linux-stable/drivers/gpu/drm/i915/i915_vma_resource.c
Chris Wilson 6110225144 drm/i915: Introduce guard pages to i915_vma
Introduce the concept of padding the i915_vma with guard pages before
and after. The major consequence is that all ordinary uses of i915_vma
must use i915_vma_offset/i915_vma_size and not i915_vma.node.start/size
directly, as the drm_mm_node will include the guard pages that surround
our object.

The biggest connundrum is how exactly to mix requesting a fixed address
with guard pages, particularly through the existing uABI. The user does
not know about guard pages, so such must be transparent to the user, and
so the execobj.offset must be that of the object itself excluding the
guard. So a PIN_OFFSET_FIXED must then be exclusive of the guard pages.
The caveat is that some placements will be impossible with guard pages,
as wrap arounds need to be avoided, and the vma itself will require a
larger node. We must not report EINVAL but ENOSPC as these are unavailable
locations within the GTT rather than conflicting user requirements.

In the next patch, we start using guard pages for scanout objects. While
these are limited to GGTT vma, on a few platforms these vma (or at least
an alias of the vma) is shared with userspace, so we may leak the
existence of such guards if we are not careful to ensure that the
execobj.offset is transparent and excludes the guards. (On such platforms
like ivb, without full-ppgtt, userspace has to use relocations so the
presence of more untouchable regions within its GTT such be of no further
issue.)

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Tejas Upadhyay <tejaskumarx.surendrakumar.upadhyay@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Andi Shyti <andi.shyti@linux.intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20221201203912.346110-1-andi.shyti@linux.intel.com
2022-12-06 10:52:45 +01:00

425 lines
12 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include <linux/interval_tree_generic.h>
#include <linux/sched/mm.h>
#include "i915_sw_fence.h"
#include "i915_vma_resource.h"
#include "i915_drv.h"
#include "intel_memory_region.h"
#include "gt/intel_gtt.h"
static struct kmem_cache *slab_vma_resources;
/**
* DOC:
* We use a per-vm interval tree to keep track of vma_resources
* scheduled for unbind but not yet unbound. The tree is protected by
* the vm mutex, and nodes are removed just after the unbind fence signals.
* The removal takes the vm mutex from a kernel thread which we need to
* keep in mind so that we don't grab the mutex and try to wait for all
* pending unbinds to complete, because that will temporaryily block many
* of the workqueue threads, and people will get angry.
*
* We should consider using a single ordered fence per VM instead but that
* requires ordering the unbinds and might introduce unnecessary waiting
* for unrelated unbinds. Amount of code will probably be roughly the same
* due to the simplicity of using the interval tree interface.
*
* Another drawback of this interval tree is that the complexity of insertion
* and removal of fences increases as O(ln(pending_unbinds)) instead of
* O(1) for a single fence without interval tree.
*/
#define VMA_RES_START(_node) ((_node)->start - (_node)->guard)
#define VMA_RES_LAST(_node) ((_node)->start + (_node)->node_size + (_node)->guard - 1)
INTERVAL_TREE_DEFINE(struct i915_vma_resource, rb,
u64, __subtree_last,
VMA_RES_START, VMA_RES_LAST, static, vma_res_itree);
/* Callbacks for the unbind dma-fence. */
/**
* i915_vma_resource_alloc - Allocate a vma resource
*
* Return: A pointer to a cleared struct i915_vma_resource or
* a -ENOMEM error pointer if allocation fails.
*/
struct i915_vma_resource *i915_vma_resource_alloc(void)
{
struct i915_vma_resource *vma_res =
kmem_cache_zalloc(slab_vma_resources, GFP_KERNEL);
return vma_res ? vma_res : ERR_PTR(-ENOMEM);
}
/**
* i915_vma_resource_free - Free a vma resource
* @vma_res: The vma resource to free.
*/
void i915_vma_resource_free(struct i915_vma_resource *vma_res)
{
if (vma_res)
kmem_cache_free(slab_vma_resources, vma_res);
}
static const char *get_driver_name(struct dma_fence *fence)
{
return "vma unbind fence";
}
static const char *get_timeline_name(struct dma_fence *fence)
{
return "unbound";
}
static void unbind_fence_free_rcu(struct rcu_head *head)
{
struct i915_vma_resource *vma_res =
container_of(head, typeof(*vma_res), unbind_fence.rcu);
i915_vma_resource_free(vma_res);
}
static void unbind_fence_release(struct dma_fence *fence)
{
struct i915_vma_resource *vma_res =
container_of(fence, typeof(*vma_res), unbind_fence);
i915_sw_fence_fini(&vma_res->chain);
call_rcu(&fence->rcu, unbind_fence_free_rcu);
}
static struct dma_fence_ops unbind_fence_ops = {
.get_driver_name = get_driver_name,
.get_timeline_name = get_timeline_name,
.release = unbind_fence_release,
};
static void __i915_vma_resource_unhold(struct i915_vma_resource *vma_res)
{
struct i915_address_space *vm;
if (!refcount_dec_and_test(&vma_res->hold_count))
return;
dma_fence_signal(&vma_res->unbind_fence);
vm = vma_res->vm;
if (vma_res->wakeref)
intel_runtime_pm_put(&vm->i915->runtime_pm, vma_res->wakeref);
vma_res->vm = NULL;
if (!RB_EMPTY_NODE(&vma_res->rb)) {
mutex_lock(&vm->mutex);
vma_res_itree_remove(vma_res, &vm->pending_unbind);
mutex_unlock(&vm->mutex);
}
if (vma_res->bi.pages_rsgt)
i915_refct_sgt_put(vma_res->bi.pages_rsgt);
}
/**
* i915_vma_resource_unhold - Unhold the signaling of the vma resource unbind
* fence.
