mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-31 08:28:13 +00:00
f3a112c0c4
Replaces the kretprobe code with rethook on x86. With this patch, kretprobe on x86 uses the rethook instead of kretprobe specific trampoline code. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/bpf/164826163692.2455864.13745421016848209527.stgit@devnote2
1062 lines
31 KiB
C
1062 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Kernel Probes (KProbes)
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004
|
|
*
|
|
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
|
|
* Probes initial implementation ( includes contributions from
|
|
* Rusty Russell).
|
|
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
|
|
* interface to access function arguments.
|
|
* 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
|
|
* <prasanna@in.ibm.com> adapted for x86_64 from i386.
|
|
* 2005-Mar Roland McGrath <roland@redhat.com>
|
|
* Fixed to handle %rip-relative addressing mode correctly.
|
|
* 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
|
|
* <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
|
|
* <prasanna@in.ibm.com> added function-return probes.
|
|
* 2005-May Rusty Lynch <rusty.lynch@intel.com>
|
|
* Added function return probes functionality
|
|
* 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
|
|
* kprobe-booster and kretprobe-booster for i386.
|
|
* 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
|
|
* and kretprobe-booster for x86-64
|
|
* 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
|
|
* <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
|
|
* unified x86 kprobes code.
|
|
*/
|
|
#include <linux/kprobes.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/objtool.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <asm/text-patching.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/desc.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/ibt.h>
|
|
|
|
#include "common.h"
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
#define stack_addr(regs) ((unsigned long *)regs->sp)
|
|
|
|
#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
|
|
(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
|
|
(b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
|
|
(b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
|
|
(bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
|
|
<< (row % 32))
|
|
/*
|
|
* Undefined/reserved opcodes, conditional jump, Opcode Extension
|
|
* Groups, and some special opcodes can not boost.
|
|
* This is non-const and volatile to keep gcc from statically
|
|
* optimizing it out, as variable_test_bit makes gcc think only
|
|
* *(unsigned long*) is used.
|
|
*/
|
|
static volatile u32 twobyte_is_boostable[256 / 32] = {
|
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
|
/* ---------------------------------------------- */
|
|
W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
|
|
W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
|
|
W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
|
|
W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
|
|
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
|
|
W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
|
|
W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
|
|
W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
|
|
W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
|
|
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
|
|
W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
|
|
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
|
|
W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
|
|
W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
|
|
W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
|
|
W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
|
|
/* ----------------------------------------------- */
|
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
|
};
|
|
#undef W
|
|
|
|
struct kretprobe_blackpoint kretprobe_blacklist[] = {
|
|
{"__switch_to", }, /* This function switches only current task, but
|
|
doesn't switch kernel stack.*/
|
|
{NULL, NULL} /* Terminator */
|
|
};
|
|
|
|
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
|
|
|
|
static nokprobe_inline void
|
|
__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
|
|
{
|
|
struct __arch_relative_insn {
|
|
u8 op;
|
|
s32 raddr;
|
|
} __packed *insn;
|
|
|
|
insn = (struct __arch_relative_insn *)dest;
|
|
insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
|
|
insn->op = op;
|
|
}
|
|
|
|
/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
|
|
void synthesize_reljump(void *dest, void *from, void *to)
|
|
{
|
|
__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
|
|
}
|
|
NOKPROBE_SYMBOL(synthesize_reljump);
|
|
|
|
/* Insert a call instruction at address 'from', which calls address 'to'.*/
|
|
void synthesize_relcall(void *dest, void *from, void *to)
|
|
{
|
|
__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
|
|
}
|
|
NOKPROBE_SYMBOL(synthesize_relcall);
|
|
|
|
/*
|
|
* Returns non-zero if INSN is boostable.
