linux-stable/drivers/mmc/host/au1xmmc.c
Yangtao Li c7d255148d mmc: au1xmmc: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is (mostly) ignored
and this typically results in resource leaks. To improve here there is a
quest to make the remove callback return void. In the first step of this
quest all drivers are converted to .remove_new() which already returns
void.

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Cc: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Yangtao Li <frank.li@vivo.com>
Link: https://lore.kernel.org/r/20230727070051.17778-27-frank.li@vivo.com
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2023-08-15 12:45:05 +02:00

1224 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver
*
* Copyright (c) 2005, Advanced Micro Devices, Inc.
*
* Developed with help from the 2.4.30 MMC AU1XXX controller including
* the following copyright notices:
* Copyright (c) 2003-2004 Embedded Edge, LLC.
* Portions Copyright (C) 2002 Embedix, Inc
* Copyright 2002 Hewlett-Packard Company
* 2.6 version of this driver inspired by:
* (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
* All Rights Reserved.
* (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
* All Rights Reserved.
*
*/
/* Why don't we use the SD controllers' carddetect feature?
*
* From the AU1100 MMC application guide:
* If the Au1100-based design is intended to support both MultiMediaCards
* and 1- or 4-data bit SecureDigital cards, then the solution is to
* connect a weak (560KOhm) pull-up resistor to connector pin 1.
* In doing so, a MMC card never enters SPI-mode communications,
* but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
* (the low to high transition will not occur).
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/leds.h>
#include <linux/mmc/host.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/mach-au1x00/au1100_mmc.h>
#define DRIVER_NAME "au1xxx-mmc"
/* Set this to enable special debugging macros */
/* #define DEBUG */
#ifdef DEBUG
#define DBG(fmt, idx, args...) \
pr_debug("au1xmmc(%d): DEBUG: " fmt, idx, ##args)
#else
#define DBG(fmt, idx, args...) do {} while (0)
#endif
/* Hardware definitions */
#define AU1XMMC_DESCRIPTOR_COUNT 1
/* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */
#define AU1100_MMC_DESCRIPTOR_SIZE 0x0000ffff
#define AU1200_MMC_DESCRIPTOR_SIZE 0x003fffff
#define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \
MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \
MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36)
/* This gives us a hard value for the stop command that we can write directly
* to the command register.
*/
#define STOP_CMD \
(SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO)
/* This is the set of interrupts that we configure by default. */
#define AU1XMMC_INTERRUPTS \
(SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT | \
SD_CONFIG_CR | SD_CONFIG_I)
/* The poll event (looking for insert/remove events runs twice a second. */
#define AU1XMMC_DETECT_TIMEOUT (HZ/2)
struct au1xmmc_host {
struct mmc_host *mmc;
struct mmc_request *mrq;
u32 flags;
void __iomem *iobase;
u32 clock;
u32 bus_width;
u32 power_mode;
int status;
struct {
int len;
int dir;
} dma;
struct {
int index;
int offset;
int len;
} pio;
u32 tx_chan;
u32 rx_chan;
int irq;
struct tasklet_struct finish_task;
struct tasklet_struct data_task;
struct au1xmmc_platform_data *platdata;
struct platform_device *pdev;
struct resource *ioarea;
struct clk *clk;
