linux-stable/drivers/gpu/drm/i915/intel_ringbuffer.c
Chris Wilson 07c9a21a0d drm/i915: Export a function to flush the context upon pinning
For legacy contexts we employ an optimisation to only flush the context
when binding into the global GTT. This avoids stalling on the GPU when
reloading an active context. Wrap this detail up into a helper and
export it for a potential third user. (Longer term, context pinning
needs to be reworked as the current handling of switch context pins too
late and so risks eviction and corrupting the request. Plans, plans,
plans.)

v2: Expand the comment explaining the optimisation for avoiding the
stall on active contexts.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: http://patchwork.freedesktop.org/patch/msgid/20161030132820.32163-1-chris@chris-wilson.co.uk
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
2016-11-01 14:26:33 +00:00

2744 lines
73 KiB
C

/*
* Copyright © 2008-2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Zou Nan hai <nanhai.zou@intel.com>
* Xiang Hai hao<haihao.xiang@intel.com>
*
*/
#include <linux/log2.h>
#include <drm/drmP.h>
#include "i915_drv.h"
#include <drm/i915_drm.h>
#include "i915_trace.h"
#include "intel_drv.h"
/* Rough estimate of the typical request size, performing a flush,
* set-context and then emitting the batch.
*/
#define LEGACY_REQUEST_SIZE 200
int __intel_ring_space(int head, int tail, int size)
{
int space = head - tail;
if (space <= 0)
space += size;
return space - I915_RING_FREE_SPACE;
}
void intel_ring_update_space(struct intel_ring *ring)
{
if (ring->last_retired_head != -1) {
ring->head = ring->last_retired_head;
ring->last_retired_head = -1;
}
ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
ring->tail, ring->size);
}
static int
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
struct intel_ring *ring = req->ring;
u32 cmd;
int ret;
cmd = MI_FLUSH;
if (mode & EMIT_INVALIDATE)
cmd |= MI_READ_FLUSH;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring, cmd);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
struct intel_ring *ring = req->ring;
u32 cmd;
int ret;
/*
* read/write caches:
*
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
* also flushed at 2d versus 3d pipeline switches.
*
* read-only caches:
*
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
* MI_READ_FLUSH is set, and is always flushed on 965.
*
* I915_GEM_DOMAIN_COMMAND may not exist?
*
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
* invalidated when MI_EXE_FLUSH is set.
*
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
* invalidated with every MI_FLUSH.
*
* TLBs:
*
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
* are flushed at any MI_FLUSH.
*/
cmd = MI_FLUSH;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_EXE_FLUSH;
if (IS_G4X(req->i915) || IS_GEN5(req->i915))
cmd |= MI_INVALIDATE_ISP;
}
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring, cmd);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
/**
* Emits a PIPE_CONTROL with a non-zero post-sync operation, for
* implementing two workarounds on gen6. From section 1.4.7.1
* "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
*
* [DevSNB-C+{W/A}] Before any depth stall flush (including those
* produced by non-pipelined state commands), software needs to first
* send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
* 0.
*
* [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
* =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
*
* And the workaround for these two requires this workaround first:
*
* [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
* BEFORE the pipe-control with a post-sync op and no write-cache
* flushes.
*
* And this last workaround is tricky because of the requirements on
* that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
* volume 2 part 1:
*
* "1 of the following must also be set:
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - Notify Enable ([8] of DW1)"
*
* The cache flushes require the workaround flush that triggered this
* one, so we can't use it. Depth stall would trigger the same.
* Post-sync nonzero is what triggered this second workaround, so we
* can't use that one either. Notify enable is IRQs, which aren't
* really our business. That leaves only stall at scoreboard.
*/
static int
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
{
struct intel_ring *ring = req->ring;
u32 scratch_addr =
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
int ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD);
intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
intel_ring_emit(ring, 0); /* low dword */
intel_ring_emit(ring, 0); /* high dword */
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
struct intel_ring *ring = req->ring;
u32 scratch_addr =
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
u32 flags = 0;
int ret;
/* Force SNB workarounds for PIPE_CONTROL flushes */
ret = intel_emit_post_sync_nonzero_flush(req);
if (ret)
return ret;
/* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
/*
* Ensure that any following seqno writes only happen
* when the render cache is indeed flushed.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
/*
* TLB invalidate requires a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
}
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
intel_ring_emit(ring, flags);
intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
intel_ring_emit(ring, 0);
intel_ring_advance(ring);
return 0;
}
static int
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
{
struct intel_ring *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
intel_ring_emit(ring,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, 0);
intel_ring_advance(ring);
return 0;
}
static int
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
struct intel_ring *ring = req->ring;
u32 scratch_addr =
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
u32 flags = 0;
int ret;
/*
* Ensure that any following seqno writes only happen when the render
* cache is indeed flushed.
*
* Workaround: 4th PIPE_CONTROL command (except the ones with only
* read-cache invalidate bits set) must have the CS_STALL bit set. We
* don't try to be clever and just set it unconditionally.
*/
flags |= PIPE_CONTROL_CS_STALL;
/* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
/*
* TLB invalidate requires a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
/* Workaround: we must issue a pipe_control with CS-stall bit
* set before a pipe_control command that has the state cache
* invalidate bit set. */
gen7_render_ring_cs_stall_wa(req);
}
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
intel_ring_emit(ring, flags);
intel_ring_emit(ring, scratch_addr);
intel_ring_emit(ring, 0);
intel_ring_advance(ring);
return 0;
}
static int
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
u32 flags, u32 scratch_addr)
{
struct intel_ring *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
intel_ring_emit(ring, flags);
intel_ring_emit(ring, scratch_addr);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, 0);
intel_ring_advance(ring);
return 0;
}
static int
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
u32 scratch_addr =
i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
u32 flags = 0;
int ret;
flags |= PIPE_CONTROL_CS_STALL;
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
ret = gen8_emit_pipe_control(req,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD,
0);
if (ret)
return ret;
}
return gen8_emit_pipe_control(req, flags, scratch_addr);
}
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
u32 addr;
addr = dev_priv->status_page_dmah->busaddr;
if (INTEL_GEN(dev_priv) >= 4)
addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
I915_WRITE(HWS_PGA, addr);
}
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
i915_reg_t mmio;
/* The ring status page addresses are no longer next to the rest of
* the ring registers as of gen7.
