova(cookie, iova, size, NULL);
out_free_pages:
__iommu_dma_free_pages(pages, count);
return NULL;
}
static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
unsigned long attrs)
{
struct page **pages;
struct sg_table sgt;
void *vaddr;
pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
attrs);
if (!pages)
return NULL;
*dma_handle = sgt.sgl->dma_address;
sg_free_table(&sgt);
vaddr = dma_common_pages_remap(pages, size, prot,
__builtin_return_address(0));
if (!vaddr)
goto out_unmap;
return vaddr;
out_unmap:
__iommu_dma_unmap(dev, *dma_handle, size);
__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
return NULL;
}
#ifdef CONFIG_DMA_REMAP
static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
size_t size, enum dma_data_direction dir, gfp_t gfp,
unsigned long attrs)
{
struct dma_sgt_handle *sh;
sh = kmalloc(sizeof(*sh), gfp);
if (!sh)
return NULL;
sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
PAGE_KERNEL, attrs);
if (!sh->pages) {
kfree(sh);
return NULL;
}
return &sh->sgt;
}
static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
struct sg_table *sgt, enum dma_data_direction dir)
{
struct dma_sgt_handle *sh = sgt_handle(sgt);
__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
sg_free_table(&sh->sgt);
}
#endif /* CONFIG_DMA_REMAP */
static void iommu_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
{
phys_addr_t phys;
if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
return;
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(phys, size, dir);
if (is_swiotlb_buffer(phys))
swiotlb_sync_single_for_cpu(dev, phys, size, dir);
}
static void iommu_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
{
phys_addr_t phys;
if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
return;
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
if (is_swiotlb_buffer(phys))
swiotlb_sync_single_for_device(dev, phys, size, dir);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(phys, size, dir);
}
static void iommu_dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
return;
for_each_sg(sgl, sg, nelems, i) {
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
if (is_swiotlb_buffer(sg_phys(sg)))
swiotlb_sync_single_for_cpu(dev, sg_phys(sg),
sg->length, dir);
}
}
static void iommu_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
return;
for_each_sg(sgl, sg, nelems, i) {
if (is_swiotlb_buffer(sg_phys(sg)))
swiotlb_sync_single_for_device(dev, sg_phys(sg),
sg->length, dir);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
}
}
static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t phys = page_to_phys(page) + offset;
bool coherent = dev_is_dma_coherent(dev);
dma_addr_t dma_handle;
dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
coherent, dir, attrs);
if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
dma_handle != DMA_MAPPING_ERROR)
arch_sync_dma_for_device(phys, size, dir);
return dma_handle;
}
static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
__iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
}
/*
* Prepare a successfully-mapped scatterlist to give back to the caller.
*
* At this point the segments are already laid out by iommu_dma_map_sg() to
* avoid individually crossing any boundaries, so we merely need to check a
* segment's start address to avoid concatenating across one.
*/
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
dma_addr_t dma_addr)
{
struct scatterlist *s, *cur = sg;
unsigned long seg_mask = dma_get_seg_boundary(dev);
unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
int i, count = 0;
for_each_sg(sg, s, nents, i) {
/* Restore this segment's original unaligned fields first */
unsigned int s_iova_off = sg_dma_address(s);
unsigned int s_length = sg_dma_len(s);
unsigned int s_iova_len = s->length;
s->offset += s_iova_off;
s->length = s_length;
sg_dma_address(s) = DMA_MAPPING_ERROR;
sg_dma_len(s) = 0;
/*
* Now fill in the real DMA data. If...
