linux-stable/drivers/gpu/drm/i915/intel_ringbuffer.h
Chris Wilson 6a5d1db98e drm/i915: Spin until breadcrumb threads are complete
When we need to reset the global seqno on wraparound, we have to wait
until the current rbtrees are drained (or otherwise the next waiter will
be out of sequence). The current mechanism to kick and spin until
complete, may exit too early as it would break if the target thread was
currently running. Instead, we must wake up the threads, but keep
spinning until the trees have been deleted.

In order to appease Tvrtko, busy spin rather than yield().

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20161108143719.32215-1-chris@chris-wilson.co.uk
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
2016-11-09 15:01:52 +00:00

583 lines
20 KiB
C

#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_
#include <linux/hashtable.h>
#include "i915_gem_batch_pool.h"
#include "i915_gem_request.h"
#include "i915_gem_timeline.h"
#define I915_CMD_HASH_ORDER 9
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
* to give some inclination as to some of the magic values used in the various
* workarounds!
*/
#define CACHELINE_BYTES 64
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
/*
* Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
* Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
* Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
*
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
* cacheline, the Head Pointer must not be greater than the Tail
* Pointer."
*/
#define I915_RING_FREE_SPACE 64
struct intel_hw_status_page {
struct i915_vma *vma;
u32 *page_addr;
u32 ggtt_offset;
};
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
*/
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to) \
(((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
#define GEN8_SIGNAL_OFFSET(__ring, to) \
(dev_priv->semaphore->node.start + \
GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
#define GEN8_WAIT_OFFSET(__ring, from) \
(dev_priv->semaphore->node.start + \
GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
enum intel_engine_hangcheck_action {
HANGCHECK_IDLE = 0,
HANGCHECK_WAIT,
HANGCHECK_ACTIVE,
HANGCHECK_KICK,
HANGCHECK_HUNG,
};
#define HANGCHECK_SCORE_RING_HUNG 31
#define I915_MAX_SLICES 3
#define I915_MAX_SUBSLICES 3
#define instdone_slice_mask(dev_priv__) \
(INTEL_GEN(dev_priv__) == 7 ? \
1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
#define instdone_subslice_mask(dev_priv__) \
(INTEL_GEN(dev_priv__) == 7 ? \
1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
for ((slice__) = 0, (subslice__) = 0; \
(slice__) < I915_MAX_SLICES; \
(subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
(slice__) += ((subslice__) == 0)) \
for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
(BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
struct intel_instdone {
u32 instdone;
/* The following exist only in the RCS engine */
u32 slice_common;
u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
};
struct intel_engine_hangcheck {
u64 acthd;
u32 seqno;
int score;
enum intel_engine_hangcheck_action action;
int deadlock;
struct intel_instdone instdone;
};
struct intel_ring {
struct i915_vma *vma;
void *vaddr;
struct intel_engine_cs *engine;
struct list_head request_list;
u32 head;
u32 tail;
int space;
int size;
int effective_size;
/** We track the position of the requests in the ring buffer, and
* when each is retired we increment last_retired_head as the GPU
* must have finished processing the request and so we know we
* can advance the ringbuffer up to that position.
*
* last_retired_head is set to -1 after the value is consumed so
* we can detect new retirements.
*/
u32 last_retired_head;
};
struct i915_gem_context;
struct drm_i915_reg_table;
/*
* we use a single page to load ctx workarounds so all of these
* values are referred in terms of dwords
*
* struct i915_wa_ctx_bb:
* offset: specifies batch starting position, also helpful in case
* if we want to have multiple batches at different offsets based on
* some criteria. It is not a requirement at the moment but provides
* an option for future use.
* size: size of the batch in DWORDS
*/
struct i915_ctx_workarounds {
struct i915_wa_ctx_bb {
u32 offset;
u32 size;
} indirect_ctx, per_ctx;
struct i915_vma *vma;
};
struct drm_i915_gem_request;
struct intel_render_state;
struct intel_engine_cs {
struct drm_i915_private *i915;
const char *name;
enum intel_engine_id {
RCS = 0,
BCS,
VCS,
VCS2, /* Keep instances of the same type engine together. */
VECS
} id;
#define _VCS(n) (VCS + (n))
unsigned int exec_id;
enum intel_engine_hw_id {
RCS_HW = 0,
VCS_HW,
BCS_HW,
VECS_HW,
VCS2_HW
} hw_id;
enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
u32 mmio_base;
unsigned int irq_shift;
struct intel_ring *buffer;
struct intel_timeline *timeline;
struct intel_render_state *render_state;
/* Rather than have every client wait upon all user interrupts,
* with the herd waking after every interrupt and each doing the
* heavyweight seqno dance, we delegate the task (of being the
* bottom-half of the user interrupt) to the first client. After
* every interrupt, we wake up one client, who does the heavyweight
* coherent seqno read and either goes back to sleep (if incomplete),
* or wakes up all the completed clients in parallel, before then
* transferring the bottom-half status to the next client in the queue.