*/
if (IS_GEN7(dev_priv)) {
switch (engine->id) {
case RCS:
mmio = RENDER_HWS_PGA_GEN7;
break;
case BCS:
mmio = BLT_HWS_PGA_GEN7;
break;
/*
* VCS2 actually doesn't exist on Gen7. Only shut up
* gcc switch check warning
*/
case VCS2:
case VCS:
mmio = BSD_HWS_PGA_GEN7;
break;
case VECS:
mmio = VEBOX_HWS_PGA_GEN7;
break;
}
} else if (IS_GEN6(dev_priv)) {
mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
} else {
/* XXX: gen8 returns to sanity */
mmio = RING_HWS_PGA(engine->mmio_base);
}
I915_WRITE(mmio, engine->status_page.ggtt_offset);
POSTING_READ(mmio);
/*
* Flush the TLB for this page
*
* FIXME: These two bits have disappeared on gen8, so a question
* arises: do we still need this and if so how should we go about
* invalidating the TLB?
*/
if (IS_GEN(dev_priv, 6, 7)) {
i915_reg_t reg = RING_INSTPM(engine->mmio_base);
/* ring should be idle before issuing a sync flush*/
WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
I915_WRITE(reg,
_MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
INSTPM_SYNC_FLUSH));
if (intel_wait_for_register(dev_priv,
reg, INSTPM_SYNC_FLUSH, 0,
1000))
DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
engine->name);
}
}
static bool stop_ring(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
if (INTEL_GEN(dev_priv) > 2) {
I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
if (intel_wait_for_register(dev_priv,
RING_MI_MODE(engine->mmio_base),
MODE_IDLE,
MODE_IDLE,
1000)) {
DRM_ERROR("%s : timed out trying to stop ring\n",
engine->name);
/* Sometimes we observe that the idle flag is not
* set even though the ring is empty. So double
* check before giving up.
*/
if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
return false;
}
}
I915_WRITE_CTL(engine, 0);
I915_WRITE_HEAD(engine, 0);
I915_WRITE_TAIL(engine, 0);
if (INTEL_GEN(dev_priv) > 2) {
(void)I915_READ_CTL(engine);
I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
}
return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
}
static int init_ring_common(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
struct intel_ring *ring = engine->buffer;
int ret = 0;
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
if (!stop_ring(engine)) {
/* G45 ring initialization often fails to reset head to zero */
DRM_DEBUG_KMS("%s head not reset to zero "
"ctl %08x head %08x tail %08x start %08x\n",
engine->name,
I915_READ_CTL(engine),
I915_READ_HEAD(engine),
I915_READ_TAIL(engine),
I915_READ_START(engine));
if (!stop_ring(engine)) {
DRM_ERROR("failed to set %s head to zero "
"ctl %08x head %08x tail %08x start %08x\n",
engine->name,
I915_READ_CTL(engine),
I915_READ_HEAD(engine),
I915_READ_TAIL(engine),
I915_READ_START(engine));
ret = -EIO;
goto out;
}
}
if (HWS_NEEDS_PHYSICAL(dev_priv))
ring_setup_phys_status_page(engine);
else
intel_ring_setup_status_page(engine);
intel_engine_reset_breadcrumbs(engine);
/* Enforce ordering by reading HEAD register back */
I915_READ_HEAD(engine);
/* Initialize the ring. This must happen _after_ we've cleared the ring
* registers with the above sequence (the readback of the HEAD registers
* also enforces ordering), otherwise the hw might lose the new ring
* register values. */
I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
/* WaClearRingBufHeadRegAtInit:ctg,elk */
if (I915_READ_HEAD(engine))
DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
engine->name, I915_READ_HEAD(engine));
intel_ring_update_space(ring);
I915_WRITE_HEAD(engine, ring->head);
I915_WRITE_TAIL(engine, ring->tail);
(void)I915_READ_TAIL(engine);
I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
/* If the head is still not zero, the ring is dead */
if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
RING_VALID, RING_VALID,
50)) {
DRM_ERROR("%s initialization failed "
"ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
engine->name,
I915_READ_CTL(engine),
I915_READ_CTL(engine) & RING_VALID,
I915_READ_HEAD(engine), ring->head,
I915_READ_TAIL(engine), ring->tail,
I915_READ_START(engine),
i915_ggtt_offset(ring->vma));
ret = -EIO;
goto out;
}
intel_engine_init_hangcheck(engine);
out:
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
return ret;
}
static void reset_ring_common(struct intel_engine_cs *engine,
struct drm_i915_gem_request *request)
{
struct intel_ring *ring = request->ring;
ring->head = request->postfix;
ring->last_retired_head = -1;
}
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
{
struct intel_ring *ring = req->ring;
struct i915_workarounds *w = &req->i915->workarounds;
int ret, i;
if (w->count == 0)
return 0;
ret = req->engine->emit_flush(req, EMIT_BARRIER);
if (ret)
return ret;
ret = intel_ring_begin(req, (w->count * 2 + 2));
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
for (i = 0; i < w->count; i++) {
intel_ring_emit_reg(ring, w->reg[i].addr);
intel_ring_emit(ring, w->reg[i].value);
}
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
ret = req->engine->emit_flush(req, EMIT_BARRIER);
if (ret)
return ret;
DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
return 0;
}
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
{
int ret;
ret = intel_ring_workarounds_emit(req);
if (ret != 0)
return ret;
ret = i915_gem_render_state_emit(req);
if (ret)
return ret;
return 0;
}
static int wa_add(struct drm_i915_private *dev_priv,
i915_reg_t addr,
const u32 mask, const u32 val)
{
const u32 idx = dev_priv->workarounds.count;
if (WARN_ON(idx >= I915_MAX_WA_REGS))
return -ENOSPC;
dev_priv->workarounds.reg[idx].addr = addr;
dev_priv->workarounds.reg[idx].value = val;
dev_priv->workarounds.reg[idx].mask = mask;
dev_priv->workarounds.count++;
return 0;
}
#define WA_REG(addr, mask, val) do { \
const int r = wa_add(dev_priv, (addr), (mask), (val)); \
if (r) \
return r; \
} while (0)
#define WA_SET_BIT_MASKED(addr, mask) \
WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
#define WA_CLR_BIT_MASKED(addr, mask) \
WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
#define WA_SET_FIELD_MASKED(addr, mask, value) \
WA_REG(addr, mask, _MASKED_FIELD(mask, value))
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
i915_reg_t reg)
{
struct drm_i915_private *dev_priv = engine->i915;
struct i915_workarounds *wa = &dev_priv->workarounds;
const uint32_t index = wa->hw_whitelist_count[engine->id];
if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
return -EINVAL;
WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
i915_mmio_reg_offset(reg));
wa->hw_whitelist_count[engine->id]++;
return 0;
}
static int gen8_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
/* WaDisableAsyncFlipPerfMode:bdw,chv */
WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
/* WaDisablePartialInstShootdown:bdw,chv */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
/* Use Force Non-Coherent whenever executing a 3D context. This is a
* workaround for for a possible hang in the unlikely event a TLB
* invalidation occurs during a PSD flush.