};
/* Status flags used by the host structure */
#define HOST_F_XMIT 0x0001
#define HOST_F_RECV 0x0002
#define HOST_F_DMA 0x0010
#define HOST_F_DBDMA 0x0020
#define HOST_F_ACTIVE 0x0100
#define HOST_F_STOP 0x1000
#define HOST_S_IDLE 0x0001
#define HOST_S_CMD 0x0002
#define HOST_S_DATA 0x0003
#define HOST_S_STOP 0x0004
/* Easy access macros */
#define HOST_STATUS(h) ((h)->iobase + SD_STATUS)
#define HOST_CONFIG(h) ((h)->iobase + SD_CONFIG)
#define HOST_ENABLE(h) ((h)->iobase + SD_ENABLE)
#define HOST_TXPORT(h) ((h)->iobase + SD_TXPORT)
#define HOST_RXPORT(h) ((h)->iobase + SD_RXPORT)
#define HOST_CMDARG(h) ((h)->iobase + SD_CMDARG)
#define HOST_BLKSIZE(h) ((h)->iobase + SD_BLKSIZE)
#define HOST_CMD(h) ((h)->iobase + SD_CMD)
#define HOST_CONFIG2(h) ((h)->iobase + SD_CONFIG2)
#define HOST_TIMEOUT(h) ((h)->iobase + SD_TIMEOUT)
#define HOST_DEBUG(h) ((h)->iobase + SD_DEBUG)
#define DMA_CHANNEL(h) \
(((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan)
static inline int has_dbdma(void)
{
switch (alchemy_get_cputype()) {
case ALCHEMY_CPU_AU1200:
case ALCHEMY_CPU_AU1300:
return 1;
default:
return 0;
}
}
static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
{
u32 val = __raw_readl(HOST_CONFIG(host));
val |= mask;
__raw_writel(val, HOST_CONFIG(host));
wmb(); /* drain writebuffer */
}
static inline void FLUSH_FIFO(struct au1xmmc_host *host)
{
u32 val = __raw_readl(HOST_CONFIG2(host));
__raw_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
mdelay(1);
/* SEND_STOP will turn off clock control - this re-enables it */
val &= ~SD_CONFIG2_DF;
__raw_writel(val, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
}
static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
{
u32 val = __raw_readl(HOST_CONFIG(host));
val &= ~mask;
__raw_writel(val, HOST_CONFIG(host));
wmb(); /* drain writebuffer */
}
static inline void SEND_STOP(struct au1xmmc_host *host)
{
u32 config2;
WARN_ON(host->status != HOST_S_DATA);
host->status = HOST_S_STOP;
config2 = __raw_readl(HOST_CONFIG2(host));
__raw_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
/* Send the stop command */
__raw_writel(STOP_CMD, HOST_CMD(host));
wmb(); /* drain writebuffer */
}
static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
{
if (host->platdata && host->platdata->set_power)
host->platdata->set_power(host->mmc, state);
}
static int au1xmmc_card_inserted(struct mmc_host *mmc)
{
struct au1xmmc_host *host = mmc_priv(mmc);
if (host->platdata && host->platdata->card_inserted)
return !!host->platdata->card_inserted(host->mmc);
return -ENOSYS;
}
static int au1xmmc_card_readonly(struct mmc_host *mmc)
{
struct au1xmmc_host *host = mmc_priv(mmc);
if (host->platdata && host->platdata->card_readonly)
return !!host->platdata->card_readonly(mmc);
return -ENOSYS;
}
static void au1xmmc_finish_request(struct au1xmmc_host *host)
{
struct mmc_request *mrq = host->mrq;
host->mrq = NULL;
host->flags &= HOST_F_ACTIVE | HOST_F_DMA;
host->dma.len = 0;
host->dma.dir = 0;
host->pio.index = 0;
host->pio.offset = 0;
host->pio.len = 0;
host->status = HOST_S_IDLE;
mmc_request_done(host->mmc, mrq);
}
static void au1xmmc_tasklet_finish(struct tasklet_struct *t)
{
struct au1xmmc_host *host = from_tasklet(host, t, finish_task);
au1xmmc_finish_request(host);
}
static int au1xmmc_send_command(struct au1xmmc_host *host,
struct mmc_command *cmd, struct mmc_data *data)
{
u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
break;
case MMC_RSP_R1:
mmccmd |= SD_CMD_RT_1;