|
|
* RIP relative instructions are adjusted at copying time in 64 bits mode
|
|
*/
|
|
int can_boost(struct insn *insn, void *addr)
|
|
{
|
|
kprobe_opcode_t opcode;
|
|
insn_byte_t prefix;
|
|
int i;
|
|
|
|
if (search_exception_tables((unsigned long)addr))
|
|
return 0; /* Page fault may occur on this address. */
|
|
|
|
/* 2nd-byte opcode */
|
|
if (insn->opcode.nbytes == 2)
|
|
return test_bit(insn->opcode.bytes[1],
|
|
(unsigned long *)twobyte_is_boostable);
|
|
|
|
if (insn->opcode.nbytes != 1)
|
|
return 0;
|
|
|
|
for_each_insn_prefix(insn, i, prefix) {
|
|
insn_attr_t attr;
|
|
|
|
attr = inat_get_opcode_attribute(prefix);
|
|
/* Can't boost Address-size override prefix and CS override prefix */
|
|
if (prefix == 0x2e || inat_is_address_size_prefix(attr))
|
|
return 0;
|
|
}
|
|
|
|
opcode = insn->opcode.bytes[0];
|
|
|
|
switch (opcode) {
|
|
case 0x62: /* bound */
|
|
case 0x70 ... 0x7f: /* Conditional jumps */
|
|
case 0x9a: /* Call far */
|
|
case 0xc0 ... 0xc1: /* Grp2 */
|
|
case 0xcc ... 0xce: /* software exceptions */
|
|
case 0xd0 ... 0xd3: /* Grp2 */
|
|
case 0xd6: /* (UD) */
|
|
case 0xd8 ... 0xdf: /* ESC */
|
|
case 0xe0 ... 0xe3: /* LOOP*, JCXZ */
|
|
case 0xe8 ... 0xe9: /* near Call, JMP */
|
|
case 0xeb: /* Short JMP */
|
|
case 0xf0 ... 0xf4: /* LOCK/REP, HLT */
|
|
case 0xf6 ... 0xf7: /* Grp3 */
|
|
case 0xfe: /* Grp4 */
|
|
/* ... are not boostable */
|
|
return 0;
|
|
case 0xff: /* Grp5 */
|
|
/* Only indirect jmp is boostable */
|
|
return X86_MODRM_REG(insn->modrm.bytes[0]) == 4;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static unsigned long
|
|
__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
|
|
{
|
|
struct kprobe *kp;
|
|
bool faddr;
|
|
|
|
kp = get_kprobe((void *)addr);
|
|
faddr = ftrace_location(addr) == addr;
|
|
/*
|
|
* Use the current code if it is not modified by Kprobe
|
|
* and it cannot be modified by ftrace.
|
|
*/
|
|
if (!kp && !faddr)
|
|
return addr;
|
|
|
|
/*
|
|
* Basically, kp->ainsn.insn has an original instruction.
|
|
* However, RIP-relative instruction can not do single-stepping
|
|
* at different place, __copy_instruction() tweaks the displacement of
|
|
* that instruction. In that case, we can't recover the instruction
|
|
* from the kp->ainsn.insn.
|
|
*
|
|
* On the other hand, in case on normal Kprobe, kp->opcode has a copy
|
|
* of the first byte of the probed instruction, which is overwritten
|
|
* by int3. And the instruction at kp->addr is not modified by kprobes
|
|
* except for the first byte, we can recover the original instruction
|
|
* from it and kp->opcode.
|
|
*
|
|
* In case of Kprobes using ftrace, we do not have a copy of
|
|
* the original instruction. In fact, the ftrace location might
|
|
* be modified at anytime and even could be in an inconsistent state.
|
|
* Fortunately, we know that the original code is the ideal 5-byte
|
|
* long NOP.
|
|
*/
|
|
if (copy_from_kernel_nofault(buf, (void *)addr,
|
|
MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
|
|
return 0UL;
|
|
|
|
if (faddr)
|
|
memcpy(buf, x86_nops[5], 5);
|
|
else
|
|
buf[0] = kp->opcode;
|
|
return (unsigned long)buf;
|
|
}
|
|
|
|
/*
|
|
* Recover the probed instruction at addr for further analysis.
|
|
* Caller must lock kprobes by kprobe_mutex, or disable preemption
|
|
* for preventing to release referencing kprobes.
|
|
* Returns zero if the instruction can not get recovered (or access failed).