* - there is a valid output segment to append to
* - and this segment starts on an IOVA page boundary
* - but doesn't fall at a segment boundary
* - and wouldn't make the resulting output segment too long
*/
if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
(max_len - cur_len >= s_length)) {
/* ...then concatenate it with the previous one */
cur_len += s_length;
} else {
/* Otherwise start the next output segment */
if (i > 0)
cur = sg_next(cur);
cur_len = s_length;
count++;
sg_dma_address(cur) = dma_addr + s_iova_off;
}
sg_dma_len(cur) = cur_len;
dma_addr += s_iova_len;
if (s_length + s_iova_off < s_iova_len)
cur_len = 0;
}
return count;
}
/*
* If mapping failed, then just restore the original list,
* but making sure the DMA fields are invalidated.
*/
static void __invalidate_sg(struct scatterlist *sg, int nents)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
if (sg_dma_address(s) != DMA_MAPPING_ERROR)
s->offset += sg_dma_address(s);
if (sg_dma_len(s))
s->length = sg_dma_len(s);
sg_dma_address(s) = DMA_MAPPING_ERROR;
sg_dma_len(s) = 0;
}
}
static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i)
__iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
sg_dma_len(s), dir, attrs);
}
static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
s->length, dma_get_mask(dev),
dev_is_dma_coherent(dev), dir, attrs);
if (sg_dma_address(s) == DMA_MAPPING_ERROR)
goto out_unmap;
sg_dma_len(s) = s->length;
}
return nents;
out_unmap:
iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
return 0;
}
/*
* The DMA API client is passing in a scatterlist which could describe
* any old buffer layout, but the IOMMU API requires everything to be
* aligned to IOMMU pages. Hence the need for this complicated bit of
* impedance-matching, to be able to hand off a suitably-aligned list,
* but still preserve the original offsets and sizes for the caller.
*/
static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
struct scatterlist *s, *prev = NULL;
int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
dma_addr_t iova;
size_t iova_len = 0;
unsigned long mask = dma_get_seg_boundary(dev);
int i;
if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
iommu_deferred_attach(dev, domain))
return 0;
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
if (dev_is_untrusted(dev))
return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
/*
* Work out how much IOVA space we need, and align the segments to
* IOVA granules for the IOMMU driver to handle. With some clever
* trickery we can modify the list in-place, but reversibly, by
* stashing the unaligned parts in the as-yet-unused DMA fields.
*/
for_each_sg(sg, s, nents, i) {
size_t s_iova_off = iova_offset(iovad, s->offset);
size_t s_length = s->length;
size_t pad_len = (mask - iova_len + 1) & mask;
sg_dma_address(s) = s_iova_off;
sg_dma_len(s) = s_length;
s->offset -= s_iova_off;
s_length = iova_align(iovad, s_length + s_iova_off);
s->length = s_length;
/*
* Due to the alignment of our single IOVA allocation, we can
* depend on these assumptions about the segment boundary mask:
* - If mask size >= IOVA size, then the IOVA range cannot
* possibly fall across a boundary, so we don't care.
* - If mask size < IOVA size, then the IOVA range must start
* exactly on a boundary, therefore we can lay things out
* based purely on segment lengths without needing to know
* the actual addresses beforehand.
* - The mask must be a power of 2, so pad_len == 0 if
* iova_len == 0, thus we cannot dereference prev the first
* time through here (i.e. before it has a meaningful value).
*/
if (pad_len && pad_len < s_length - 1) {
prev->length += pad_len;
iova_len += pad_len;
}
iova_len += s_length;
prev = s;
}
iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
if (!iova)
goto out_restore_sg;
/*
* We'll leave any physical concatenation to the IOMMU driver's
* implementation - it knows better than we do.
*/
if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
goto out_free_iova;
return __finalise_sg(dev, sg, nents, iova);
out_free_iova:
iommu_dma_free_iova(cookie, iova, iova_len, NULL);
out_restore_sg:
__invalidate_sg(sg, nents);
return 0;
}
static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t start, end;
struct scatterlist *tmp;
int i;
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
if (dev_is_untrusted(dev)) {
iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
return;
}
/*
* The scatterlist segments are mapped into a single
* contiguous IOVA allocation, so this is incredibly easy.