break;
case MMC_RSP_R1B:
mmccmd |= SD_CMD_RT_1B;
break;
case MMC_RSP_R2:
mmccmd |= SD_CMD_RT_2;
break;
case MMC_RSP_R3:
mmccmd |= SD_CMD_RT_3;
break;
default:
pr_info("au1xmmc: unhandled response type %02x\n",
mmc_resp_type(cmd));
return -EINVAL;
}
if (data) {
if (data->flags & MMC_DATA_READ) {
if (data->blocks > 1)
mmccmd |= SD_CMD_CT_4;
else
mmccmd |= SD_CMD_CT_2;
} else if (data->flags & MMC_DATA_WRITE) {
if (data->blocks > 1)
mmccmd |= SD_CMD_CT_3;
else
mmccmd |= SD_CMD_CT_1;
}
}
__raw_writel(cmd->arg, HOST_CMDARG(host));
wmb(); /* drain writebuffer */
__raw_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
wmb(); /* drain writebuffer */
/* Wait for the command to go on the line */
while (__raw_readl(HOST_CMD(host)) & SD_CMD_GO)
/* nop */;
return 0;
}
static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data;
u32 crc;
WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP));
if (host->mrq == NULL)
return;
data = mrq->cmd->data;
if (status == 0)
status = __raw_readl(HOST_STATUS(host));
/* The transaction is really over when the SD_STATUS_DB bit is clear */
while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
status = __raw_readl(HOST_STATUS(host));
data->error = 0;
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
/* Process any errors */
crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
if (host->flags & HOST_F_XMIT)
crc |= ((status & 0x07) == 0x02) ? 0 : 1;
if (crc)
data->error = -EILSEQ;
/* Clear the CRC bits */
__raw_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
data->bytes_xfered = 0;
if (!data->error) {
if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
u32 chan = DMA_CHANNEL(host);
chan_tab_t *c = *((chan_tab_t **)chan);
au1x_dma_chan_t *cp = c->chan_ptr;
data->bytes_xfered = cp->ddma_bytecnt;
} else
data->bytes_xfered =
(data->blocks * data->blksz) - host->pio.len;
}
au1xmmc_finish_request(host);
}
static void au1xmmc_tasklet_data(struct tasklet_struct *t)
{
struct au1xmmc_host *host = from_tasklet(host, t, data_task);
u32 status = __raw_readl(HOST_STATUS(host));
au1xmmc_data_complete(host, status);
}
#define AU1XMMC_MAX_TRANSFER 8
static void au1xmmc_send_pio(struct au1xmmc_host *host)
{
struct mmc_data *data;
int sg_len, max, count;
unsigned char *sg_ptr, val;
u32 status;
struct scatterlist *sg;
data = host->mrq->data;
if (!(host->flags & HOST_F_XMIT))
return;
/* This is the pointer to the data buffer */
sg = &data->sg[host->pio.index];
sg_ptr = kmap_local_page(sg_page(sg)) + sg->offset + host->pio.offset;
/* This is the space left inside the buffer */
sg_len = data->sg[host->pio.index].length - host->pio.offset;
/* Check if we need less than the size of the sg_buffer */
max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
if (max > AU1XMMC_MAX_TRANSFER)
max = AU1XMMC_MAX_TRANSFER;
for (count = 0; count < max; count++) {
status = __raw_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_TH))
break;
val = sg_ptr[count];
__raw_writel((unsigned long)val, HOST_TXPORT(host));
wmb(); /* drain writebuffer */
}
kunmap_local(sg_ptr);
host->pio.len -= count;
host->pio.offset += count;
if (count == sg_len) {
host->pio.index++;
host->pio.offset = 0;
}
if (host->pio.len == 0) {
IRQ_OFF(host, SD_CONFIG_TH);
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
}
static void au1xmmc_receive_pio(struct au1xmmc_host *host)
{
struct mmc_data *data;
int max, count, sg_len = 0;
unsigned char *sg_ptr = NULL;
u32 status, val;
struct scatterlist *sg;