|
|
*/
|
|
unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
|
|
{
|
|
unsigned long __addr;
|
|
|
|
__addr = __recover_optprobed_insn(buf, addr);
|
|
if (__addr != addr)
|
|
return __addr;
|
|
|
|
return __recover_probed_insn(buf, addr);
|
|
}
|
|
|
|
/* Check if paddr is at an instruction boundary */
|
|
static int can_probe(unsigned long paddr)
|
|
{
|
|
unsigned long addr, __addr, offset = 0;
|
|
struct insn insn;
|
|
kprobe_opcode_t buf[MAX_INSN_SIZE];
|
|
|
|
if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
|
|
return 0;
|
|
|
|
/* Decode instructions */
|
|
addr = paddr - offset;
|
|
while (addr < paddr) {
|
|
int ret;
|
|
|
|
/*
|
|
* Check if the instruction has been modified by another
|
|
* kprobe, in which case we replace the breakpoint by the
|
|
* original instruction in our buffer.
|
|
* Also, jump optimization will change the breakpoint to
|
|
* relative-jump. Since the relative-jump itself is
|
|
* normally used, we just go through if there is no kprobe.
|
|
*/
|
|
__addr = recover_probed_instruction(buf, addr);
|
|
if (!__addr)
|
|
return 0;
|
|
|
|
ret = insn_decode_kernel(&insn, (void *)__addr);
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Another debugging subsystem might insert this breakpoint.
|
|
* In that case, we can't recover it.
|
|
*/
|
|
if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
|
|
return 0;
|
|
addr += insn.length;
|
|
}
|
|
|
|
return (addr == paddr);
|
|
}
|
|
|
|
/* If x86 supports IBT (ENDBR) it must be skipped. */
|
|
kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
|
|
bool *on_func_entry)
|
|
{
|
|
if (is_endbr(*(u32 *)addr)) {
|
|
*on_func_entry = !offset || offset == 4;
|
|
if (*on_func_entry)
|
|
offset = 4;
|
|
|
|
} else {
|
|
*on_func_entry = !offset;
|
|
}
|
|
|
|
return (kprobe_opcode_t *)(addr + offset);
|
|
}
|
|
|
|
/*
|
|
* Copy an instruction with recovering modified instruction by kprobes
|
|
* and adjust the displacement if the instruction uses the %rip-relative
|
|
* addressing mode. Note that since @real will be the final place of copied
|
|
* instruction, displacement must be adjust by @real, not @dest.
|
|
* This returns the length of copied instruction, or 0 if it has an error.
|
|
*/
|
|
int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
|
|
{
|
|
kprobe_opcode_t buf[MAX_INSN_SIZE];
|
|
unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
|
|
int ret;
|
|
|
|
if (!recovered_insn || !insn)
|
|
return 0;
|
|
|
|
/* This can access kernel text if given address is not recovered */
|
|
if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
|
|
MAX_INSN_SIZE))
|
|
return 0;
|
|
|
|
ret = insn_decode_kernel(insn, dest);
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
/* We can not probe force emulate prefixed instruction */
|
|
if (insn_has_emulate_prefix(insn))
|
|
return 0;
|
|
|
|
/* Another subsystem puts a breakpoint, failed to recover */
|
|
if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
|
|
return 0;
|
|
|
|
/* We should not singlestep on the exception masking instructions */
|
|
if (insn_masking_exception(insn))
|
|
return 0;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* Only x86_64 has RIP relative instructions */
|
|
if (insn_rip_relative(insn)) {
|
|
s64 newdisp;
|
|
u8 *disp;
|
|
/*
|
|
* The copied instruction uses the %rip-relative addressing
|
|
* mode. Adjust the displacement for the difference between
|
|
* the original location of this instruction and the location
|
|
* of the copy that will actually be run. The tricky bit here
|
|
* is making sure that the sign extension happens correctly in
|
|
* this calculation, since we need a signed 32-bit result to
|
|
* be sign-extended to 64 bits when it's added to the %rip
|
|
* value and yield the same 64-bit result that the sign-
|
|
* extension of the original signed 32-bit displacement would
|
|
* have given.