*/
/* WaForceEnableNonCoherent:bdw,chv */
/* WaHdcDisableFetchWhenMasked:bdw,chv */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_DONOT_FETCH_MEM_WHEN_MASKED |
HDC_FORCE_NON_COHERENT);
/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
* "The Hierarchical Z RAW Stall Optimization allows non-overlapping
* polygons in the same 8x4 pixel/sample area to be processed without
* stalling waiting for the earlier ones to write to Hierarchical Z
* buffer."
*
* This optimization is off by default for BDW and CHV; turn it on.
*/
WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
/* Wa4x4STCOptimizationDisable:bdw,chv */
WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK,
GEN6_WIZ_HASHING_16x4);
return 0;
}
static int bdw_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen8_init_workarounds(engine);
if (ret)
return ret;
/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
/* WaDisableDopClockGating:bdw */
WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
DOP_CLOCK_GATING_DISABLE);
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
GEN8_SAMPLER_POWER_BYPASS_DIS);
WA_SET_BIT_MASKED(HDC_CHICKEN0,
/* WaForceContextSaveRestoreNonCoherent:bdw */
HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
/* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
(IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
return 0;
}
static int chv_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen8_init_workarounds(engine);
if (ret)
return ret;
/* WaDisableThreadStallDopClockGating:chv */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
/* Improve HiZ throughput on CHV. */
WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
return 0;
}
static int gen9_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
/* WaDisableKillLogic:bxt,skl,kbl */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
ECOCHK_DIS_TLB);
/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
/* WaDisablePartialInstShootdown:skl,bxt,kbl */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
FLOW_CONTROL_ENABLE |
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
GEN9_DG_MIRROR_FIX_ENABLE);
/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
GEN9_RHWO_OPTIMIZATION_DISABLE);
/*
* WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
* but we do that in per ctx batchbuffer as there is an issue
* with this register not getting restored on ctx restore
*/
}
/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
GEN9_ENABLE_GPGPU_PREEMPTION);
/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
/* WaDisablePartialResolveInVc:skl,bxt,kbl */
WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
GEN9_CCS_TLB_PREFETCH_ENABLE);
/* WaDisableMaskBasedCammingInRCC:bxt */
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
PIXEL_MASK_CAMMING_DISABLE);
/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
* both tied to WaForceContextSaveRestoreNonCoherent
* in some hsds for skl. We keep the tie for all gen9. The
* documentation is a bit hazy and so we want to get common behaviour,
* even though there is no clear evidence we would need both on kbl/bxt.
* This area has been source of system hangs so we play it safe
* and mimic the skl regardless of what bspec says.
*
* Use Force Non-Coherent whenever executing a 3D context. This
* is a workaround for a possible hang in the unlikely event
* a TLB invalidation occurs during a PSD flush.
*/
/* WaForceEnableNonCoherent:skl,bxt,kbl */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FORCE_NON_COHERENT);
/* WaDisableHDCInvalidation:skl,bxt,kbl */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
BDW_DISABLE_HDC_INVALIDATION);
/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
if (IS_SKYLAKE(dev_priv) ||
IS_KABYLAKE(dev_priv) ||
IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
GEN8_SAMPLER_POWER_BYPASS_DIS);
/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
/* WaOCLCoherentLineFlush:skl,bxt,kbl */
I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
GEN8_LQSC_FLUSH_COHERENT_LINES));
/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
if (ret)
return ret;
/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
if (ret)
return ret;
/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
if (ret)
return ret;
return 0;
}
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
u8 vals[3] = { 0, 0, 0 };
unsigned int i;
for (i = 0; i < 3; i++) {
u8 ss;
/*
* Only consider slices where one, and only one, subslice has 7
* EUs
*/
if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
continue;
/*
* subslice_7eu[i] != 0 (because of the check above) and
* ss_max == 4 (maximum number of subslices possible per slice)
*
* -> 0 <= ss <= 3;
*/
ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
vals[i] = 3 - ss;
}
if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
return 0;
/* Tune IZ hashing. See intel_device_info_runtime_init() */
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
GEN9_IZ_HASHING_MASK(2) |
GEN9_IZ_HASHING_MASK(1) |
GEN9_IZ_HASHING_MASK(0),
GEN9_IZ_HASHING(2, vals[2]) |
GEN9_IZ_HASHING(1, vals[1]) |
GEN9_IZ_HASHING(0, vals[0]));
return 0;
}
static int skl_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen9_init_workarounds(engine);
if (ret)
return ret;
/*
* Actual WA is to disable percontext preemption granularity control
* until D0 which is the default case so this is equivalent to
* !WaDisablePerCtxtPreemptionGranularityControl:skl
*/
I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
_MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
/* WaEnableGapsTsvCreditFix:skl */
I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
GEN9_GAPS_TSV_CREDIT_DISABLE));
/* WaDisableGafsUnitClkGating:skl */
WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
/* WaInPlaceDecompressionHang:skl */
if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
/* WaDisableLSQCROPERFforOCL:skl */
ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
if (ret)
return ret;
return skl_tune_iz_hashing(engine);
}
static int bxt_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen9_init_workarounds(engine);
if (ret)
return ret;
/* WaStoreMultiplePTEenable:bxt */
/* This is a requirement according to Hardware specification */
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
/* WaSetClckGatingDisableMedia:bxt */
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
}
/* WaDisableThreadStallDopClockGating:bxt */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
STALL_DOP_GATING_DISABLE);
/* WaDisablePooledEuLoadBalancingFix:bxt */
if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
}
/* WaDisableSbeCacheDispatchPortSharing:bxt */
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
WA_SET_BIT_MASKED(
GEN7_HALF_SLICE_CHICKEN1,
GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
}
/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
/* WaDisableLSQCROPERFforOCL:bxt */
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
if (ret)
return ret;
ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
if (ret)
return ret;
}
/* WaProgramL3SqcReg1DefaultForPerf:bxt */
if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
L3_HIGH_PRIO_CREDITS(2));
/* WaToEnableHwFixForPushConstHWBug:bxt */
if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
/* WaInPlaceDecompressionHang:bxt */
if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
return 0;
}
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen9_init_workarounds(engine);
if (ret)
return ret;
/* WaEnableGapsTsvCreditFix:kbl */
I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
GEN9_GAPS_TSV_CREDIT_DISABLE));
/* WaDisableDynamicCreditSharing:kbl */
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
WA_SET_BIT(GAMT_CHKN_BIT_REG,
GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FENCE_DEST_SLM_DISABLE);
/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
* involving this register should also be added to WA batch as required.