data = host->mrq->data;
if (!(host->flags & HOST_F_RECV))
return;
max = host->pio.len;
if (host->pio.index < host->dma.len) {
sg = &data->sg[host->pio.index];
sg_ptr = kmap_local_page(sg_page(sg)) + sg->offset + host->pio.offset;
/* This is the space left inside the buffer */
sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
/* Check if we need less than the size of the sg_buffer */
if (sg_len < max)
max = sg_len;
}
if (max > AU1XMMC_MAX_TRANSFER)
max = AU1XMMC_MAX_TRANSFER;
for (count = 0; count < max; count++) {
status = __raw_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_NE))
break;
if (status & SD_STATUS_RC) {
DBG("RX CRC Error [%d + %d].\n", host->pdev->id,
host->pio.len, count);
break;
}
if (status & SD_STATUS_RO) {
DBG("RX Overrun [%d + %d]\n", host->pdev->id,
host->pio.len, count);
break;
}
else if (status & SD_STATUS_RU) {
DBG("RX Underrun [%d + %d]\n", host->pdev->id,
host->pio.len, count);
break;
}
val = __raw_readl(HOST_RXPORT(host));
if (sg_ptr)
sg_ptr[count] = (unsigned char)(val & 0xFF);
}
if (sg_ptr)
kunmap_local(sg_ptr);
host->pio.len -= count;
host->pio.offset += count;
if (sg_len && count == sg_len) {
host->pio.index++;
host->pio.offset = 0;
}
if (host->pio.len == 0) {
/* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */
IRQ_OFF(host, SD_CONFIG_NE);
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
}
/* This is called when a command has been completed - grab the response
* and check for errors. Then start the data transfer if it is indicated.
*/
static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
{
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd;
u32 r[4];
int i, trans;
if (!host->mrq)
return;
cmd = mrq->cmd;
cmd->error = 0;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
r[0] = __raw_readl(host->iobase + SD_RESP3);
r[1] = __raw_readl(host->iobase + SD_RESP2);
r[2] = __raw_readl(host->iobase + SD_RESP1);
r[3] = __raw_readl(host->iobase + SD_RESP0);
/* The CRC is omitted from the response, so really
* we only got 120 bytes, but the engine expects
* 128 bits, so we have to shift things up.
*/
for (i = 0; i < 4; i++) {
cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
if (i != 3)
cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
}
} else {
/* Techincally, we should be getting all 48 bits of
* the response (SD_RESP1 + SD_RESP2), but because
* our response omits the CRC, our data ends up
* being shifted 8 bits to the right. In this case,
* that means that the OSR data starts at bit 31,
* so we can just read RESP0 and return that.
*/
cmd->resp[0] = __raw_readl(host->iobase + SD_RESP0);
}
}
/* Figure out errors */
if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
cmd->error = -EILSEQ;
trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
if (!trans || cmd->error) {
IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF);
tasklet_schedule(&host->finish_task);
return;
}
host->status = HOST_S_DATA;
if ((host->flags & (HOST_F_DMA | HOST_F_DBDMA))) {
u32 channel = DMA_CHANNEL(host);
/* Start the DBDMA as soon as the buffer gets something in it */
if (host->flags & HOST_F_RECV) {
u32 mask = SD_STATUS_DB | SD_STATUS_NE;
while((status & mask) != mask)
status = __raw_readl(HOST_STATUS(host));
}
au1xxx_dbdma_start(channel);
}
}
static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
{
unsigned int pbus = clk_get_rate(host->clk);
unsigned int divisor = ((pbus / rate) / 2) - 1;
u32 config;
config = __raw_readl(HOST_CONFIG(host));
