linux-stable/arch/x86/oprofile/op_model_p4.c
Jason Yeh 4d4036e0e7 oprofile: Implement performance counter multiplexing
The number of hardware counters is limited. The multiplexing feature
enables OProfile to gather more events than counters are provided by
the hardware. This is realized by switching between events at an user
specified time interval.

A new file (/dev/oprofile/time_slice) is added for the user to specify
the timer interval in ms. If the number of events to profile is higher
than the number of hardware counters available, the patch will
schedule a work queue that switches the event counter and re-writes
the different sets of values into it. The switching mechanism needs to
be implemented for each architecture to support multiplexing. This
patch only implements AMD CPU support, but multiplexing can be easily
extended for other models and architectures.

There are follow-on patches that rework parts of this patch.

Signed-off-by: Jason Yeh <jason.yeh@amd.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
2009-07-20 16:33:53 +02:00

723 lines
18 KiB
C

/**
* @file op_model_p4.c
* P4 model-specific MSR operations
*
* @remark Copyright 2002 OProfile authors
* @remark Read the file COPYING
*
* @author Graydon Hoare
*/
#include <linux/oprofile.h>
#include <linux/smp.h>
#include <linux/ptrace.h>
#include <linux/nmi.h>
#include <asm/msr.h>
#include <asm/fixmap.h>
#include <asm/apic.h>
#include "op_x86_model.h"
#include "op_counter.h"
#define NUM_EVENTS 39
#define NUM_COUNTERS_NON_HT 8
#define NUM_ESCRS_NON_HT 45
#define NUM_CCCRS_NON_HT 18
#define NUM_CONTROLS_NON_HT (NUM_ESCRS_NON_HT + NUM_CCCRS_NON_HT)
#define NUM_COUNTERS_HT2 4
#define NUM_ESCRS_HT2 23
#define NUM_CCCRS_HT2 9
#define NUM_CONTROLS_HT2 (NUM_ESCRS_HT2 + NUM_CCCRS_HT2)
#define OP_CTR_OVERFLOW (1ULL<<31)
static unsigned int num_counters = NUM_COUNTERS_NON_HT;
static unsigned int num_controls = NUM_CONTROLS_NON_HT;
/* this has to be checked dynamically since the
hyper-threadedness of a chip is discovered at
kernel boot-time. */
static inline void setup_num_counters(void)
{
#ifdef CONFIG_SMP
if (smp_num_siblings == 2) {
num_counters = NUM_COUNTERS_HT2;
num_controls = NUM_CONTROLS_HT2;
}
#endif
}
static int inline addr_increment(void)
{
#ifdef CONFIG_SMP
return smp_num_siblings == 2 ? 2 : 1;
#else
return 1;
#endif
}
/* tables to simulate simplified hardware view of p4 registers */
struct p4_counter_binding {
int virt_counter;
int counter_address;
int cccr_address;
};
struct p4_event_binding {
int escr_select; /* value to put in CCCR */
int event_select; /* value to put in ESCR */
struct {
int virt_counter; /* for this counter... */
int escr_address; /* use this ESCR */
} bindings[2];
};
/* nb: these CTR_* defines are a duplicate of defines in
event/i386.p4*events. */
#define CTR_BPU_0 (1 << 0)
#define CTR_MS_0 (1 << 1)
#define CTR_FLAME_0 (1 << 2)
#define CTR_IQ_4 (1 << 3)
#define CTR_BPU_2 (1 << 4)
#define CTR_MS_2 (1 << 5)
#define CTR_FLAME_2 (1 << 6)
#define CTR_IQ_5 (1 << 7)