|
|
*/
|
|
newdisp = (u8 *) src + (s64) insn->displacement.value
|
|
- (u8 *) real;
|
|
if ((s64) (s32) newdisp != newdisp) {
|
|
pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
|
|
return 0;
|
|
}
|
|
disp = (u8 *) dest + insn_offset_displacement(insn);
|
|
*(s32 *) disp = (s32) newdisp;
|
|
}
|
|
#endif
|
|
return insn->length;
|
|
}
|
|
|
|
/* Prepare reljump or int3 right after instruction */
|
|
static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
|
|
struct insn *insn)
|
|
{
|
|
int len = insn->length;
|
|
|
|
if (!IS_ENABLED(CONFIG_PREEMPTION) &&
|
|
!p->post_handler && can_boost(insn, p->addr) &&
|
|
MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
|
|
/*
|
|
* These instructions can be executed directly if it
|
|
* jumps back to correct address.
|
|
*/
|
|
synthesize_reljump(buf + len, p->ainsn.insn + len,
|
|
p->addr + insn->length);
|
|
len += JMP32_INSN_SIZE;
|
|
p->ainsn.boostable = 1;
|
|
} else {
|
|
/* Otherwise, put an int3 for trapping singlestep */
|
|
if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
|
|
return -ENOSPC;
|
|
|
|
buf[len] = INT3_INSN_OPCODE;
|
|
len += INT3_INSN_SIZE;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Make page to RO mode when allocate it */
|
|
void *alloc_insn_page(void)
|
|
{
|
|
void *page;
|
|
|
|
page = module_alloc(PAGE_SIZE);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
set_vm_flush_reset_perms(page);
|
|
/*
|
|
* First make the page read-only, and only then make it executable to
|
|
* prevent it from being W+X in between.
|
|
*/
|
|
set_memory_ro((unsigned long)page, 1);
|
|
|
|
/*
|
|
* TODO: Once additional kernel code protection mechanisms are set, ensure
|
|
* that the page was not maliciously altered and it is still zeroed.
|
|
*/
|
|
set_memory_x((unsigned long)page, 1);
|
|
|
|
return page;
|
|
}
|
|
|
|
/* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
|
|
|
|
static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
switch (p->ainsn.opcode) {
|
|
case 0xfa: /* cli */
|
|
regs->flags &= ~(X86_EFLAGS_IF);
|
|
break;
|
|
case 0xfb: /* sti */
|
|
regs->flags |= X86_EFLAGS_IF;
|
|
break;
|
|
case 0x9c: /* pushf */
|
|
int3_emulate_push(regs, regs->flags);
|
|
break;
|
|
case 0x9d: /* popf */
|
|
regs->flags = int3_emulate_pop(regs);
|
|
break;
|
|
}
|
|
regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
|
|
|
|
static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
int3_emulate_ret(regs);
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_emulate_ret);
|
|
|
|
static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
|
|
|
|
func += p->ainsn.rel32;
|
|
int3_emulate_call(regs, func);
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_emulate_call);
|
|
|
|
static nokprobe_inline
|
|
void __kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs, bool cond)
|
|
{
|
|
unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
|
|
|
|
if (cond)
|
|
ip += p->ainsn.rel32;
|
|
int3_emulate_jmp(regs, ip);
|
|
}
|
|
|
|
static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
__kprobe_emulate_jmp(p, regs, true);
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_emulate_jmp);