config &= ~(SD_CONFIG_DIV);
config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
__raw_writel(config, HOST_CONFIG(host));
wmb(); /* drain writebuffer */
}
static int au1xmmc_prepare_data(struct au1xmmc_host *host,
struct mmc_data *data)
{
int datalen = data->blocks * data->blksz;
if (data->flags & MMC_DATA_READ)
host->flags |= HOST_F_RECV;
else
host->flags |= HOST_F_XMIT;
if (host->mrq->stop)
host->flags |= HOST_F_STOP;
host->dma.dir = DMA_BIDIRECTIONAL;
host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma.dir);
if (host->dma.len == 0)
return -ETIMEDOUT;
__raw_writel(data->blksz - 1, HOST_BLKSIZE(host));
if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
int i;
u32 channel = DMA_CHANNEL(host);
au1xxx_dbdma_stop(channel);
for (i = 0; i < host->dma.len; i++) {
u32 ret = 0, flags = DDMA_FLAGS_NOIE;
struct scatterlist *sg = &data->sg[i];
int sg_len = sg->length;
int len = (datalen > sg_len) ? sg_len : datalen;
if (i == host->dma.len - 1)
flags = DDMA_FLAGS_IE;
if (host->flags & HOST_F_XMIT) {
ret = au1xxx_dbdma_put_source(channel,
sg_phys(sg), len, flags);
} else {
ret = au1xxx_dbdma_put_dest(channel,
sg_phys(sg), len, flags);
}
if (!ret)
goto dataerr;
datalen -= len;
}
} else {
host->pio.index = 0;
host->pio.offset = 0;
host->pio.len = datalen;
if (host->flags & HOST_F_XMIT)
IRQ_ON(host, SD_CONFIG_TH);
else
IRQ_ON(host, SD_CONFIG_NE);
/* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */
}
return 0;
dataerr:
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
host->dma.dir);
return -ETIMEDOUT;
}
/* This actually starts a command or data transaction */
static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
{
struct au1xmmc_host *host = mmc_priv(mmc);
int ret = 0;
WARN_ON(irqs_disabled());
WARN_ON(host->status != HOST_S_IDLE);
host->mrq = mrq;
host->status = HOST_S_CMD;
/* fail request immediately if no card is present */
if (0 == au1xmmc_card_inserted(mmc)) {
mrq->cmd->error = -ENOMEDIUM;
au1xmmc_finish_request(host);
return;
}
if (mrq->data) {
FLUSH_FIFO(host);
ret = au1xmmc_prepare_data(host, mrq->data);
}
if (!ret)
ret = au1xmmc_send_command(host, mrq->cmd, mrq->data);
if (ret) {
mrq->cmd->error = ret;
au1xmmc_finish_request(host);
}
}
static void au1xmmc_reset_controller(struct au1xmmc_host *host)
{
/* Apply the clock */
__raw_writel(SD_ENABLE_CE, HOST_ENABLE(host));
wmb(); /* drain writebuffer */
mdelay(1);
__raw_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
wmb(); /* drain writebuffer */
mdelay(5);
__raw_writel(~0, HOST_STATUS(host));
wmb(); /* drain writebuffer */
__raw_writel(0, HOST_BLKSIZE(host));
__raw_writel(0x001fffff, HOST_TIMEOUT(host));
wmb(); /* drain writebuffer */
__raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
__raw_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
mdelay(1);
__raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
/* Configure interrupts */
__raw_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
wmb(); /* drain writebuffer */
}
static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct au1xmmc_host *host = mmc_priv(mmc);
u32 config2;
if (ios->power_mode == MMC_POWER_OFF)
au1xmmc_set_power(host, 0);
else if (ios->power_mode == MMC_POWER_ON) {
au1xmmc_set_power(host, 1);
}
if (ios->clock && ios->clock != host->clock) {
au1xmmc_set_clock(host, ios->clock);
host->clock = ios->clock;
}
config2 = __raw_readl(HOST_CONFIG2(host));
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
config2 |= SD_CONFIG2_BB;