static struct p4_counter_binding p4_counters[NUM_COUNTERS_NON_HT] = {
{ CTR_BPU_0, MSR_P4_BPU_PERFCTR0, MSR_P4_BPU_CCCR0 },
{ CTR_MS_0, MSR_P4_MS_PERFCTR0, MSR_P4_MS_CCCR0 },
{ CTR_FLAME_0, MSR_P4_FLAME_PERFCTR0, MSR_P4_FLAME_CCCR0 },
{ CTR_IQ_4, MSR_P4_IQ_PERFCTR4, MSR_P4_IQ_CCCR4 },
{ CTR_BPU_2, MSR_P4_BPU_PERFCTR2, MSR_P4_BPU_CCCR2 },
{ CTR_MS_2, MSR_P4_MS_PERFCTR2, MSR_P4_MS_CCCR2 },
{ CTR_FLAME_2, MSR_P4_FLAME_PERFCTR2, MSR_P4_FLAME_CCCR2 },
{ CTR_IQ_5, MSR_P4_IQ_PERFCTR5, MSR_P4_IQ_CCCR5 }
};
#define NUM_UNUSED_CCCRS (NUM_CCCRS_NON_HT - NUM_COUNTERS_NON_HT)
/* p4 event codes in libop/op_event.h are indices into this table. */
static struct p4_event_binding p4_events[NUM_EVENTS] = {
{ /* BRANCH_RETIRED */
0x05, 0x06,
{ {CTR_IQ_4, MSR_P4_CRU_ESCR2},
{CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* MISPRED_BRANCH_RETIRED */
0x04, 0x03,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR0},
{ CTR_IQ_5, MSR_P4_CRU_ESCR1} }
},
{ /* TC_DELIVER_MODE */
0x01, 0x01,
{ { CTR_MS_0, MSR_P4_TC_ESCR0},
{ CTR_MS_2, MSR_P4_TC_ESCR1} }
},
{ /* BPU_FETCH_REQUEST */
0x00, 0x03,
{ { CTR_BPU_0, MSR_P4_BPU_ESCR0},
{ CTR_BPU_2, MSR_P4_BPU_ESCR1} }
},
{ /* ITLB_REFERENCE */
0x03, 0x18,
{ { CTR_BPU_0, MSR_P4_ITLB_ESCR0},
{ CTR_BPU_2, MSR_P4_ITLB_ESCR1} }
},
{ /* MEMORY_CANCEL */
0x05, 0x02,
{ { CTR_FLAME_0, MSR_P4_DAC_ESCR0},
{ CTR_FLAME_2, MSR_P4_DAC_ESCR1} }
},
{ /* MEMORY_COMPLETE */
0x02, 0x08,
{ { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
{ CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
},
{ /* LOAD_PORT_REPLAY */
0x02, 0x04,
{ { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
{ CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
},
{ /* STORE_PORT_REPLAY */
0x02, 0x05,
{ { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
{ CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
},
{ /* MOB_LOAD_REPLAY */
0x02, 0x03,
{ { CTR_BPU_0, MSR_P4_MOB_ESCR0},
{ CTR_BPU_2, MSR_P4_MOB_ESCR1} }
},
{ /* PAGE_WALK_TYPE */
0x04, 0x01,
{ { CTR_BPU_0, MSR_P4_PMH_ESCR0},
{ CTR_BPU_2, MSR_P4_PMH_ESCR1} }
},
{ /* BSQ_CACHE_REFERENCE */
0x07, 0x0c,
{ { CTR_BPU_0, MSR_P4_BSU_ESCR0},
{ CTR_BPU_2, MSR_P4_BSU_ESCR1} }
},
{ /* IOQ_ALLOCATION */
0x06, 0x03,
{ { CTR_BPU_0, MSR_P4_FSB_ESCR0},
{ 0, 0 } }
},
{ /* IOQ_ACTIVE_ENTRIES */
0x06, 0x1a,
{ { CTR_BPU_2, MSR_P4_FSB_ESCR1},
{ 0, 0 } }
},
{ /* FSB_DATA_ACTIVITY */
0x06, 0x17,
{ { CTR_BPU_0, MSR_P4_FSB_ESCR0},
{ CTR_BPU_2, MSR_P4_FSB_ESCR1} }
},
{ /* BSQ_ALLOCATION */
0x07, 0x05,
{ { CTR_BPU_0, MSR_P4_BSU_ESCR0},
{ 0, 0 } }
},
{ /* BSQ_ACTIVE_ENTRIES */
0x07, 0x06,
{ { CTR_BPU_2, MSR_P4_BSU_ESCR1 /* guess */},
{ 0, 0 } }
},
{ /* X87_ASSIST */
0x05, 0x03,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* SSE_INPUT_ASSIST */
0x01, 0x34,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* PACKED_SP_UOP */
0x01, 0x08,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* PACKED_DP_UOP */
0x01, 0x0c,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* SCALAR_SP_UOP */