|
|
|
|
static const unsigned long jcc_mask[6] = {
|
|
[0] = X86_EFLAGS_OF,
|
|
[1] = X86_EFLAGS_CF,
|
|
[2] = X86_EFLAGS_ZF,
|
|
[3] = X86_EFLAGS_CF | X86_EFLAGS_ZF,
|
|
[4] = X86_EFLAGS_SF,
|
|
[5] = X86_EFLAGS_PF,
|
|
};
|
|
|
|
static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
bool invert = p->ainsn.jcc.type & 1;
|
|
bool match;
|
|
|
|
if (p->ainsn.jcc.type < 0xc) {
|
|
match = regs->flags & jcc_mask[p->ainsn.jcc.type >> 1];
|
|
} else {
|
|
match = ((regs->flags & X86_EFLAGS_SF) >> X86_EFLAGS_SF_BIT) ^
|
|
((regs->flags & X86_EFLAGS_OF) >> X86_EFLAGS_OF_BIT);
|
|
if (p->ainsn.jcc.type >= 0xe)
|
|
match = match && (regs->flags & X86_EFLAGS_ZF);
|
|
}
|
|
__kprobe_emulate_jmp(p, regs, (match && !invert) || (!match && invert));
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_emulate_jcc);
|
|
|
|
static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
bool match;
|
|
|
|
if (p->ainsn.loop.type != 3) { /* LOOP* */
|
|
if (p->ainsn.loop.asize == 32)
|
|
match = ((*(u32 *)®s->cx)--) != 0;
|
|
#ifdef CONFIG_X86_64
|
|
else if (p->ainsn.loop.asize == 64)
|
|
match = ((*(u64 *)®s->cx)--) != 0;
|
|
#endif
|
|
else
|
|
match = ((*(u16 *)®s->cx)--) != 0;
|
|
} else { /* JCXZ */
|
|
if (p->ainsn.loop.asize == 32)
|
|
match = *(u32 *)(®s->cx) == 0;
|
|
#ifdef CONFIG_X86_64
|
|
else if (p->ainsn.loop.asize == 64)
|
|
match = *(u64 *)(®s->cx) == 0;
|
|
#endif
|
|
else
|
|
match = *(u16 *)(®s->cx) == 0;
|
|
}
|
|
|
|
if (p->ainsn.loop.type == 0) /* LOOPNE */
|
|
match = match && !(regs->flags & X86_EFLAGS_ZF);
|
|
else if (p->ainsn.loop.type == 1) /* LOOPE */
|
|
match = match && (regs->flags & X86_EFLAGS_ZF);
|
|
|
|
__kprobe_emulate_jmp(p, regs, match);
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_emulate_loop);
|
|
|
|
static const int addrmode_regoffs[] = {
|
|
offsetof(struct pt_regs, ax),
|
|
offsetof(struct pt_regs, cx),
|
|
offsetof(struct pt_regs, dx),
|
|
offsetof(struct pt_regs, bx),
|
|
offsetof(struct pt_regs, sp),
|
|
offsetof(struct pt_regs, bp),
|
|
offsetof(struct pt_regs, si),
|
|
offsetof(struct pt_regs, di),
|
|
#ifdef CONFIG_X86_64
|
|
offsetof(struct pt_regs, r8),
|
|
offsetof(struct pt_regs, r9),
|
|
offsetof(struct pt_regs, r10),
|
|
offsetof(struct pt_regs, r11),
|
|
offsetof(struct pt_regs, r12),
|
|
offsetof(struct pt_regs, r13),
|
|
offsetof(struct pt_regs, r14),
|
|
offsetof(struct pt_regs, r15),
|
|
#endif
|
|
};
|
|
|
|
static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
|
|
|
|
int3_emulate_call(regs, regs_get_register(regs, offs));
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
|
|
|
|
static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
|
|
|
|
int3_emulate_jmp(regs, regs_get_register(regs, offs));
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
|
|
|
|
static int prepare_emulation(struct kprobe *p, struct insn *insn)
|
|
{
|
|
insn_byte_t opcode = insn->opcode.bytes[0];
|
|
|
|
switch (opcode) {
|
|
case 0xfa: /* cli */
|
|
case 0xfb: /* sti */
|
|
case 0x9c: /* pushfl */
|
|
case 0x9d: /* popf/popfd */
|
|
/*
|
|
* IF modifiers must be emulated since it will enable interrupt while
|
|
* int3 single stepping.