*/
start = sg_dma_address(sg);
for_each_sg(sg_next(sg), tmp, nents - 1, i) {
if (sg_dma_len(tmp) == 0)
break;
sg = tmp;
}
end = sg_dma_address(sg) + sg_dma_len(sg);
__iommu_dma_unmap(dev, start, end - start);
}
static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
return __iommu_dma_map(dev, phys, size,
dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
dma_get_mask(dev));
}
static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
__iommu_dma_unmap(dev, handle, size);
}
static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
{
size_t alloc_size = PAGE_ALIGN(size);
int count = alloc_size >> PAGE_SHIFT;
struct page *page = NULL, **pages = NULL;
/* Non-coherent atomic allocation? Easy */
if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
dma_free_from_pool(dev, cpu_addr, alloc_size))
return;
if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
/*
* If it the address is remapped, then it's either non-coherent
* or highmem CMA, or an iommu_dma_alloc_remap() construction.
*/
pages = dma_common_find_pages(cpu_addr);
if (!pages)
page = vmalloc_to_page(cpu_addr);
dma_common_free_remap(cpu_addr, alloc_size);
} else {
/* Lowmem means a coherent atomic or CMA allocation */
page = virt_to_page(cpu_addr);
}
if (pages)
__iommu_dma_free_pages(pages, count);
if (page)
dma_free_contiguous(dev, page, alloc_size);
}
static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t handle, unsigned long attrs)
{
__iommu_dma_unmap(dev, handle, size);
__iommu_dma_free(dev, size, cpu_addr);
}
static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
struct page **pagep, gfp_t gfp, unsigned long attrs)
{
bool coherent = dev_is_dma_coherent(dev);
size_t alloc_size = PAGE_ALIGN(size);
int node = dev_to_node(dev);
struct page *page = NULL;
void *cpu_addr;
page = dma_alloc_contiguous(dev, alloc_size, gfp);
if (!page)
page = alloc_pages_node(node, gfp, get_order(alloc_size));
if (!page)
return NULL;
if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
cpu_addr = dma_common_contiguous_remap(page, alloc_size,
prot, __builtin_return_address(0));
if (!cpu_addr)
goto out_free_pages;
if (!coherent)
arch_dma_prep_coherent(page, size);
} else {
cpu_addr = page_address(page);
}
*pagep = page;
memset(cpu_addr, 0, alloc_size);
return cpu_addr;
out_free_pages:
dma_free_contiguous(dev, page, alloc_size);
return NULL;
}
static void *iommu_dma_alloc(struct device *dev, size_t size,
dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
{
bool coherent = dev_is_dma_coherent(dev);
int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
struct page *page = NULL;
void *cpu_addr;
gfp |= __GFP_ZERO;
if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
!(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
return iommu_dma_alloc_remap(dev, size, handle, gfp,
dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
}
if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
!gfpflags_allow_blocking(gfp) && !coherent)
page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
gfp, NULL);
else
cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
if (!cpu_addr)
return NULL;
*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
dev->coherent_dma_mask);
if (*handle == DMA_MAPPING_ERROR) {
__iommu_dma_free(dev, size, cpu_addr);
return NULL;
}
return cpu_addr;
}
static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn, off = vma->vm_pgoff;
int ret;
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
return -ENXIO;
if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
struct page **pages = dma_common_find_pages(cpu_addr);
if (pages)
return vm_map_pages(vma, pages, nr_pages);
pfn = vmalloc_to_pfn(cpu_addr);
} else {
pfn = page_to_pfn(virt_to_page(cpu_addr));
}
return remap_pfn_range(vma, vma->vm_start, pfn + off,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
struct page *page;
int ret;
if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
struct page **pages = dma_common_find_pages(cpu_addr);
if (pages) {