0x01, 0x0a,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* SCALAR_DP_UOP */
0x01, 0x0e,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* 64BIT_MMX_UOP */
0x01, 0x02,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* 128BIT_MMX_UOP */
0x01, 0x1a,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* X87_FP_UOP */
0x01, 0x04,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* X87_SIMD_MOVES_UOP */
0x01, 0x2e,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* MACHINE_CLEAR */
0x05, 0x02,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* GLOBAL_POWER_EVENTS */
0x06, 0x13 /* older manual says 0x05, newer 0x13 */,
{ { CTR_BPU_0, MSR_P4_FSB_ESCR0},
{ CTR_BPU_2, MSR_P4_FSB_ESCR1} }
},
{ /* TC_MS_XFER */
0x00, 0x05,
{ { CTR_MS_0, MSR_P4_MS_ESCR0},
{ CTR_MS_2, MSR_P4_MS_ESCR1} }
},
{ /* UOP_QUEUE_WRITES */
0x00, 0x09,
{ { CTR_MS_0, MSR_P4_MS_ESCR0},
{ CTR_MS_2, MSR_P4_MS_ESCR1} }
},
{ /* FRONT_END_EVENT */
0x05, 0x08,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* EXECUTION_EVENT */
0x05, 0x0c,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* REPLAY_EVENT */
0x05, 0x09,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* INSTR_RETIRED */
0x04, 0x02,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR0},
{ CTR_IQ_5, MSR_P4_CRU_ESCR1} }
},
{ /* UOPS_RETIRED */
0x04, 0x01,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR0},
{ CTR_IQ_5, MSR_P4_CRU_ESCR1} }
},
{ /* UOP_TYPE */
0x02, 0x02,
{ { CTR_IQ_4, MSR_P4_RAT_ESCR0},
{ CTR_IQ_5, MSR_P4_RAT_ESCR1} }
},
{ /* RETIRED_MISPRED_BRANCH_TYPE */
0x02, 0x05,
{ { CTR_MS_0, MSR_P4_TBPU_ESCR0},
{ CTR_MS_2, MSR_P4_TBPU_ESCR1} }
},
{ /* RETIRED_BRANCH_TYPE */
0x02, 0x04,
{ { CTR_MS_0, MSR_P4_TBPU_ESCR0},
{ CTR_MS_2, MSR_P4_TBPU_ESCR1} }
}
};
#define MISC_PMC_ENABLED_P(x) ((x) & 1 << 7)
#define ESCR_RESERVED_BITS 0x80000003
#define ESCR_CLEAR(escr) ((escr) &= ESCR_RESERVED_BITS)
#define ESCR_SET_USR_0(escr, usr) ((escr) |= (((usr) & 1) << 2))
#define ESCR_SET_OS_0(escr, os) ((escr) |= (((os) & 1) << 3))
#define ESCR_SET_USR_1(escr, usr) ((escr) |= (((usr) & 1)))
#define ESCR_SET_OS_1(escr, os) ((escr) |= (((os) & 1) << 1))
#define ESCR_SET_EVENT_SELECT(escr, sel) ((escr) |= (((sel) & 0x3f) << 25))
#define ESCR_SET_EVENT_MASK(escr, mask) ((escr) |= (((mask) & 0xffff) << 9))
#define CCCR_RESERVED_BITS 0x38030FFF
#define CCCR_CLEAR(cccr) ((cccr) &= CCCR_RESERVED_BITS)
#define CCCR_SET_REQUIRED_BITS(cccr) ((cccr) |= 0x00030000)
#define CCCR_SET_ESCR_SELECT(cccr, sel) ((cccr) |= (((sel) & 0x07) << 13))
#define CCCR_SET_PMI_OVF_0(cccr) ((cccr) |= (1<<26))
#define CCCR_SET_PMI_OVF_1(cccr) ((cccr) |= (1<<27))
#define CCCR_SET_ENABLE(cccr) ((cccr) |= (1<<12))
#define CCCR_SET_DISABLE(cccr) ((cccr) &= ~(1<<12))
#define CCCR_OVF_P(cccr) ((cccr) & (1U<<31))
#define CCCR_CLEAR_OVF(cccr) ((cccr) &= (~(1U<<31)))
/* this assigns a "stagger" to the current CPU, which is used throughout
the code in this module as an extra array offset, to select the "even"
or "odd" part of all the divided resources. */