break;
case MMC_BUS_WIDTH_4:
config2 &= ~SD_CONFIG2_BB;
config2 |= SD_CONFIG2_WB;
break;
case MMC_BUS_WIDTH_1:
config2 &= ~(SD_CONFIG2_WB | SD_CONFIG2_BB);
break;
}
__raw_writel(config2, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
}
#define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
#define STATUS_DATA_IN (SD_STATUS_NE)
#define STATUS_DATA_OUT (SD_STATUS_TH)
static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
{
struct au1xmmc_host *host = dev_id;
u32 status;
status = __raw_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_I))
return IRQ_NONE; /* not ours */
if (status & SD_STATUS_SI) /* SDIO */
mmc_signal_sdio_irq(host->mmc);
if (host->mrq && (status & STATUS_TIMEOUT)) {
if (status & SD_STATUS_RAT)
host->mrq->cmd->error = -ETIMEDOUT;
else if (status & SD_STATUS_DT)
host->mrq->data->error = -ETIMEDOUT;
/* In PIO mode, interrupts might still be enabled */
IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
/* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */
tasklet_schedule(&host->finish_task);
}
#if 0
else if (status & SD_STATUS_DD) {
/* Sometimes we get a DD before a NE in PIO mode */
if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE))
au1xmmc_receive_pio(host);
else {
au1xmmc_data_complete(host, status);
/* tasklet_schedule(&host->data_task); */
}
}
#endif
else if (status & SD_STATUS_CR) {
if (host->status == HOST_S_CMD)
au1xmmc_cmd_complete(host, status);
} else if (!(host->flags & HOST_F_DMA)) {
if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT))
au1xmmc_send_pio(host);
else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN))
au1xmmc_receive_pio(host);
} else if (status & 0x203F3C70) {
DBG("Unhandled status %8.8x\n", host->pdev->id,
status);
}
__raw_writel(status, HOST_STATUS(host));
wmb(); /* drain writebuffer */
return IRQ_HANDLED;
}
/* 8bit memory DMA device */
static dbdev_tab_t au1xmmc_mem_dbdev = {
.dev_id = DSCR_CMD0_ALWAYS,
.dev_flags = DEV_FLAGS_ANYUSE,
.dev_tsize = 0,
.dev_devwidth = 8,
.dev_physaddr = 0x00000000,
.dev_intlevel = 0,
.dev_intpolarity = 0,
};
static int memid;
static void au1xmmc_dbdma_callback(int irq, void *dev_id)
{
struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id;
/* Avoid spurious interrupts */
if (!host->mrq)
return;
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
static int au1xmmc_dbdma_init(struct au1xmmc_host *host)
{
struct resource *res;
int txid, rxid;
res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0);
if (!res)
return -ENODEV;
txid = res->start;
res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1);
if (!res)
return -ENODEV;
rxid = res->start;
if (!memid)
return -ENODEV;
host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid,
au1xmmc_dbdma_callback, (void *)host);
if (!host->tx_chan) {
dev_err(&host->pdev->dev, "cannot allocate TX DMA\n");
return -ENODEV;
}
host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid,
au1xmmc_dbdma_callback, (void *)host);
if (!host->rx_chan) {
dev_err(&host->pdev->dev, "cannot allocate RX DMA\n");
au1xxx_dbdma_chan_free(host->tx_chan);
return -ENODEV;
}
au1xxx_dbdma_set_devwidth(host->tx_chan, 8);
au1xxx_dbdma_set_devwidth(host->rx_chan, 8);
au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT);
au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT);
/* DBDMA is good to go */
host->flags |= HOST_F_DMA | HOST_F_DBDMA;
return 0;
}
static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host)
{
if (host->flags & HOST_F_DMA) {