*/
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
/* WaDisableLSQCROPERFforOCL:kbl */
I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
GEN8_LQSC_RO_PERF_DIS);
/* WaToEnableHwFixForPushConstHWBug:kbl */
if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
/* WaDisableGafsUnitClkGating:kbl */
WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
/* WaDisableSbeCacheDispatchPortSharing:kbl */
WA_SET_BIT_MASKED(
GEN7_HALF_SLICE_CHICKEN1,
GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
/* WaInPlaceDecompressionHang:kbl */
WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
/* WaDisableLSQCROPERFforOCL:kbl */
ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
if (ret)
return ret;
return 0;
}
int init_workarounds_ring(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
WARN_ON(engine->id != RCS);
dev_priv->workarounds.count = 0;
dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
if (IS_BROADWELL(dev_priv))
return bdw_init_workarounds(engine);
if (IS_CHERRYVIEW(dev_priv))
return chv_init_workarounds(engine);
if (IS_SKYLAKE(dev_priv))
return skl_init_workarounds(engine);
if (IS_BROXTON(dev_priv))
return bxt_init_workarounds(engine);
if (IS_KABYLAKE(dev_priv))
return kbl_init_workarounds(engine);
return 0;
}
static int init_render_ring(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret = init_ring_common(engine);
if (ret)
return ret;
/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
if (IS_GEN(dev_priv, 4, 6))
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
/* We need to disable the AsyncFlip performance optimisations in order
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
* programmed to '1' on all products.
*
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
*/
if (IS_GEN(dev_priv, 6, 7))
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
/* Required for the hardware to program scanline values for waiting */
/* WaEnableFlushTlbInvalidationMode:snb */
if (IS_GEN6(dev_priv))
I915_WRITE(GFX_MODE,
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
if (IS_GEN7(dev_priv))
I915_WRITE(GFX_MODE_GEN7,
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
_MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
if (IS_GEN6(dev_priv)) {
/* From the Sandybridge PRM, volume 1 part 3, page 24:
* "If this bit is set, STCunit will have LRA as replacement
* policy. [...] This bit must be reset. LRA replacement
* policy is not supported."
*/
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
}
if (IS_GEN(dev_priv, 6, 7))
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
if (INTEL_INFO(dev_priv)->gen >= 6)
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
return init_workarounds_ring(engine);
}
static void render_ring_cleanup(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
i915_vma_unpin_and_release(&dev_priv->semaphore);
}
static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
{
struct drm_i915_private *dev_priv = req->i915;
struct intel_engine_cs *waiter;
enum intel_engine_id id;
for_each_engine(waiter, dev_priv, id) {
u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
continue;
*out++ = GFX_OP_PIPE_CONTROL(6);
*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_CS_STALL);
*out++ = lower_32_bits(gtt_offset);
*out++ = upper_32_bits(gtt_offset);
*out++ = req->global_seqno;
*out++ = 0;
*out++ = (MI_SEMAPHORE_SIGNAL |
MI_SEMAPHORE_TARGET(waiter->hw_id));
*out++ = 0;
}
return out;
}
static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
{
struct drm_i915_private *dev_priv = req->i915;
struct intel_engine_cs *waiter;
enum intel_engine_id id;
for_each_engine(waiter, dev_priv, id) {
u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
continue;
*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
*out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
*out++ = upper_32_bits(gtt_offset);
*out++ = req->global_seqno;
*out++ = (MI_SEMAPHORE_SIGNAL |
MI_SEMAPHORE_TARGET(waiter->hw_id));
*out++ = 0;
}
return out;
}
static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
{
struct drm_i915_private *dev_priv = req->i915;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int num_rings = 0;
for_each_engine(engine, dev_priv, id) {
i915_reg_t mbox_reg;
if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
continue;
mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
if (i915_mmio_reg_valid(mbox_reg)) {
*out++ = MI_LOAD_REGISTER_IMM(1);
*out++ = i915_mmio_reg_offset(mbox_reg);
*out++ = req->global_seqno;
num_rings++;
}
}
if (num_rings & 1)
*out++ = MI_NOOP;
return out;
}
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
struct drm_i915_private *dev_priv = request->i915;
I915_WRITE_TAIL(request->engine, request->tail);
}
static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
u32 *out)
{
*out++ = MI_STORE_DWORD_INDEX;
*out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
*out++ = req->global_seqno;
*out++ = MI_USER_INTERRUPT;
req->tail = intel_ring_offset(req->ring, out);
}
static const int i9xx_emit_breadcrumb_sz = 4;
/**
* gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
*
* @request - request to write to the ring
*
* Update the mailbox registers in the *other* rings with the current seqno.
* This acts like a signal in the canonical semaphore.
*/
static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
u32 *out)
{
return i9xx_emit_breadcrumb(req,
req->engine->semaphore.signal(req, out));
}
static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
u32 *out)
{
struct intel_engine_cs *engine = req->engine;
if (engine->semaphore.signal)
out = engine->semaphore.signal(req, out);
*out++ = GFX_OP_PIPE_CONTROL(6);
*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE);
*out++ = intel_hws_seqno_address(engine);
*out++ = 0;
*out++ = req->global_seqno;
/* We're thrashing one dword of HWS. */
*out++ = 0;
*out++ = MI_USER_INTERRUPT;
*out++ = MI_NOOP;
req->tail = intel_ring_offset(req->ring, out);
}
static const int gen8_render_emit_breadcrumb_sz = 8;
/**
* intel_ring_sync - sync the waiter to the signaller on seqno
*
* @waiter - ring that is waiting
* @signaller - ring which has, or will signal
* @seqno - seqno which the waiter will block on
*/
static int
gen8_ring_sync_to(struct drm_i915_gem_request *req,
struct drm_i915_gem_request *signal)
{
struct intel_ring *ring = req->ring;
struct drm_i915_private *dev_priv = req->i915;
u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
struct i915_hw_ppgtt *ppgtt;
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring,
MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_SAD_GTE_SDD);
intel_ring_emit(ring, signal->global_seqno);
intel_ring_emit(ring, lower_32_bits(offset));
intel_ring_emit(ring, upper_32_bits(offset));
intel_ring_advance(ring);
/* When the !RCS engines idle waiting upon a semaphore, they lose their
* pagetables and we must reload them before executing the batch.
* We do this on the i915_switch_context() following the wait and
* before the dispatch.
