linux-stable/arch/powerpc/kernel/kprobes.c
Prasanna S Panchamukhi 46dbe2f4ef [PATCH] Switch Kprobes inline functions to __kprobes for ppc64
Andrew Morton pointed out that compiler might not inline the functions
marked for inline in kprobes.  There-by allowing the insertion of probes
on these kprobes routines, which might cause recursion.

This patch removes all such inline and adds them to kprobes section
there by disallowing probes on all such routines.  Some of the routines
can even still be inlined, since these routines gets executed after the
kprobes had done necessay setup for reentrancy.

Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-19 09:13:53 -07:00

517 lines
14 KiB
C

/*
* Kernel Probes (KProbes)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
* Probes initial implementation ( includes contributions from
* Rusty Russell).
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
* interface to access function arguments.
* 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
* for PPC64
*/
#include <linux/config.h>
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/preempt.h>
#include <linux/module.h>
#include <asm/cacheflush.h>
#include <asm/kdebug.h>
#include <asm/sstep.h>
#include <asm/uaccess.h>
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
int ret = 0;
kprobe_opcode_t insn = *p->addr;
if ((unsigned long)p->addr & 0x03) {
printk("Attempt to register kprobe at an unaligned address\n");
ret = -EINVAL;
} else if (IS_MTMSRD(insn) || IS_RFID(insn)) {
printk("Cannot register a kprobe on rfid or mtmsrd\n");
ret = -EINVAL;
}
/* insn must be on a special executable page on ppc64 */
if (!ret) {
p->ainsn.insn = get_insn_slot();
if (!p->ainsn.insn)
ret = -ENOMEM;
}
if (!ret) {
memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
p->opcode = *p->addr;
}
return ret;
}
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
*p->addr = BREAKPOINT_INSTRUCTION;
flush_icache_range((unsigned long) p->addr,
(unsigned long) p->addr + sizeof(kprobe_opcode_t));
}
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
*p->addr = p->opcode;
flush_icache_range((unsigned long) p->addr,
(unsigned long) p->addr + sizeof(kprobe_opcode_t));
}
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
mutex_lock(&kprobe_mutex);
free_insn_slot(p->ainsn.insn);
mutex_unlock(&kprobe_mutex);
}
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
kprobe_opcode_t insn = *p->ainsn.insn;
regs->msr |= MSR_SE;
/* single step inline if it is a trap variant */
if (is_trap(insn))
regs->nip = (unsigned long)p->addr;
else
regs->nip = (unsigned long)p->ainsn.insn;
}
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
}
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
kcb->kprobe_status = kcb->prev_kprobe.status;
kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
}
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
__get_cpu_var(current_kprobe) = p;
kcb->kprobe_saved_msr = regs->msr;
}
/* Called with kretprobe_lock held */
void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
struct pt_regs *regs)
{
struct kretprobe_instance *ri;
if ((ri = get_free_rp_inst(rp)) != NULL) {
ri->rp = rp;
ri->task = current;
ri->ret_addr = (kprobe_opcode_t *)regs->link;
/* Replace the return addr with trampoline addr */
regs->link = (unsigned long)kretprobe_trampoline;
add_rp_inst(ri);
} else {
rp->nmissed++;
}
}
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
int ret = 0;
unsigned int *addr = (unsigned int *)regs->nip;
struct kprobe_ctlblk *kcb;
/*
* We don't want to be preempted for the entire
* duration of kprobe processing
*/
preempt_disable();
kcb = get_kprobe_ctlblk();
/* Check we're not actually recursing */
if (kprobe_running()) {
p = get_kprobe(addr);
if (p) {
kprobe_opcode_t insn = *p->ainsn.insn;
if (kcb->kprobe_status == KPROBE_HIT_SS &&
is_trap(insn)) {
regs->msr &= ~MSR_SE;
regs->msr |= kcb->kprobe_saved_msr;
goto no_kprobe;
}
/* We have reentered the kprobe_handler(), since
* another probe was hit while within the handler.
* We here save the original kprobes variables and
* just single step on the instruction of the new probe
* without calling any user handlers.
*/
save_previous_kprobe(kcb);
set_current_kprobe(p, regs, kcb);
kcb->kprobe_saved_msr = regs->msr;
kprobes_inc_nmissed_count(p);
prepare_singlestep(p, regs);
kcb->kprobe_status = KPROBE_REENTER;
return 1;
} else {
if (*addr != BREAKPOINT_INSTRUCTION) {
/* If trap variant, then it belongs not to us */
kprobe_opcode_t cur_insn = *addr;
if (is_trap(cur_insn))
goto no_kprobe;
/* The breakpoint instruction was removed by
* another cpu right after we hit, no further
* handling of this interrupt is appropriate
*/
ret = 1;
goto no_kprobe;
}
p = __get_cpu_var(current_kprobe);
if (p->break_handler && p->break_handler(p, regs)) {
goto ss_probe;
}
}
goto no_kprobe;
}
p = get_kprobe(addr);
if (!p) {
if (*addr != BREAKPOINT_INSTRUCTION) {
/*
* PowerPC has multiple variants of the "trap"
* instruction. If the current instruction is a
* trap variant, it could belong to someone else
*/
kprobe_opcode_t cur_insn = *addr;
if (is_trap(cur_insn))
goto no_kprobe;
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe;
}
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