static unsigned int get_stagger(void)
{
#ifdef CONFIG_SMP
int cpu = smp_processor_id();
return cpu != cpumask_first(__get_cpu_var(cpu_sibling_map));
#endif
return 0;
}
/* finally, mediate access to a real hardware counter
by passing a "virtual" counter numer to this macro,
along with your stagger setting. */
#define VIRT_CTR(stagger, i) ((i) + ((num_counters) * (stagger)))
static unsigned long reset_value[NUM_COUNTERS_NON_HT];
static void p4_fill_in_addresses(struct op_msrs * const msrs)
{
unsigned int i;
unsigned int addr, cccraddr, stag;
setup_num_counters();
stag = get_stagger();
/* initialize some registers */
for (i = 0; i < num_counters; ++i)
msrs->counters[i].addr = 0;
for (i = 0; i < num_controls; ++i)
msrs->controls[i].addr = 0;
/* the counter & cccr registers we pay attention to */
for (i = 0; i < num_counters; ++i) {
addr = p4_counters[VIRT_CTR(stag, i)].counter_address;
cccraddr = p4_counters[VIRT_CTR(stag, i)].cccr_address;
if (reserve_perfctr_nmi(addr)) {
msrs->counters[i].addr = addr;
msrs->controls[i].addr = cccraddr;
}
}
/* 43 ESCR registers in three or four discontiguous group */
for (addr = MSR_P4_BSU_ESCR0 + stag;
addr < MSR_P4_IQ_ESCR0; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
/* no IQ_ESCR0/1 on some models, we save a seconde time BSU_ESCR0/1
* to avoid special case in nmi_{save|restore}_registers() */
if (boot_cpu_data.x86_model >= 0x3) {
for (addr = MSR_P4_BSU_ESCR0 + stag;
addr <= MSR_P4_BSU_ESCR1; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
} else {
for (addr = MSR_P4_IQ_ESCR0 + stag;
addr <= MSR_P4_IQ_ESCR1; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
}
for (addr = MSR_P4_RAT_ESCR0 + stag;
addr <= MSR_P4_SSU_ESCR0; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
for (addr = MSR_P4_MS_ESCR0 + stag;
addr <= MSR_P4_TC_ESCR1; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
for (addr = MSR_P4_IX_ESCR0 + stag;
addr <= MSR_P4_CRU_ESCR3; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
/* there are 2 remaining non-contiguously located ESCRs */
if (num_counters == NUM_COUNTERS_NON_HT) {
/* standard non-HT CPUs handle both remaining ESCRs*/
if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR5))
msrs->controls[i++].addr = MSR_P4_CRU_ESCR5;
if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR4))
msrs->controls[i++].addr = MSR_P4_CRU_ESCR4;
} else if (stag == 0) {
/* HT CPUs give the first remainder to the even thread, as
the 32nd control register */
if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR4))
msrs->controls[i++].addr = MSR_P4_CRU_ESCR4;
} else {
/* and two copies of the second to the odd thread,
for the 22st and 23nd control registers */
if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR5)) {
msrs->controls[i++].addr = MSR_P4_CRU_ESCR5;
msrs->controls[i++].addr = MSR_P4_CRU_ESCR5;
}
}
}
static void pmc_setup_one_p4_counter(unsigned int ctr)
{
int i;
int const maxbind = 2;
unsigned int cccr = 0;
unsigned int escr = 0;
unsigned int high = 0;