*/
ppgtt = req->ctx->ppgtt;
if (ppgtt && req->engine->id != RCS)
ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
return 0;
}
static int
gen6_ring_sync_to(struct drm_i915_gem_request *req,
struct drm_i915_gem_request *signal)
{
struct intel_ring *ring = req->ring;
u32 dw1 = MI_SEMAPHORE_MBOX |
MI_SEMAPHORE_COMPARE |
MI_SEMAPHORE_REGISTER;
u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
int ret;
WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
intel_ring_emit(ring, dw1 | wait_mbox);
/* Throughout all of the GEM code, seqno passed implies our current
* seqno is >= the last seqno executed. However for hardware the
* comparison is strictly greater than.
*/
intel_ring_emit(ring, signal->global_seqno - 1);
intel_ring_emit(ring, 0);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static void
gen5_seqno_barrier(struct intel_engine_cs *engine)
{
/* MI_STORE are internally buffered by the GPU and not flushed
* either by MI_FLUSH or SyncFlush or any other combination of
* MI commands.
*
* "Only the submission of the store operation is guaranteed.
* The write result will be complete (coherent) some time later
* (this is practically a finite period but there is no guaranteed
* latency)."
*
* Empirically, we observe that we need a delay of at least 75us to
* be sure that the seqno write is visible by the CPU.
*/
usleep_range(125, 250);
}
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
/* Workaround to force correct ordering between irq and seqno writes on
* ivb (and maybe also on snb) by reading from a CS register (like
* ACTHD) before reading the status page.
*
* Note that this effectively stalls the read by the time it takes to
* do a memory transaction, which more or less ensures that the write
* from the GPU has sufficient time to invalidate the CPU cacheline.
* Alternatively we could delay the interrupt from the CS ring to give
* the write time to land, but that would incur a delay after every
* batch i.e. much more frequent than a delay when waiting for the
* interrupt (with the same net latency).
*
* Also note that to prevent whole machine hangs on gen7, we have to
* take the spinlock to guard against concurrent cacheline access.
*/
spin_lock_irq(&dev_priv->uncore.lock);
POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
spin_unlock_irq(&dev_priv->uncore.lock);
}
static void
gen5_irq_enable(struct intel_engine_cs *engine)
{
gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
}
static void
gen5_irq_disable(struct intel_engine_cs *engine)
{
gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
}
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->irq_mask &= ~engine->irq_enable_mask;
I915_WRITE(IMR, dev_priv->irq_mask);
POSTING_READ_FW(RING_IMR(engine->mmio_base));
}
static void
i9xx_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->irq_mask |= engine->irq_enable_mask;
I915_WRITE(IMR, dev_priv->irq_mask);
}
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->irq_mask &= ~engine->irq_enable_mask;
I915_WRITE16(IMR, dev_priv->irq_mask);
POSTING_READ16(RING_IMR(engine->mmio_base));
}
static void
i8xx_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->irq_mask |= engine->irq_enable_mask;
I915_WRITE16(IMR, dev_priv->irq_mask);
}
static int
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
struct intel_ring *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring, MI_FLUSH);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static void
gen6_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine,
~(engine->irq_enable_mask |
engine->irq_keep_mask));
gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
}
static void
gen6_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
}
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
}
static void
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine, ~0);
gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
}
static void
gen8_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine,
~(engine->irq_enable_mask |
engine->irq_keep_mask));
POSTING_READ_FW(RING_IMR(engine->mmio_base));
}
static void
gen8_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
}
static int
i965_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 length,
unsigned int dispatch_flags)
{
struct intel_ring *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring,
MI_BATCH_BUFFER_START |
MI_BATCH_GTT |
(dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE_I965));
intel_ring_emit(ring, offset);
intel_ring_advance(ring);
return 0;
}
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
static int
i830_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
struct intel_ring *ring = req->ring;
u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
int ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
/* Evict the invalid PTE TLBs */
intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
intel_ring_emit(ring, cs_offset);
intel_ring_emit(ring, 0xdeadbeef);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
if (len > I830_BATCH_LIMIT)
return -ENOSPC;
ret = intel_ring_begin(req, 6 + 2);
if (ret)
return ret;
/* Blit the batch (which has now all relocs applied) to the
* stable batch scratch bo area (so that the CS never
* stumbles over its tlb invalidation bug) ...
*/
intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
intel_ring_emit(ring,
BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
intel_ring_emit(ring, cs_offset);
intel_ring_emit(ring, 4096);
intel_ring_emit(ring, offset);
intel_ring_emit(ring, MI_FLUSH);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
/* ... and execute it. */
offset = cs_offset;
}
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE));
intel_ring_advance(ring);
return 0;
}
static int
i915_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
struct intel_ring *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE));
intel_ring_advance(ring);
return 0;
}
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
if (!dev_priv->status_page_dmah)
return;
drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
engine->status_page.page_addr = NULL;
}
static void cleanup_status_page(struct intel_engine_cs *engine)
{
struct i915_vma *vma;
struct drm_i915_gem_object *obj;
vma = fetch_and_zero(&engine->status_page.vma);
if (!vma)
return;
obj = vma->obj;
i915_vma_unpin(vma);
i915_vma_close(vma);
i915_gem_object_unpin_map(obj);
__i915_gem_object_release_unless_active(obj);
}
static int init_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
unsigned int flags;
void *vaddr;
int ret;
obj = i915_gem_object_create_internal(engine->i915, 4096);
if (IS_ERR(obj)) {
DRM_ERROR("Failed to allocate status page\n");
return PTR_ERR(obj);
}
ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
if (ret)
goto err;
vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
flags = PIN_GLOBAL;
if (!HAS_LLC(engine->i915))
/* On g33, we cannot place HWS above 256MiB, so
* restrict its pinning to the low mappable arena.
* Though this restriction is not documented for
* gen4, gen5, or byt, they also behave similarly
* and hang if the HWS is placed at the top of the
* GTT. To generalise, it appears that all !llc
* platforms have issues with us placing the HWS
* above the mappable region (even though we never
* actualy map it).