return sg_alloc_table_from_pages(sgt, pages,
PAGE_ALIGN(size) >> PAGE_SHIFT,
0, size, GFP_KERNEL);
}
page = vmalloc_to_page(cpu_addr);
} else {
page = virt_to_page(cpu_addr);
}
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
}
static const struct dma_map_ops iommu_dma_ops = {
.alloc = iommu_dma_alloc,
.free = iommu_dma_free,
.alloc_pages = dma_common_alloc_pages,
.free_pages = dma_common_free_pages,
#ifdef CONFIG_DMA_REMAP
.alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
.free_noncontiguous = iommu_dma_free_noncontiguous,
#endif
.mmap = iommu_dma_mmap,
.get_sgtable = iommu_dma_get_sgtable,
.map_page = iommu_dma_map_page,
.unmap_page = iommu_dma_unmap_page,
.map_sg = iommu_dma_map_sg,
.unmap_sg = iommu_dma_unmap_sg,
.sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
.sync_single_for_device = iommu_dma_sync_single_for_device,
.sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
.sync_sg_for_device = iommu_dma_sync_sg_for_device,
.map_resource = iommu_dma_map_resource,
.unmap_resource = iommu_dma_unmap_resource,
.get_merge_boundary = iommu_dma_get_merge_boundary,
};
/*
* The IOMMU core code allocates the default DMA domain, which the underlying
* IOMMU driver needs to support via the dma-iommu layer.
*/
void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
if (!domain)
goto out_err;
/*
* The IOMMU core code allocates the default DMA domain, which the
* underlying IOMMU driver needs to support via the dma-iommu layer.
*/
if (iommu_is_dma_domain(domain)) {
if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
goto out_err;
dev->dma_ops = &iommu_dma_ops;
}
return;
out_err:
pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
dev_name(dev));
}
EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
phys_addr_t msi_addr, struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iommu_dma_msi_page *msi_page;
dma_addr_t iova;
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
size_t size = cookie_msi_granule(cookie);
msi_addr &= ~(phys_addr_t)(size - 1);
list_for_each_entry(msi_page, &cookie->msi_page_list, list)
if (msi_page->phys == msi_addr)
return msi_page;
msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
if (!msi_page)
return NULL;
iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
if (!iova)
goto out_free_page;
if (iommu_map(domain, iova, msi_addr, size, prot))
goto out_free_iova;
INIT_LIST_HEAD(&msi_page->list);
msi_page->phys = msi_addr;
msi_page->iova = iova;
list_add(&msi_page->list, &cookie->msi_page_list);
return msi_page;
out_free_iova:
iommu_dma_free_iova(cookie, iova, size, NULL);
out_free_page:
kfree(msi_page);
return NULL;
}
int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
{
struct device *dev = msi_desc_to_dev(desc);
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_msi_page *msi_page;
static DEFINE_MUTEX(msi_prepare_lock); /* see below */
if (!domain || !domain->iova_cookie) {
desc->iommu_cookie = NULL;
return 0;
}
/*
* In fact the whole prepare operation should already be serialised by
* irq_domain_mutex further up the callchain, but that's pretty subtle
* on its own, so consider this locking as failsafe documentation...
*/
mutex_lock(&msi_prepare_lock);
msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
mutex_unlock(&msi_prepare_lock);
msi_desc_set_iommu_cookie(desc, msi_page);
if (!msi_page)
return -ENOMEM;
return 0;
}
void iommu_dma_compose_msi_msg(struct msi_desc *desc,
struct msi_msg *msg)
{
struct device *dev = msi_desc_to_dev(desc);
const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
const struct iommu_dma_msi_page *msi_page;
msi_page = msi_desc_get_iommu_cookie(desc);
if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
return;
msg->address_hi = upper_32_bits(msi_page->iova);
msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
msg->address_lo += lower_32_bits(msi_page->iova);
}
static int iommu_dma_init(void)
{
if (is_kdump_kernel())
static_branch_enable(&iommu_deferred_attach_enabled);
return iova_cache_get();
}
arch_initcall(iommu_dma_init);