*
* Compared to walking the entire list of waiters in a single dedicated
* bottom-half, we reduce the latency of the first waiter by avoiding
* a context switch, but incur additional coherent seqno reads when
* following the chain of request breadcrumbs. Since it is most likely
* that we have a single client waiting on each seqno, then reducing
* the overhead of waking that client is much preferred.
*/
struct intel_breadcrumbs {
struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
bool irq_posted;
spinlock_t lock; /* protects the lists of requests; irqsafe */
struct rb_root waiters; /* sorted by retirement, priority */
struct rb_root signals; /* sorted by retirement */
struct intel_wait *first_wait; /* oldest waiter by retirement */
struct task_struct *signaler; /* used for fence signalling */
struct drm_i915_gem_request *first_signal;
struct timer_list fake_irq; /* used after a missed interrupt */
struct timer_list hangcheck; /* detect missed interrupts */
unsigned long timeout;
bool irq_enabled : 1;
bool rpm_wakelock : 1;
} breadcrumbs;
/*
* A pool of objects to use as shadow copies of client batch buffers
* when the command parser is enabled. Prevents the client from
* modifying the batch contents after software parsing.
*/
struct i915_gem_batch_pool batch_pool;
struct intel_hw_status_page status_page;
struct i915_ctx_workarounds wa_ctx;
struct i915_vma *scratch;
u32 irq_keep_mask; /* always keep these interrupts */
u32 irq_enable_mask; /* bitmask to enable ring interrupt */
void (*irq_enable)(struct intel_engine_cs *engine);
void (*irq_disable)(struct intel_engine_cs *engine);
int (*init_hw)(struct intel_engine_cs *engine);
void (*reset_hw)(struct intel_engine_cs *engine,
struct drm_i915_gem_request *req);
int (*init_context)(struct drm_i915_gem_request *req);
int (*emit_flush)(struct drm_i915_gem_request *request,
u32 mode);
#define EMIT_INVALIDATE BIT(0)
#define EMIT_FLUSH BIT(1)
#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
int (*emit_bb_start)(struct drm_i915_gem_request *req,
u64 offset, u32 length,
unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS BIT(2)
void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
u32 *out);
int emit_breadcrumb_sz;
/* Pass the request to the hardware queue (e.g. directly into
* the legacy ringbuffer or to the end of an execlist).
*
* This is called from an atomic context with irqs disabled; must
* be irq safe.
*/
void (*submit_request)(struct drm_i915_gem_request *req);
/* Some chipsets are not quite as coherent as advertised and need
* an expensive kick to force a true read of the up-to-date seqno.
* However, the up-to-date seqno is not always required and the last
* seen value is good enough. Note that the seqno will always be
* monotonic, even if not coherent.
*/
void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
void (*cleanup)(struct intel_engine_cs *engine);
/* GEN8 signal/wait table - never trust comments!
* signal to signal to signal to signal to signal to
* RCS VCS BCS VECS VCS2
* --------------------------------------------------------------------
* RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
* |-------------------------------------------------------------------
* VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
* |-------------------------------------------------------------------
* BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
* |-------------------------------------------------------------------
* VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
* |-------------------------------------------------------------------
* VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
* |-------------------------------------------------------------------
*
* Generalization:
* f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
* ie. transpose of g(x, y)
*
* sync from sync from sync from sync from sync from
* RCS VCS BCS VECS VCS2
* --------------------------------------------------------------------
* RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
* |-------------------------------------------------------------------
* VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
* |-------------------------------------------------------------------
* BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
* |-------------------------------------------------------------------
* VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
* |-------------------------------------------------------------------
* VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
* |-------------------------------------------------------------------
*
* Generalization:
* g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
* ie. transpose of f(x, y)
*/
struct {
union {
#define GEN6_SEMAPHORE_LAST VECS_HW
#define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
struct {
/* our mbox written by others */
u32 wait[GEN6_NUM_SEMAPHORES];
/* mboxes this ring signals to */
i915_reg_t signal[GEN6_NUM_SEMAPHORES];
} mbox;
u64 signal_ggtt[I915_NUM_ENGINES];
};
/* AKA wait() */
int (*sync_to)(struct drm_i915_gem_request *req,
struct drm_i915_gem_request *signal);
u32 *(*signal)(struct drm_i915_gem_request *req, u32 *out);
} semaphore;
/* Execlists */
struct tasklet_struct irq_tasklet;
spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
struct execlist_port {
struct drm_i915_gem_request *request;
unsigned int count;
} execlist_port[2];
struct list_head execlist_queue;
unsigned int fw_domains;
bool disable_lite_restore_wa;
bool preempt_wa;
u32 ctx_desc_template;
struct i915_gem_context *last_context;
struct intel_engine_hangcheck hangcheck;
bool needs_cmd_parser;
/*
* Table of commands the command parser needs to know about
* for this engine.