*/
flags |= PIN_MAPPABLE;
ret = i915_vma_pin(vma, 0, 4096, flags);
if (ret)
goto err;
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err_unpin;
}
engine->status_page.vma = vma;
engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
engine->status_page.page_addr = memset(vaddr, 0, 4096);
DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
engine->name, i915_ggtt_offset(vma));
return 0;
err_unpin:
i915_vma_unpin(vma);
err:
i915_gem_object_put(obj);
return ret;
}
static int init_phys_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->status_page_dmah =
drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
if (!dev_priv->status_page_dmah)
return -ENOMEM;
engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
memset(engine->status_page.page_addr, 0, PAGE_SIZE);
return 0;
}
int intel_ring_pin(struct intel_ring *ring)
{
/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
enum i915_map_type map;
struct i915_vma *vma = ring->vma;
void *addr;
int ret;
GEM_BUG_ON(ring->vaddr);
map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
if (vma->obj->stolen)
flags |= PIN_MAPPABLE;
if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
else
ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
if (unlikely(ret))
return ret;
}
ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
if (unlikely(ret))
return ret;
if (i915_vma_is_map_and_fenceable(vma))
addr = (void __force *)i915_vma_pin_iomap(vma);
else
addr = i915_gem_object_pin_map(vma->obj, map);
if (IS_ERR(addr))
goto err;
ring->vaddr = addr;
return 0;
err:
i915_vma_unpin(vma);
return PTR_ERR(addr);
}
void intel_ring_unpin(struct intel_ring *ring)
{
GEM_BUG_ON(!ring->vma);
GEM_BUG_ON(!ring->vaddr);
if (i915_vma_is_map_and_fenceable(ring->vma))
i915_vma_unpin_iomap(ring->vma);
else
i915_gem_object_unpin_map(ring->vma->obj);
ring->vaddr = NULL;
i915_vma_unpin(ring->vma);
}
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
if (!obj)
obj = i915_gem_object_create(&dev_priv->drm, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
/* mark ring buffers as read-only from GPU side by default */
obj->gt_ro = 1;
vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
if (IS_ERR(vma))
goto err;
return vma;
err:
i915_gem_object_put(obj);
return vma;
}
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
{
struct intel_ring *ring;
struct i915_vma *vma;
GEM_BUG_ON(!is_power_of_2(size));
GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
return ERR_PTR(-ENOMEM);
ring->engine = engine;
INIT_LIST_HEAD(&ring->request_list);
ring->size = size;
/* Workaround an erratum on the i830 which causes a hang if
* the TAIL pointer points to within the last 2 cachelines
* of the buffer.
*/
ring->effective_size = size;
if (IS_I830(engine->i915) || IS_845G(engine->i915))
ring->effective_size -= 2 * CACHELINE_BYTES;
ring->last_retired_head = -1;
intel_ring_update_space(ring);
vma = intel_ring_create_vma(engine->i915, size);
if (IS_ERR(vma)) {
kfree(ring);
return ERR_CAST(vma);
}
ring->vma = vma;
return ring;
}
void
intel_ring_free(struct intel_ring *ring)
{
struct drm_i915_gem_object *obj = ring->vma->obj;
i915_vma_close(ring->vma);
__i915_gem_object_release_unless_active(obj);
kfree(ring);
}
static int intel_ring_context_pin(struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
struct intel_context *ce = &ctx->engine[engine->id];
int ret;
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
if (ce->pin_count++)
return 0;
if (ce->state) {
struct i915_vma *vma;
vma = i915_gem_context_pin_legacy(ctx, PIN_HIGH);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto error;
}
}
/* The kernel context is only used as a placeholder for flushing the
* active context. It is never used for submitting user rendering and
* as such never requires the golden render context, and so we can skip
* emitting it when we switch to the kernel context. This is required
* as during eviction we cannot allocate and pin the renderstate in
* order to initialise the context.
*/
if (ctx == ctx->i915->kernel_context)
ce->initialised = true;
i915_gem_context_get(ctx);
return 0;
error:
ce->pin_count = 0;
return ret;
}
static void intel_ring_context_unpin(struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
struct intel_context *ce = &ctx->engine[engine->id];
lockdep_assert_held(&ctx->i915->drm.struct_mutex);
if (--ce->pin_count)
return;
if (ce->state)
i915_vma_unpin(ce->state);
i915_gem_context_put(ctx);
}
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
struct intel_ring *ring;
int ret;
WARN_ON(engine->buffer);
intel_engine_setup_common(engine);
ret = intel_engine_init_common(engine);
if (ret)
goto error;
/* We may need to do things with the shrinker which
* require us to immediately switch back to the default
* context. This can cause a problem as pinning the
* default context also requires GTT space which may not
* be available. To avoid this we always pin the default
* context.
*/
ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
if (ret)
goto error;
ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
if (IS_ERR(ring)) {
ret = PTR_ERR(ring);
goto error;
}
if (HWS_NEEDS_PHYSICAL(dev_priv)) {
WARN_ON(engine->id != RCS);
ret = init_phys_status_page(engine);
if (ret)
goto error;
} else {
ret = init_status_page(engine);
if (ret)
goto error;
}
ret = intel_ring_pin(ring);
if (ret) {
intel_ring_free(ring);
goto error;
}
engine->buffer = ring;
return 0;
error:
intel_engine_cleanup(engine);
return ret;
}
void intel_engine_cleanup(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv;
dev_priv = engine->i915;
if (engine->buffer) {
WARN_ON(INTEL_GEN(dev_priv) > 2 &&
(I915_READ_MODE(engine) & MODE_IDLE) == 0);
intel_ring_unpin(engine->buffer);
intel_ring_free(engine->buffer);
engine->buffer = NULL;
}
if (engine->cleanup)
engine->cleanup(engine);
if (HWS_NEEDS_PHYSICAL(dev_priv)) {
WARN_ON(engine->id != RCS);
cleanup_phys_status_page(engine);
} else {
cleanup_status_page(engine);
}
intel_engine_cleanup_common(engine);
intel_ring_context_unpin(dev_priv->kernel_context, engine);
engine->i915 = NULL;
dev_priv->engine[engine->id] = NULL;
kfree(engine);
}
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, dev_priv, id) {
engine->buffer->head = engine->buffer->tail;
engine->buffer->last_retired_head = -1;
}
}
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
{
int ret;
/* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
request->reserved_space += LEGACY_REQUEST_SIZE;
request->ring = request->engine->buffer;
ret = intel_ring_begin(request, 0);
if (ret)
return ret;
request->reserved_space -= LEGACY_REQUEST_SIZE;
return 0;
}
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
struct intel_ring *ring = req->ring;
struct drm_i915_gem_request *target;
long timeout;
lockdep_assert_held(&req->i915->drm.struct_mutex);
intel_ring_update_space(ring);
if (ring->space >= bytes)
return 0;
/*
* Space is reserved in the ringbuffer for finalising the request,
* as that cannot be allowed to fail. During request finalisation,
* reserved_space is set to 0 to stop the overallocation and the
* assumption is that then we never need to wait (which has the
* risk of failing with EINTR).
*
* See also i915_gem_request_alloc() and i915_add_request().