|
|
*/
|
|
p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
|
|
p->ainsn.opcode = opcode;
|
|
break;
|
|
case 0xc2: /* ret/lret */
|
|
case 0xc3:
|
|
case 0xca:
|
|
case 0xcb:
|
|
p->ainsn.emulate_op = kprobe_emulate_ret;
|
|
break;
|
|
case 0x9a: /* far call absolute -- segment is not supported */
|
|
case 0xea: /* far jmp absolute -- segment is not supported */
|
|
case 0xcc: /* int3 */
|
|
case 0xcf: /* iret -- in-kernel IRET is not supported */
|
|
return -EOPNOTSUPP;
|
|
break;
|
|
case 0xe8: /* near call relative */
|
|
p->ainsn.emulate_op = kprobe_emulate_call;
|
|
if (insn->immediate.nbytes == 2)
|
|
p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
|
|
else
|
|
p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
|
|
break;
|
|
case 0xeb: /* short jump relative */
|
|
case 0xe9: /* near jump relative */
|
|
p->ainsn.emulate_op = kprobe_emulate_jmp;
|
|
if (insn->immediate.nbytes == 1)
|
|
p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
|
|
else if (insn->immediate.nbytes == 2)
|
|
p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
|
|
else
|
|
p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
|
|
break;
|
|
case 0x70 ... 0x7f:
|
|
/* 1 byte conditional jump */
|
|
p->ainsn.emulate_op = kprobe_emulate_jcc;
|
|
p->ainsn.jcc.type = opcode & 0xf;
|
|
p->ainsn.rel32 = *(char *)insn->immediate.bytes;
|
|
break;
|
|
case 0x0f:
|
|
opcode = insn->opcode.bytes[1];
|
|
if ((opcode & 0xf0) == 0x80) {
|
|
/* 2 bytes Conditional Jump */
|
|
p->ainsn.emulate_op = kprobe_emulate_jcc;
|
|
p->ainsn.jcc.type = opcode & 0xf;
|
|
if (insn->immediate.nbytes == 2)
|
|
p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
|
|
else
|
|
p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
|
|
} else if (opcode == 0x01 &&
|
|
X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
|
|
X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
|
|
/* VM extensions - not supported */
|
|
return -EOPNOTSUPP;
|
|
}
|
|
break;
|
|
case 0xe0: /* Loop NZ */
|
|
case 0xe1: /* Loop */
|
|
case 0xe2: /* Loop */
|
|
case 0xe3: /* J*CXZ */
|
|
p->ainsn.emulate_op = kprobe_emulate_loop;
|
|
p->ainsn.loop.type = opcode & 0x3;
|
|
p->ainsn.loop.asize = insn->addr_bytes * 8;
|
|
p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
|
|
break;
|
|
case 0xff:
|
|
/*
|
|
* Since the 0xff is an extended group opcode, the instruction
|
|
* is determined by the MOD/RM byte.
|
|
*/
|
|
opcode = insn->modrm.bytes[0];
|
|
if ((opcode & 0x30) == 0x10) {
|
|
if ((opcode & 0x8) == 0x8)
|
|
return -EOPNOTSUPP; /* far call */
|
|
/* call absolute, indirect */
|
|
p->ainsn.emulate_op = kprobe_emulate_call_indirect;
|
|
} else if ((opcode & 0x30) == 0x20) {
|
|
if ((opcode & 0x8) == 0x8)
|
|
return -EOPNOTSUPP; /* far jmp */
|
|
/* jmp near absolute indirect */
|
|
p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
|
|
} else
|
|
break;
|
|
|
|
if (insn->addr_bytes != sizeof(unsigned long))
|
|
return -EOPNOTSUPP; /* Don't support different size */
|
|
if (X86_MODRM_MOD(opcode) != 3)
|
|
return -EOPNOTSUPP; /* TODO: support memory addressing */
|
|
|
|
p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
|
|
#ifdef CONFIG_X86_64
|
|
if (X86_REX_B(insn->rex_prefix.value))
|
|
p->ainsn.indirect.reg += 8;
|
|
#endif
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
p->ainsn.size = insn->length;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arch_copy_kprobe(struct kprobe *p)
|
|
{
|
|
struct insn insn;
|
|
kprobe_opcode_t buf[MAX_INSN_SIZE];
|
|
int ret, len;
|
|
|
|
/* Copy an instruction with recovering if other optprobe modifies it.*/
|
|
len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
|
|
if (!len)
|
|
return -EINVAL;
|
|
|
|
/* Analyze the opcode and setup emulate functions */
|
|
ret = prepare_emulation(p, &insn);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Add int3 for single-step or booster jmp */
|
|
len = prepare_singlestep(buf, p, &insn);
|
|
if (len < 0)
|
|
return len;
|
|
|
|
/* Also, displacement change doesn't affect the first byte */
|
|
p->opcode = buf[0];
|
|
|
|
p->ainsn.tp_len = len;
|
|
perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
|
|
|
|
/* OK, write back the instruction(s) into ROX insn buffer */
|
|
text_poke(p->ainsn.insn, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
int ret;
|
|
|
|
if (alternatives_text_reserved(p->addr, p->addr))
|
|
return -EINVAL;
|
|
|
|
if (!can_probe((unsigned long)p->addr))
|
|
return -EILSEQ;
|
|
|
|
memset(&p->ainsn, 0, sizeof(p->ainsn));
|
|
|
|
/* insn: must be on special executable page on x86. */
|
|
p->ainsn.insn = get_insn_slot();
|
|
if (!p->ainsn.insn)
|
|
return -ENOMEM;
|
|
|
|
ret = arch_copy_kprobe(p);
|
|
if (ret) {
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
u8 int3 = INT3_INSN_OPCODE;
|
|
|
|
text_poke(p->addr, &int3, 1);
|
|
text_poke_sync();
|
|
perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
|
|
}
|
|
|
|
void arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
u8 int3 = INT3_INSN_OPCODE;
|
|
|
|
perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
|
|
text_poke(p->addr, &p->opcode, 1);
|
|
text_poke_sync();
|
|
}
|
|
|
|
void arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.insn) {
|
|
/* Record the perf event before freeing the slot */
|
|
perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
|
|
p->ainsn.tp_len, NULL, 0);
|
|
free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
}
|
|
|
|
static nokprobe_inline void
|
|
save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
|
|
kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
|
|
}
|
|
|
|
static nokprobe_inline void
|
|
restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
|
|
kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
|
|
}
|
|
|
|
static nokprobe_inline void
|
|
set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
kcb->kprobe_saved_flags = kcb->kprobe_old_flags
|
|
= (regs->flags & X86_EFLAGS_IF);
|
|
}
|
|
|
|
static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
/* Restore back the original saved kprobes variables and continue. */
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_post_process);
|
|
|
|
static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb, int reenter)
|
|
{
|
|
if (setup_detour_execution(p, regs, reenter))
|
|
return;
|
|
|
|
#if !defined(CONFIG_PREEMPTION)
|
|
if (p->ainsn.boostable) {
|
|
/* Boost up -- we can execute copied instructions directly */
|
|
if (!reenter)
|
|
reset_current_kprobe();
|
|
/*
|
|
* Reentering boosted probe doesn't reset current_kprobe,
|
|
* nor set current_kprobe, because it doesn't use single
|
|
* stepping.
|
|
*/
|
|
regs->ip = (unsigned long)p->ainsn.insn;
|
|
return;
|
|
}
|
|
#endif
|
|
if (reenter) {
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p, regs, kcb);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
} else
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
|
if (p->ainsn.emulate_op) {
|
|
p->ainsn.emulate_op(p, regs);
|
|
kprobe_post_process(p, regs, kcb);
|
|
return;
|
|
}
|
|
|
|
/* Disable interrupt, and set ip register on trampoline */
|
|
regs->flags &= ~X86_EFLAGS_IF;
|
|
regs->ip = (unsigned long)p->ainsn.insn;
|
|
}
|
|
NOKPROBE_SYMBOL(setup_singlestep);
|
|
|
|
/*
|
|
* Called after single-stepping. p->addr is the address of the
|
|
* instruction whose first byte has been replaced by the "int3"
|
|
* instruction. To avoid the SMP problems that can occur when we
|
|
* temporarily put back the original opcode to single-step, we
|
|
* single-stepped a copy of the instruction. The address of this
|
|
* copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
|
|
* right after the copied instruction.
|
|
* Different from the trap single-step, "int3" single-step can not
|
|
* handle the instruction which changes the ip register, e.g. jmp,
|
|
* call, conditional jmp, and the instructions which changes the IF
|
|
* flags because interrupt must be disabled around the single-stepping.
|
|
* Such instructions are software emulated, but others are single-stepped
|
|
* using "int3".
|
|
*
|
|
* When the 2nd "int3" handled, the regs->ip and regs->flags needs to
|
|
* be adjusted, so that we can resume execution on correct code.