host->flags &= ~HOST_F_DMA;
au1xxx_dbdma_chan_free(host->tx_chan);
au1xxx_dbdma_chan_free(host->rx_chan);
}
}
static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en)
{
struct au1xmmc_host *host = mmc_priv(mmc);
if (en)
IRQ_ON(host, SD_CONFIG_SI);
else
IRQ_OFF(host, SD_CONFIG_SI);
}
static const struct mmc_host_ops au1xmmc_ops = {
.request = au1xmmc_request,
.set_ios = au1xmmc_set_ios,
.get_ro = au1xmmc_card_readonly,
.get_cd = au1xmmc_card_inserted,
.enable_sdio_irq = au1xmmc_enable_sdio_irq,
};
static int au1xmmc_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct au1xmmc_host *host;
struct resource *r;
int ret, iflag;
mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "no memory for mmc_host\n");
ret = -ENOMEM;
goto out0;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->platdata = pdev->dev.platform_data;
host->pdev = pdev;
ret = -ENODEV;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pdev->dev, "no mmio defined\n");
goto out1;
}
host->ioarea = request_mem_region(r->start, resource_size(r),
pdev->name);
if (!host->ioarea) {
dev_err(&pdev->dev, "mmio already in use\n");
goto out1;
}
host->iobase = ioremap(r->start, 0x3c);
if (!host->iobase) {
dev_err(&pdev->dev, "cannot remap mmio\n");
goto out2;
}
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0) {
ret = host->irq;
goto out3;
}
mmc->ops = &au1xmmc_ops;
mmc->f_min = 450000;
mmc->f_max = 24000000;
mmc->max_blk_size = 2048;
mmc->max_blk_count = 512;
mmc->ocr_avail = AU1XMMC_OCR;
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
mmc->max_segs = AU1XMMC_DESCRIPTOR_COUNT;
iflag = IRQF_SHARED; /* Au1100/Au1200: one int for both ctrls */
switch (alchemy_get_cputype()) {
case ALCHEMY_CPU_AU1100:
mmc->max_seg_size = AU1100_MMC_DESCRIPTOR_SIZE;
break;
case ALCHEMY_CPU_AU1200:
mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
break;
case ALCHEMY_CPU_AU1300:
iflag = 0; /* nothing is shared */
mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
mmc->f_max = 52000000;
if (host->ioarea->start == AU1100_SD0_PHYS_ADDR)
mmc->caps |= MMC_CAP_8_BIT_DATA;
break;
}
ret = request_irq(host->irq, au1xmmc_irq, iflag, DRIVER_NAME, host);
if (ret) {
dev_err(&pdev->dev, "cannot grab IRQ\n");
goto out3;
}
host->clk = clk_get(&pdev->dev, ALCHEMY_PERIPH_CLK);
if (IS_ERR(host->clk)) {
dev_err(&pdev->dev, "cannot find clock\n");
ret = PTR_ERR(host->clk);
goto out_irq;
}
ret = clk_prepare_enable(host->clk);
if (ret) {
dev_err(&pdev->dev, "cannot enable clock\n");
goto out_clk;
}
host->status = HOST_S_IDLE;
/* board-specific carddetect setup, if any */
if (host->platdata && host->platdata->cd_setup) {
ret = host->platdata->cd_setup(mmc, 1);
if (ret) {
dev_warn(&pdev->dev, "board CD setup failed\n");
mmc->caps |= MMC_CAP_NEEDS_POLL;
}
} else
mmc->caps |= MMC_CAP_NEEDS_POLL;
/* platform may not be able to use all advertised caps */
if (host->platdata)
mmc->caps &= ~(host->platdata->mask_host_caps);
tasklet_setup(&host->data_task, au1xmmc_tasklet_data);
tasklet_setup(&host->finish_task, au1xmmc_tasklet_finish);
if (has_dbdma()) {
ret = au1xmmc_dbdma_init(host);
if (ret)
pr_info(DRIVER_NAME ": DBDMA init failed; using PIO\n");
}
#ifdef CONFIG_LEDS_CLASS
if (host->platdata && host->platdata->led) {
struct led_classdev *led = host->platdata->led;
led->name = mmc_hostname(mmc);
led->brightness = LED_OFF;
led->default_trigger = mmc_hostname(mmc);
ret = led_classdev_register(mmc_dev(mmc), led);
if (ret)
goto out5;
}
#endif