*/
GEM_BUG_ON(!req->reserved_space);
list_for_each_entry(target, &ring->request_list, ring_link) {
unsigned space;
/* Would completion of this request free enough space? */
space = __intel_ring_space(target->postfix, ring->tail,
ring->size);
if (space >= bytes)
break;
}
if (WARN_ON(&target->ring_link == &ring->request_list))
return -ENOSPC;
timeout = i915_wait_request(target,
I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
MAX_SCHEDULE_TIMEOUT);
if (timeout < 0)
return timeout;
i915_gem_request_retire_upto(target);
intel_ring_update_space(ring);
GEM_BUG_ON(ring->space < bytes);
return 0;
}
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
{
struct intel_ring *ring = req->ring;
int remain_actual = ring->size - ring->tail;
int remain_usable = ring->effective_size - ring->tail;
int bytes = num_dwords * sizeof(u32);
int total_bytes, wait_bytes;
bool need_wrap = false;
total_bytes = bytes + req->reserved_space;
if (unlikely(bytes > remain_usable)) {
/*
* Not enough space for the basic request. So need to flush
* out the remainder and then wait for base + reserved.
*/
wait_bytes = remain_actual + total_bytes;
need_wrap = true;
} else if (unlikely(total_bytes > remain_usable)) {
/*
* The base request will fit but the reserved space
* falls off the end. So we don't need an immediate wrap
* and only need to effectively wait for the reserved
* size space from the start of ringbuffer.
*/
wait_bytes = remain_actual + req->reserved_space;
} else {
/* No wrapping required, just waiting. */
wait_bytes = total_bytes;
}
if (wait_bytes > ring->space) {
int ret = wait_for_space(req, wait_bytes);
if (unlikely(ret))
return ret;
}
if (unlikely(need_wrap)) {
GEM_BUG_ON(remain_actual > ring->space);
GEM_BUG_ON(ring->tail + remain_actual > ring->size);
/* Fill the tail with MI_NOOP */
memset(ring->vaddr + ring->tail, 0, remain_actual);
ring->tail = 0;
ring->space -= remain_actual;
}
ring->space -= bytes;
GEM_BUG_ON(ring->space < 0);
return 0;
}
/* Align the ring tail to a cacheline boundary */
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
{
struct intel_ring *ring = req->ring;
int num_dwords =
(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
int ret;
if (num_dwords == 0)
return 0;
num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
ret = intel_ring_begin(req, num_dwords);
if (ret)
return ret;
while (num_dwords--)
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
{
struct drm_i915_private *dev_priv = request->i915;
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
/* Every tail move must follow the sequence below */
/* Disable notification that the ring is IDLE. The GT
* will then assume that it is busy and bring it out of rc6.
*/
I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
/* Clear the context id. Here be magic! */
I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
/* Wait for the ring not to be idle, i.e. for it to wake up. */
if (intel_wait_for_register_fw(dev_priv,
GEN6_BSD_SLEEP_PSMI_CONTROL,
GEN6_BSD_SLEEP_INDICATOR,
0,
50))
DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
/* Now that the ring is fully powered up, update the tail */
i9xx_submit_request(request);
/* Let the ring send IDLE messages to the GT again,
* and so let it sleep to conserve power when idle.
*/
I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
_MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
struct intel_ring *ring = req->ring;
uint32_t cmd;
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
cmd = MI_FLUSH_DW;
if (INTEL_GEN(req->i915) >= 8)
cmd += 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
/*
* Bspec vol 1c.5 - video engine command streamer:
* "If ENABLED, all TLBs will be invalidated once the flush
* operation is complete. This bit is only valid when the
* Post-Sync Operation field is a value of 1h or 3h."
*/
if (mode & EMIT_INVALIDATE)
cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
intel_ring_emit(ring, cmd);
intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
if (INTEL_GEN(req->i915) >= 8) {
intel_ring_emit(ring, 0); /* upper addr */
intel_ring_emit(ring, 0); /* value */
} else {
intel_ring_emit(ring, 0);
intel_ring_emit(ring, MI_NOOP);
}
intel_ring_advance(ring);
return 0;
}
static int
gen8_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
struct intel_ring *ring = req->ring;
bool ppgtt = USES_PPGTT(req->i915) &&
!(dispatch_flags & I915_DISPATCH_SECURE);
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
/* FIXME(BDW): Address space and security selectors. */
intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
(dispatch_flags & I915_DISPATCH_RS ?
MI_BATCH_RESOURCE_STREAMER : 0));
intel_ring_emit(ring, lower_32_bits(offset));
intel_ring_emit(ring, upper_32_bits(offset));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int
hsw_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
struct intel_ring *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring,
MI_BATCH_BUFFER_START |
(dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
(dispatch_flags & I915_DISPATCH_RS ?
MI_BATCH_RESOURCE_STREAMER : 0));
/* bit0-7 is the length on GEN6+ */
intel_ring_emit(ring, offset);
intel_ring_advance(ring);
return 0;
}
static int
gen6_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
struct intel_ring *ring = req->ring;
int ret;
ret = intel_ring_begin(req, 2);
if (ret)
return ret;
intel_ring_emit(ring,
MI_BATCH_BUFFER_START |
(dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE_I965));
/* bit0-7 is the length on GEN6+ */
intel_ring_emit(ring, offset);
intel_ring_advance(ring);
return 0;
}
/* Blitter support (SandyBridge+) */
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
{
struct intel_ring *ring = req->ring;
uint32_t cmd;
int ret;
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
cmd = MI_FLUSH_DW;
if (INTEL_GEN(req->i915) >= 8)
cmd += 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
/*
* Bspec vol 1c.3 - blitter engine command streamer:
* "If ENABLED, all TLBs will be invalidated once the flush
* operation is complete. This bit is only valid when the
* Post-Sync Operation field is a value of 1h or 3h."
*/
if (mode & EMIT_INVALIDATE)
cmd |= MI_INVALIDATE_TLB;
intel_ring_emit(ring, cmd);
intel_ring_emit(ring,
I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
if (INTEL_GEN(req->i915) >= 8) {
intel_ring_emit(ring, 0); /* upper addr */
intel_ring_emit(ring, 0); /* value */
} else {
intel_ring_emit(ring, 0);
intel_ring_emit(ring, MI_NOOP);
}
intel_ring_advance(ring);
return 0;
}
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
int ret, i;
if (!i915.semaphores)
return;
if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
struct i915_vma *vma;
obj = i915_gem_object_create(&dev_priv->drm, 4096);
if (IS_ERR(obj))
goto err;
vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
if (IS_ERR(vma))
goto err_obj;
ret = i915_gem_object_set_to_gtt_domain(obj, false);
if (ret)
goto err_obj;
ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
if (ret)
goto err_obj;
dev_priv->semaphore = vma;
}
if (INTEL_GEN(dev_priv) >= 8) {
u32 offset = i915_ggtt_offset(dev_priv->semaphore);
engine->semaphore.sync_to = gen8_ring_sync_to;
engine->semaphore.signal = gen8_xcs_signal;
for (i = 0; i < I915_NUM_ENGINES; i++) {
u32 ring_offset;
if (i != engine->id)
ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
else
ring_offset = MI_SEMAPHORE_SYNC_INVALID;
engine->semaphore.signal_ggtt[i] = ring_offset;
}
} else if (INTEL_GEN(dev_priv) >= 6) {
engine->semaphore.sync_to = gen6_ring_sync_to;
engine->semaphore.signal = gen6_signal;
/*
* The current semaphore is only applied on pre-gen8
* platform. And there is no VCS2 ring on the pre-gen8
* platform. So the semaphore between RCS and VCS2 is
* initialized as INVALID. Gen8 will initialize the
* sema between VCS2 and RCS later.