unsigned int counter_bit;
struct p4_event_binding *ev = NULL;
unsigned int stag;
stag = get_stagger();
/* convert from counter *number* to counter *bit* */
counter_bit = 1 << VIRT_CTR(stag, ctr);
/* find our event binding structure. */
if (counter_config[ctr].event <= 0 || counter_config[ctr].event > NUM_EVENTS) {
printk(KERN_ERR
"oprofile: P4 event code 0x%lx out of range\n",
counter_config[ctr].event);
return;
}
ev = &(p4_events[counter_config[ctr].event - 1]);
for (i = 0; i < maxbind; i++) {
if (ev->bindings[i].virt_counter & counter_bit) {
/* modify ESCR */
rdmsr(ev->bindings[i].escr_address, escr, high);
ESCR_CLEAR(escr);
if (stag == 0) {
ESCR_SET_USR_0(escr, counter_config[ctr].user);
ESCR_SET_OS_0(escr, counter_config[ctr].kernel);
} else {
ESCR_SET_USR_1(escr, counter_config[ctr].user);
ESCR_SET_OS_1(escr, counter_config[ctr].kernel);
}
ESCR_SET_EVENT_SELECT(escr, ev->event_select);
ESCR_SET_EVENT_MASK(escr, counter_config[ctr].unit_mask);
wrmsr(ev->bindings[i].escr_address, escr, high);
/* modify CCCR */
rdmsr(p4_counters[VIRT_CTR(stag, ctr)].cccr_address,
cccr, high);
CCCR_CLEAR(cccr);
CCCR_SET_REQUIRED_BITS(cccr);
CCCR_SET_ESCR_SELECT(cccr, ev->escr_select);
if (stag == 0)
CCCR_SET_PMI_OVF_0(cccr);
else
CCCR_SET_PMI_OVF_1(cccr);
wrmsr(p4_counters[VIRT_CTR(stag, ctr)].cccr_address,
cccr, high);
return;
}
}
printk(KERN_ERR
"oprofile: P4 event code 0x%lx no binding, stag %d ctr %d\n",
counter_config[ctr].event, stag, ctr);
}
static void p4_setup_ctrs(struct op_x86_model_spec const *model,
struct op_msrs const * const msrs)
{
unsigned int i;
unsigned int low, high;
unsigned int stag;
stag = get_stagger();
rdmsr(MSR_IA32_MISC_ENABLE, low, high);
if (!MISC_PMC_ENABLED_P(low)) {
printk(KERN_ERR "oprofile: P4 PMC not available\n");
return;
}
/* clear the cccrs we will use */
for (i = 0; i < num_counters; i++) {
if (unlikely(!msrs->controls[i].addr))
continue;
rdmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
CCCR_CLEAR(low);
CCCR_SET_REQUIRED_BITS(low);
wrmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
}
/* clear all escrs (including those outside our concern) */
for (i = num_counters; i < num_controls; i++) {
if (unlikely(!msrs->controls[i].addr))
continue;
wrmsr(msrs->controls[i].addr, 0, 0);
}
/* setup all counters */
for (i = 0; i < num_counters; ++i) {
if (counter_config[i].enabled && msrs->controls[i].addr) {
reset_value[i] = counter_config[i].count;
pmc_setup_one_p4_counter(i);
wrmsrl(p4_counters[VIRT_CTR(stag, i)].counter_address,
-(u64)counter_config[i].count);
} else {
reset_value[i] = 0;
}
}
}
static int p4_check_ctrs(struct pt_regs * const regs,
struct op_msrs const * const msrs)
{
unsigned long ctr, low, high, stag, real;
int i;
stag = get_stagger();
for (i = 0; i < num_counters; ++i) {
if (!reset_value[i])
continue;
/*
* there is some eccentricity in the hardware which
* requires that we perform 2 extra corrections:
*
* - check both the CCCR:OVF flag for overflow and the
* counter high bit for un-flagged overflows.