*/
DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
/*
* Table of registers allowed in commands that read/write registers.
*/
const struct drm_i915_reg_table *reg_tables;
int reg_table_count;
/*
* Returns the bitmask for the length field of the specified command.
* Return 0 for an unrecognized/invalid command.
*
* If the command parser finds an entry for a command in the engine's
* cmd_tables, it gets the command's length based on the table entry.
* If not, it calls this function to determine the per-engine length
* field encoding for the command (i.e. different opcode ranges use
* certain bits to encode the command length in the header).
*/
u32 (*get_cmd_length_mask)(u32 cmd_header);
};
static inline unsigned
intel_engine_flag(const struct intel_engine_cs *engine)
{
return 1 << engine->id;
}
static inline void
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
{
mb();
clflush(&engine->status_page.page_addr[reg]);
mb();
}
static inline u32
intel_read_status_page(struct intel_engine_cs *engine, int reg)
{
/* Ensure that the compiler doesn't optimize away the load. */
return READ_ONCE(engine->status_page.page_addr[reg]);
}
static inline void
intel_write_status_page(struct intel_engine_cs *engine,
int reg, u32 value)
{
engine->status_page.page_addr[reg] = value;
}
/*
* Reads a dword out of the status page, which is written to from the command
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
* MI_STORE_DATA_IMM.
*
* The following dwords have a reserved meaning:
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
* 0x04: ring 0 head pointer
* 0x05: ring 1 head pointer (915-class)
* 0x06: ring 2 head pointer (915-class)
* 0x10-0x1b: Context status DWords (GM45)
* 0x1f: Last written status offset. (GM45)
* 0x20-0x2f: Reserved (Gen6+)
*
* The area from dword 0x30 to 0x3ff is available for driver usage.
*/
#define I915_GEM_HWS_INDEX 0x30
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
#define I915_GEM_HWS_SCRATCH_INDEX 0x40
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
int intel_ring_pin(struct intel_ring *ring);
void intel_ring_unpin(struct intel_ring *ring);
void intel_ring_free(struct intel_ring *ring);
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
{
*(uint32_t *)(ring->vaddr + ring->tail) = data;
ring->tail += 4;
}
static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
{
intel_ring_emit(ring, i915_mmio_reg_offset(reg));
}
static inline void intel_ring_advance(struct intel_ring *ring)
{
/* Dummy function.
*
* This serves as a placeholder in the code so that the reader
* can compare against the preceding intel_ring_begin() and
* check that the number of dwords emitted matches the space
* reserved for the command packet (i.e. the value passed to
* intel_ring_begin()).
*/
}
static inline u32 intel_ring_offset(struct intel_ring *ring, void *addr)
{
/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
u32 offset = addr - ring->vaddr;
return offset & (ring->size - 1);
}
int __intel_ring_space(int head, int tail, int size);
void intel_ring_update_space(struct intel_ring *ring);
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
/* We are only peeking at the tail of the submit queue (and not the
* queue itself) in order to gain a hint as to the current active
* state of the engine. Callers are not expected to be taking
* engine->timeline->lock, nor are they expected to be concerned
* wtih serialising this hint with anything, so document it as
* a hint and nothing more.
*/
return READ_ONCE(engine->timeline->last_submitted_seqno);
}
int init_workarounds_ring(struct intel_engine_cs *engine);
void intel_engine_get_instdone(struct intel_engine_cs *engine,
struct intel_instdone *instdone);
/*
* Arbitrary size for largest possible 'add request' sequence. The code paths
* are complex and variable. Empirical measurement shows that the worst case
* is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
* we need to allocate double the largest single packet within that emission
* to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
*/
#define MIN_SPACE_FOR_ADD_REQUEST 336
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
}
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
wait->tsk = current;
wait->seqno = seqno;
}
static inline bool intel_wait_complete(const struct intel_wait *wait)
{
return RB_EMPTY_NODE(&wait->node);
}
bool intel_engine_add_wait(struct intel_engine_cs *engine,
struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
struct intel_wait *wait);
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
{
return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
}
static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
{
bool wakeup = false;
/* Note that for this not to dangerously chase a dangling pointer,
* we must hold the rcu_read_lock here.
*
* Also note that tsk is likely to be in !TASK_RUNNING state so an
* early test for tsk->state != TASK_RUNNING before wake_up_process()
* is unlikely to be beneficial.
*/
if (intel_engine_has_waiter(engine)) {
struct task_struct *tsk;
rcu_read_lock();
tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
if (tsk)
wakeup = wake_up_process(tsk);
rcu_read_unlock();
}
return wakeup;
}
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915);
#endif /* _INTEL_RINGBUFFER_H_ */