*/
for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
static const struct {
u32 wait_mbox;
i915_reg_t mbox_reg;
} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
[RCS_HW] = {
[VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
[BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
},
[VCS_HW] = {
[RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
[BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
},
[BCS_HW] = {
[RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
[VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
},
[VECS_HW] = {
[RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
[VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
[BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
},
};
u32 wait_mbox;
i915_reg_t mbox_reg;
if (i == engine->hw_id) {
wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
mbox_reg = GEN6_NOSYNC;
} else {
wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
}
engine->semaphore.mbox.wait[i] = wait_mbox;
engine->semaphore.mbox.signal[i] = mbox_reg;
}
}
return;
err_obj:
i915_gem_object_put(obj);
err:
DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
i915.semaphores = 0;
}
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
if (INTEL_GEN(dev_priv) >= 8) {
engine->irq_enable = gen8_irq_enable;
engine->irq_disable = gen8_irq_disable;
engine->irq_seqno_barrier = gen6_seqno_barrier;
} else if (INTEL_GEN(dev_priv) >= 6) {
engine->irq_enable = gen6_irq_enable;
engine->irq_disable = gen6_irq_disable;
engine->irq_seqno_barrier = gen6_seqno_barrier;
} else if (INTEL_GEN(dev_priv) >= 5) {
engine->irq_enable = gen5_irq_enable;
engine->irq_disable = gen5_irq_disable;
engine->irq_seqno_barrier = gen5_seqno_barrier;
} else if (INTEL_GEN(dev_priv) >= 3) {
engine->irq_enable = i9xx_irq_enable;
engine->irq_disable = i9xx_irq_disable;
} else {
engine->irq_enable = i8xx_irq_enable;
engine->irq_disable = i8xx_irq_disable;
}
}
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
intel_ring_init_irq(dev_priv, engine);
intel_ring_init_semaphores(dev_priv, engine);
engine->init_hw = init_ring_common;
engine->reset_hw = reset_ring_common;
engine->emit_breadcrumb = i9xx_emit_breadcrumb;
engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
if (i915.semaphores) {
int num_rings;
engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
if (INTEL_GEN(dev_priv) >= 8) {
engine->emit_breadcrumb_sz += num_rings * 6;
} else {
engine->emit_breadcrumb_sz += num_rings * 3;
if (num_rings & 1)
engine->emit_breadcrumb_sz++;
}
}
engine->submit_request = i9xx_submit_request;
if (INTEL_GEN(dev_priv) >= 8)
engine->emit_bb_start = gen8_emit_bb_start;
else if (INTEL_GEN(dev_priv) >= 6)
engine->emit_bb_start = gen6_emit_bb_start;
else if (INTEL_GEN(dev_priv) >= 4)
engine->emit_bb_start = i965_emit_bb_start;
else if (IS_I830(dev_priv) || IS_845G(dev_priv))
engine->emit_bb_start = i830_emit_bb_start;
else
engine->emit_bb_start = i915_emit_bb_start;
}
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
intel_ring_default_vfuncs(dev_priv, engine);
if (HAS_L3_DPF(dev_priv))
engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
if (INTEL_GEN(dev_priv) >= 8) {
engine->init_context = intel_rcs_ctx_init;
engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
engine->emit_flush = gen8_render_ring_flush;
if (i915.semaphores) {
int num_rings;
engine->semaphore.signal = gen8_rcs_signal;
num_rings =
hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
engine->emit_breadcrumb_sz += num_rings * 6;
}
} else if (INTEL_GEN(dev_priv) >= 6) {
engine->init_context = intel_rcs_ctx_init;
engine->emit_flush = gen7_render_ring_flush;
if (IS_GEN6(dev_priv))
engine->emit_flush = gen6_render_ring_flush;
} else if (IS_GEN5(dev_priv)) {
engine->emit_flush = gen4_render_ring_flush;
} else {
if (INTEL_GEN(dev_priv) < 4)
engine->emit_flush = gen2_render_ring_flush;
else
engine->emit_flush = gen4_render_ring_flush;
engine->irq_enable_mask = I915_USER_INTERRUPT;
}
if (IS_HASWELL(dev_priv))
engine->emit_bb_start = hsw_emit_bb_start;
engine->init_hw = init_render_ring;
engine->cleanup = render_ring_cleanup;
ret = intel_init_ring_buffer(engine);
if (ret)
return ret;
if (INTEL_GEN(dev_priv) >= 6) {
ret = intel_engine_create_scratch(engine, 4096);
if (ret)
return ret;
} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
if (ret)
return ret;
}
return 0;
}
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_ring_default_vfuncs(dev_priv, engine);
if (INTEL_GEN(dev_priv) >= 6) {
/* gen6 bsd needs a special wa for tail updates */
if (IS_GEN6(dev_priv))
engine->submit_request = gen6_bsd_submit_request;
engine->emit_flush = gen6_bsd_ring_flush;
if (INTEL_GEN(dev_priv) < 8)
engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
} else {
engine->mmio_base = BSD_RING_BASE;
engine->emit_flush = bsd_ring_flush;
if (IS_GEN5(dev_priv))
engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
else
engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
}
return intel_init_ring_buffer(engine);
}
/**
* Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
*/
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_ring_default_vfuncs(dev_priv, engine);
engine->emit_flush = gen6_bsd_ring_flush;
return intel_init_ring_buffer(engine);
}
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_ring_default_vfuncs(dev_priv, engine);
engine->emit_flush = gen6_ring_flush;
if (INTEL_GEN(dev_priv) < 8)
engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
return intel_init_ring_buffer(engine);
}
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_ring_default_vfuncs(dev_priv, engine);
engine->emit_flush = gen6_ring_flush;
if (INTEL_GEN(dev_priv) < 8) {
engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
engine->irq_enable = hsw_vebox_irq_enable;
engine->irq_disable = hsw_vebox_irq_disable;
}
return intel_init_ring_buffer(engine);
}