au1xmmc_reset_controller(host);
ret = mmc_add_host(mmc);
if (ret) {
dev_err(&pdev->dev, "cannot add mmc host\n");
goto out6;
}
platform_set_drvdata(pdev, host);
pr_info(DRIVER_NAME ": MMC Controller %d set up at %p"
" (mode=%s)\n", pdev->id, host->iobase,
host->flags & HOST_F_DMA ? "dma" : "pio");
return 0; /* all ok */
out6:
#ifdef CONFIG_LEDS_CLASS
if (host->platdata && host->platdata->led)
led_classdev_unregister(host->platdata->led);
out5:
#endif
__raw_writel(0, HOST_ENABLE(host));
__raw_writel(0, HOST_CONFIG(host));
__raw_writel(0, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
if (host->flags & HOST_F_DBDMA)
au1xmmc_dbdma_shutdown(host);
tasklet_kill(&host->data_task);
tasklet_kill(&host->finish_task);
if (host->platdata && host->platdata->cd_setup &&
!(mmc->caps & MMC_CAP_NEEDS_POLL))
host->platdata->cd_setup(mmc, 0);
clk_disable_unprepare(host->clk);
out_clk:
clk_put(host->clk);
out_irq:
free_irq(host->irq, host);
out3:
iounmap((void *)host->iobase);
out2:
release_resource(host->ioarea);
kfree(host->ioarea);
out1:
mmc_free_host(mmc);
out0:
return ret;
}
static void au1xmmc_remove(struct platform_device *pdev)
{
struct au1xmmc_host *host = platform_get_drvdata(pdev);
if (host) {
mmc_remove_host(host->mmc);
#ifdef CONFIG_LEDS_CLASS
if (host->platdata && host->platdata->led)
led_classdev_unregister(host->platdata->led);
#endif
if (host->platdata && host->platdata->cd_setup &&
!(host->mmc->caps & MMC_CAP_NEEDS_POLL))
host->platdata->cd_setup(host->mmc, 0);
__raw_writel(0, HOST_ENABLE(host));
__raw_writel(0, HOST_CONFIG(host));
__raw_writel(0, HOST_CONFIG2(host));
wmb(); /* drain writebuffer */
tasklet_kill(&host->data_task);
tasklet_kill(&host->finish_task);
if (host->flags & HOST_F_DBDMA)
au1xmmc_dbdma_shutdown(host);
au1xmmc_set_power(host, 0);
clk_disable_unprepare(host->clk);
clk_put(host->clk);
free_irq(host->irq, host);
iounmap((void *)host->iobase);
release_resource(host->ioarea);
kfree(host->ioarea);
mmc_free_host(host->mmc);
}
}
#ifdef CONFIG_PM
static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state)
{
struct au1xmmc_host *host = platform_get_drvdata(pdev);
__raw_writel(0, HOST_CONFIG2(host));
__raw_writel(0, HOST_CONFIG(host));
__raw_writel(0xffffffff, HOST_STATUS(host));
__raw_writel(0, HOST_ENABLE(host));
wmb(); /* drain writebuffer */
return 0;
}
static int au1xmmc_resume(struct platform_device *pdev)
{
struct au1xmmc_host *host = platform_get_drvdata(pdev);
au1xmmc_reset_controller(host);
return 0;
}
#else
#define au1xmmc_suspend NULL
#define au1xmmc_resume NULL
#endif
static struct platform_driver au1xmmc_driver = {
.probe = au1xmmc_probe,
.remove_new = au1xmmc_remove,
.suspend = au1xmmc_suspend,
.resume = au1xmmc_resume,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
static int __init au1xmmc_init(void)
{
if (has_dbdma()) {
/* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
* of 8 bits. And since devices are shared, we need to create
* our own to avoid freaking out other devices.
*/
memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
if (!memid)
pr_err("au1xmmc: cannot add memory dbdma\n");
}
return platform_driver_register(&au1xmmc_driver);
}
static void __exit au1xmmc_exit(void)
{
if (has_dbdma() && memid)
au1xxx_ddma_del_device(memid);
platform_driver_unregister(&au1xmmc_driver);
}
module_init(au1xmmc_init);
module_exit(au1xmmc_exit);
MODULE_AUTHOR("Advanced Micro Devices, Inc");
MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:au1xxx-mmc");