set_current_kprobe(p, regs, kcb);
if (p->pre_handler && p->pre_handler(p, regs))
/* handler has already set things up, so skip ss setup */
return 1;
ss_probe:
prepare_singlestep(p, regs);
kcb->kprobe_status = KPROBE_HIT_SS;
return 1;
no_kprobe:
preempt_enable_no_resched();
return ret;
}
/*
* Function return probe trampoline:
* - init_kprobes() establishes a probepoint here
* - When the probed function returns, this probe
* causes the handlers to fire
*/
void kretprobe_trampoline_holder(void)
{
asm volatile(".global kretprobe_trampoline\n"
"kretprobe_trampoline:\n"
"nop\n");
}
/*
* Called when the probe at kretprobe trampoline is hit
*/
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head;
struct hlist_node *node, *tmp;
unsigned long flags, orig_ret_address = 0;
unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
spin_lock_irqsave(&kretprobe_lock, flags);
head = kretprobe_inst_table_head(current);
/*
* It is possible to have multiple instances associated with a given
* task either because an multiple functions in the call path
* have a return probe installed on them, and/or more then one return
* return probe was registered for a target function.
*
* We can handle this because:
* - instances are always inserted at the head of the list
* - when multiple return probes are registered for the same
* function, the first instance's ret_addr will point to the
* real return address, and all the rest will point to
* kretprobe_trampoline
*/
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
if (ri->rp && ri->rp->handler)
ri->rp->handler(ri, regs);
orig_ret_address = (unsigned long)ri->ret_addr;
recycle_rp_inst(ri);
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
regs->nip = orig_ret_address;
reset_current_kprobe();
spin_unlock_irqrestore(&kretprobe_lock, flags);
preempt_enable_no_resched();
/*
* By returning a non-zero value, we are telling
* kprobe_handler() that we don't want the post_handler
* to run (and have re-enabled preemption)
*/
return 1;
}
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the "breakpoint"
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*/
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
{
int ret;
unsigned int insn = *p->ainsn.insn;
regs->nip = (unsigned long)p->addr;
ret = emulate_step(regs, insn);
if (ret == 0)
regs->nip = (unsigned long)p->addr + 4;
}
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (!cur)
return 0;
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
cur->post_handler(cur, regs, 0);
}
resume_execution(cur, regs);
regs->msr |= kcb->kprobe_saved_msr;
/*Restore back the original saved kprobes variables and continue. */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
goto out;
}
reset_current_kprobe();
out:
preempt_enable_no_resched();
/*
* if somebody else is singlestepping across a probe point, msr
* will have SE set, in which case, continue the remaining processing
* of do_debug, as if this is not a probe hit.
*/
if (regs->msr & MSR_SE)
return 0;
return 1;
}
static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
const struct exception_table_entry *entry;
switch(kcb->kprobe_status) {
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the nip points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs->nip = (unsigned long)cur->addr;
regs->msr &= ~MSR_SE;
regs->msr |= kcb->kprobe_saved_msr;
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
preempt_enable_no_resched();
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accouting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
return 1;
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
if ((entry = search_exception_tables(regs->nip)) != NULL) {
regs->nip = entry->fixup;
return 1;
}
/*
* fixup_exception() could not handle it,
* Let do_page_fault() fix it.
*/
break;
default:
break;
}
return 0;
}
/*
* Wrapper routine to for handling exceptions.
*/
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct die_args *args = (struct die_args *)data;
int ret = NOTIFY_DONE;
if (args->regs && user_mode(args->regs))
return ret;
switch (val) {
case DIE_BPT:
if (kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_SSTEP:
if (post_kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_PAGE_FAULT:
/* kprobe_running() needs smp_processor_id() */
preempt_disable();
if (kprobe_running() &&
kprobe_fault_handler(args->regs, args->trapnr))
ret = NOTIFY_STOP;
preempt_enable();
break;
default:
break;
}
return ret;
}
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
/* setup return addr to the jprobe handler routine */
regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
return 1;
}
void __kprobes jprobe_return(void)
{
asm volatile("trap" ::: "memory");
}
void __kprobes jprobe_return_end(void)
{
};
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
/*
* FIXME - we should ideally be validating that we got here 'cos
* of the "trap" in jprobe_return() above, before restoring the
* saved regs...
*/
memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
preempt_enable_no_resched();
return 1;
}
static struct kprobe trampoline_p = {
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
.pre_handler = trampoline_probe_handler
};
int __init arch_init_kprobes(void)
{
return register_kprobe(&trampoline_p);
}