*
* - write the counter back twice to ensure it gets
* updated properly.
*
* the former seems to be related to extra NMIs happening
* during the current NMI; the latter is reported as errata
* N15 in intel doc 249199-029, pentium 4 specification
* update, though their suggested work-around does not
* appear to solve the problem.
*/
real = VIRT_CTR(stag, i);
rdmsr(p4_counters[real].cccr_address, low, high);
rdmsr(p4_counters[real].counter_address, ctr, high);
if (CCCR_OVF_P(low) || !(ctr & OP_CTR_OVERFLOW)) {
oprofile_add_sample(regs, i);
wrmsrl(p4_counters[real].counter_address,
-(u64)reset_value[i]);
CCCR_CLEAR_OVF(low);
wrmsr(p4_counters[real].cccr_address, low, high);
wrmsrl(p4_counters[real].counter_address,
-(u64)reset_value[i]);
}
}
/* P4 quirk: you have to re-unmask the apic vector */
apic_write(APIC_LVTPC, apic_read(APIC_LVTPC) & ~APIC_LVT_MASKED);
/* See op_model_ppro.c */
return 1;
}
static void p4_start(struct op_msrs const * const msrs)
{
unsigned int low, high, stag;
int i;
stag = get_stagger();
for (i = 0; i < num_counters; ++i) {
if (!reset_value[i])
continue;
rdmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
CCCR_SET_ENABLE(low);
wrmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
}
}
static void p4_stop(struct op_msrs const * const msrs)
{
unsigned int low, high, stag;
int i;
stag = get_stagger();
for (i = 0; i < num_counters; ++i) {
if (!reset_value[i])
continue;
rdmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
CCCR_SET_DISABLE(low);
wrmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
}
}
static void p4_shutdown(struct op_msrs const * const msrs)
{
int i;
for (i = 0; i < num_counters; ++i) {
if (msrs->counters[i].addr)
release_perfctr_nmi(msrs->counters[i].addr);
}
/*
* some of the control registers are specially reserved in
* conjunction with the counter registers (hence the starting offset).
* This saves a few bits.
*/
for (i = num_counters; i < num_controls; ++i) {
if (msrs->controls[i].addr)
release_evntsel_nmi(msrs->controls[i].addr);
}
}
#ifdef CONFIG_SMP
struct op_x86_model_spec const op_p4_ht2_spec = {
.num_counters = NUM_COUNTERS_HT2,
.num_controls = NUM_CONTROLS_HT2,
.num_virt_counters = NUM_COUNTERS_HT2,
.num_virt_controls = NUM_CONTROLS_HT2,
.fill_in_addresses = &p4_fill_in_addresses,
.setup_ctrs = &p4_setup_ctrs,
.check_ctrs = &p4_check_ctrs,
.start = &p4_start,
.stop = &p4_stop,
.shutdown = &p4_shutdown
};
#endif
struct op_x86_model_spec const op_p4_spec = {
.num_counters = NUM_COUNTERS_NON_HT,
.num_controls = NUM_CONTROLS_NON_HT,
.num_virt_counters = NUM_COUNTERS_NON_HT,
.num_virt_controls = NUM_CONTROLS_NON_HT,
.fill_in_addresses = &p4_fill_in_addresses,
.setup_ctrs = &p4_setup_ctrs,
.check_ctrs = &p4_check_ctrs,
.start = &p4_start,
.stop = &p4_stop,
.shutdown = &p4_shutdown
};