|
|
*/
|
|
static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
unsigned long copy_ip = (unsigned long)p->ainsn.insn;
|
|
unsigned long orig_ip = (unsigned long)p->addr;
|
|
|
|
/* Restore saved interrupt flag and ip register */
|
|
regs->flags |= kcb->kprobe_saved_flags;
|
|
/* Note that regs->ip is executed int3 so must be a step back */
|
|
regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
|
|
}
|
|
NOKPROBE_SYMBOL(resume_singlestep);
|
|
|
|
/*
|
|
* We have reentered the kprobe_handler(), since another probe was hit while
|
|
* within the handler. We save the original kprobes variables and just single
|
|
* step on the instruction of the new probe without calling any user handlers.
|
|
*/
|
|
static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SSDONE:
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SS:
|
|
kprobes_inc_nmissed_count(p);
|
|
setup_singlestep(p, regs, kcb, 1);
|
|
break;
|
|
case KPROBE_REENTER:
|
|
/* A probe has been hit in the codepath leading up to, or just
|
|
* after, single-stepping of a probed instruction. This entire
|
|
* codepath should strictly reside in .kprobes.text section.
|
|
* Raise a BUG or we'll continue in an endless reentering loop
|
|
* and eventually a stack overflow.
|
|
*/
|
|
pr_err("Unrecoverable kprobe detected.\n");
|
|
dump_kprobe(p);
|
|
BUG();
|
|
default:
|
|
/* impossible cases */
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(reenter_kprobe);
|
|
|
|
static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
|
|
{
|
|
return (kcb->kprobe_status == KPROBE_HIT_SS ||
|
|
kcb->kprobe_status == KPROBE_REENTER);
|
|
}
|
|
|
|
/*
|
|
* Interrupts are disabled on entry as trap3 is an interrupt gate and they
|
|
* remain disabled throughout this function.
|
|
*/
|
|
int kprobe_int3_handler(struct pt_regs *regs)
|
|
{
|
|
kprobe_opcode_t *addr;
|
|
struct kprobe *p;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
if (user_mode(regs))
|
|
return 0;
|
|
|
|
addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
|
|
/*
|
|
* We don't want to be preempted for the entire duration of kprobe
|
|
* processing. Since int3 and debug trap disables irqs and we clear
|
|
* IF while singlestepping, it must be no preemptible.
|
|
*/
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
p = get_kprobe(addr);
|
|
|
|
if (p) {
|
|
if (kprobe_running()) {
|
|
if (reenter_kprobe(p, regs, kcb))
|
|
return 1;
|
|
} else {
|
|
set_current_kprobe(p, regs, kcb);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with normal processing. If we have a
|
|
* pre-handler and it returned non-zero, that means
|
|
* user handler setup registers to exit to another
|
|
* instruction, we must skip the single stepping.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs))
|
|
setup_singlestep(p, regs, kcb, 0);
|
|
else
|
|
reset_current_kprobe();
|
|
return 1;
|
|
}
|
|
} else if (kprobe_is_ss(kcb)) {
|
|
p = kprobe_running();
|
|
if ((unsigned long)p->ainsn.insn < regs->ip &&
|
|
(unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
|
|
/* Most provably this is the second int3 for singlestep */
|
|
resume_singlestep(p, regs, kcb);
|
|
kprobe_post_process(p, regs, kcb);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (*addr != INT3_INSN_OPCODE) {
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
* Back up over the (now missing) int3 and run
|
|
* the original instruction.
|
|
*/
|
|
regs->ip = (unsigned long)addr;
|
|
return 1;
|
|
} /* else: not a kprobe fault; let the kernel handle it */
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_int3_handler);
|
|
|
|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
|
|
/* This must happen on single-stepping */
|
|
WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
|
|
kcb->kprobe_status != KPROBE_REENTER);
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the ip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
regs->ip = (unsigned long)cur->addr;
|
|
|
|
/*
|
|
* If the IF flag was set before the kprobe hit,
|
|
* don't touch it:
|
|
*/
|
|
regs->flags |= kcb->kprobe_old_flags;
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_fault_handler);
|
|
|
|
int __init arch_populate_kprobe_blacklist(void)
|
|
{
|
|
return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
|
|
(unsigned long)__entry_text_end);
|
|
}
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
return 0;
|
|
}
|