* @vma_res: The vma resource.
* @lockdep_cookie: The lockdep cookie returned from i915_vma_resource_hold.
*
* The function may leave a dma_fence critical section.
*/
void i915_vma_resource_unhold(struct i915_vma_resource *vma_res,
bool lockdep_cookie)
{
dma_fence_end_signalling(lockdep_cookie);
if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
unsigned long irq_flags;
/* Inefficient open-coded might_lock_irqsave() */
spin_lock_irqsave(&vma_res->lock, irq_flags);
spin_unlock_irqrestore(&vma_res->lock, irq_flags);
}
__i915_vma_resource_unhold(vma_res);
}
/**
* i915_vma_resource_hold - Hold the signaling of the vma resource unbind fence.
* @vma_res: The vma resource.
* @lockdep_cookie: Pointer to a bool serving as a lockdep cooke that should
* be given as an argument to the pairing i915_vma_resource_unhold.
*
* If returning true, the function enters a dma_fence signalling critical
* section if not in one already.
*
* Return: true if holding successful, false if not.
*/
bool i915_vma_resource_hold(struct i915_vma_resource *vma_res,
bool *lockdep_cookie)
{
bool held = refcount_inc_not_zero(&vma_res->hold_count);
if (held)
*lockdep_cookie = dma_fence_begin_signalling();
return held;
}
static void i915_vma_resource_unbind_work(struct work_struct *work)
{
struct i915_vma_resource *vma_res =
container_of(work, typeof(*vma_res), work);
struct i915_address_space *vm = vma_res->vm;
bool lockdep_cookie;
lockdep_cookie = dma_fence_begin_signalling();
if (likely(!vma_res->skip_pte_rewrite))
vma_res->ops->unbind_vma(vm, vma_res);
dma_fence_end_signalling(lockdep_cookie);
__i915_vma_resource_unhold(vma_res);
i915_vma_resource_put(vma_res);
}
static int
i915_vma_resource_fence_notify(struct i915_sw_fence *fence,
enum i915_sw_fence_notify state)
{
struct i915_vma_resource *vma_res =
container_of(fence, typeof(*vma_res), chain);
struct dma_fence *unbind_fence =
&vma_res->unbind_fence;
switch (state) {
case FENCE_COMPLETE:
dma_fence_get(unbind_fence);
if (vma_res->immediate_unbind) {
i915_vma_resource_unbind_work(&vma_res->work);
} else {
INIT_WORK(&vma_res->work, i915_vma_resource_unbind_work);
queue_work(system_unbound_wq, &vma_res->work);
}
break;
case FENCE_FREE:
i915_vma_resource_put(vma_res);
break;
}
return NOTIFY_DONE;
}
/**
* i915_vma_resource_unbind - Unbind a vma resource
* @vma_res: The vma resource to unbind.
* @tlb: pointer to vma->obj->mm.tlb associated with the resource
* to be stored at vma_res->tlb. When not-NULL, it will be used
* to do TLB cache invalidation before freeing a VMA resource.
* Used only for async unbind.
*
* At this point this function does little more than publish a fence that
* signals immediately unless signaling is held back.
*
* Return: A refcounted pointer to a dma-fence that signals when unbinding is
* complete.
*/
struct dma_fence *i915_vma_resource_unbind(struct i915_vma_resource *vma_res,
u32 *tlb)
{
struct i915_address_space *vm = vma_res->vm;
vma_res->tlb = tlb;
/* Reference for the sw fence */
i915_vma_resource_get(vma_res);
/* Caller must already have a wakeref in this case. */
if (vma_res->needs_wakeref)
vma_res->wakeref = intel_runtime_pm_get_if_in_use(&vm->i915->runtime_pm);
if (atomic_read(&vma_res->chain.pending) <= 1) {
RB_CLEAR_NODE(&vma_res->rb);
vma_res->immediate_unbind = 1;
} else {
vma_res_itree_insert(vma_res, &vma_res->vm->pending_unbind);
}
i915_sw_fence_commit(&vma_res->chain);
return &vma_res->unbind_fence;
}
/**
* __i915_vma_resource_init - Initialize a vma resource.
* @vma_res: The vma resource to initialize
*
* Initializes the private members of a vma resource.
*/
void __i915_vma_resource_init(struct i915_vma_resource *vma_res)
{
spin_lock_init(&vma_res->lock);
dma_fence_init(&vma_res->unbind_fence, &unbind_fence_ops,
&vma_res->lock, 0, 0);
refcount_set(&vma_res->hold_count, 1);
i915_sw_fence_init(&vma_res->chain, i915_vma_resource_fence_notify);
}
static void
i915_vma_resource_color_adjust_range(struct i915_address_space *vm,
u64 *start,
u64 *end)
{
if (i915_vm_has_cache_coloring(vm)) {
if (*start)
*start -= I915_GTT_PAGE_SIZE;
*end += I915_GTT_PAGE_SIZE;
}
}
/**
* i915_vma_resource_bind_dep_sync - Wait for / sync all unbinds touching a
* certain vm range.
* @vm: The vm to look at.
* @offset: The range start.
* @size: The range size.
* @intr: Whether to wait interrubtible.
*
* The function needs to be called with the vm lock held.
*
* Return: Zero on success, -ERESTARTSYS if interrupted and @intr==true
*/
int i915_vma_resource_bind_dep_sync(struct i915_address_space *vm,
u64 offset,
u64 size,
bool intr)
{
struct i915_vma_resource *node;
u64 last = offset + size - 1;
lockdep_assert_held(&vm->mutex);
might_sleep();
i915_vma_resource_color_adjust_range(vm, &offset, &last);
node = vma_res_itree_iter_first(&vm->pending_unbind, offset, last);
while (node) {
int ret = dma_fence_wait(&node->unbind_fence, intr);
if (ret)
return ret;
node = vma_res_itree_iter_next(node, offset, last);
}
return 0;
}
/**
* i915_vma_resource_bind_dep_sync_all - Wait for / sync all unbinds of a vm,
* releasing the vm lock while waiting.
* @vm: The vm to look at.
*
* The function may not be called with the vm lock held.
* Typically this is called at vm destruction to finish any pending
* unbind operations. The vm mutex is released while waiting to avoid
* stalling kernel workqueues trying to grab the mutex.
*/
void i915_vma_resource_bind_dep_sync_all(struct i915_address_space *vm)
{
struct i915_vma_resource *node;
struct dma_fence *fence;
do {
fence = NULL;
mutex_lock(&vm->mutex);
node = vma_res_itree_iter_first(&vm->pending_unbind, 0,
U64_MAX);
if (node)
fence = dma_fence_get_rcu(&node->unbind_fence);
mutex_unlock(&vm->mutex);
if (fence) {
/*
* The wait makes sure the node eventually removes
* itself from the tree.
*/
dma_fence_wait(fence, false);
dma_fence_put(fence);
}
} while (node);
}
/**
* i915_vma_resource_bind_dep_await - Have a struct i915_sw_fence await all
* pending unbinds in a certain range of a vm.
* @vm: The vm to look at.
* @sw_fence: The struct i915_sw_fence that will be awaiting the unbinds.
* @offset: The range start.
* @size: The range size.
* @intr: Whether to wait interrubtible.
* @gfp: Allocation mode for memory allocations.
*
* The function makes @sw_fence await all pending unbinds in a certain
* vm range before calling the complete notifier. To be able to await
* each individual unbind, the function needs to allocate memory using
* the @gpf allocation mode. If that fails, the function will instead
* wait for the unbind fence to signal, using @intr to judge whether to
* wait interruptible or not. Note that @gfp should ideally be selected so
* as to avoid any expensive memory allocation stalls and rather fail and
* synchronize itself. For now the vm mutex is required when calling this
* function with means that @gfp can't call into direct reclaim. In reality
* this means that during heavy memory pressure, we will sync in this
* function.
*
* Return: Zero on success, -ERESTARTSYS if interrupted and @intr==true
*/
int i915_vma_resource_bind_dep_await(struct i915_address_space *vm,
struct i915_sw_fence *sw_fence,
u64 offset,
u64 size,
bool intr,
gfp_t gfp)
{
struct i915_vma_resource *node;
u64 last = offset + size - 1;
lockdep_assert_held(&vm->mutex);
might_alloc(gfp);
might_sleep();
i915_vma_resource_color_adjust_range(vm, &offset, &last);
node = vma_res_itree_iter_first(&vm->pending_unbind, offset, last);
while (node) {
int ret;
ret = i915_sw_fence_await_dma_fence(sw_fence,
&node->unbind_fence,
0, gfp);
if (ret < 0) {
ret = dma_fence_wait(&node->unbind_fence, intr);
if (ret)
return ret;
}
node = vma_res_itree_iter_next(node, offset, last);
}
return 0;
}
void i915_vma_resource_module_exit(void)
{
kmem_cache_destroy(slab_vma_resources);
}
int __init i915_vma_resource_module_init(void)
{
slab_vma_resources = KMEM_CACHE(i915_vma_resource, SLAB_HWCACHE_ALIGN);
if (!slab_vma_resources)
return -ENOMEM;
return 0;
}