linux-stable/drivers/memory/renesas-rpc-if.c
Linus Torvalds cc3c470ae4 ARM: driver changes for 5.19
There are minor updates to SoC specific drivers for chips by Rockchip,
 Samsung, NVIDIA, TI, NXP, i.MX, Qualcomm, and Broadcom. Noteworthy
 driver changes include:
 
 - Several conversions of DT bindings to yaml format.
 
 - Renesas adds driver support for R-Car V4H, RZ/V2M and RZ/G2UL SoCs.
 
 - Qualcomm adds a bus driver for the SSC (Snapdragon Sensor Core),
   and support for more chips in the RPMh power domains and the soc-id.
 
 - NXP has a new driver for the HDMI blk-ctrl on i.MX8MP.
 
 - Apple M1 gains support for the on-chip NVMe controller, making it
   possible to finally use the internal disks. This also includes SoC
   drivers for their RTKit IPC and for the SART DMA address filter.
 
 For other subsystems that merge their drivers through the SoC tree,
 we have
 
 - Firmware drivers for the ARM firmware stack including TEE, OP-TEE,
   SCMI and FF-A get a number of smaller updates and cleanups. OP-TEE
   now has a cache for firmware argument structures as an optimization,
   and SCMI now supports the 3.1 version of the specification.
 
 - Reset controller updates to Amlogic, ASpeed, Renesas and ACPI drivers
 
 - Memory controller updates for Tegra, and a few updates for other
   platforms.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmKOXOoACgkQmmx57+YA
 GNlpVQ//eQGfL0WktE5G/y0mCVuVHtXT5nSjHMgjTOdb9+QvaATCfxnLXvP7Gq7C
 7YzJd68G+2ZC4rUkkjTxyMICT7eIrJSAIAFn4PWee4EQ5DfbHgG+1tToTjxqb+QQ
 6wGB5MVaYUhjZE30kY2E8a+OKxHtEnkt9wcch6ei0vzsMZquQJF6byfHd5+I4Knd
 CyDmXX8ZGXK3FnhvuBLr3Rgwyhs0X4Ju7UaONLZxBYxdnh8WmymRszmMnv5qEkub
 KDe8fbhFamOT3Z55JdCA5xq7LvUzjsKpTGFxFcS0ptbkTmtAsuyYqqiWvAPx3D5u
 5TxVGSx9QKid6fpIsITZ2ptO6fgljh1W9b/3Y3/eltudXsM1qqSxyN2Hre+M9egf
 WEDADqbNR5Y5+bq1iZWI348jXkNHVPpsLHI9Ihqf4yyrKwFkmRmNLnws53XTAPH2
 FPXZvJjwFDBDHGfewSoLFePXUPNytVLXbr6Mq72ZyTDIBDU8Mxh666Wd8bu4tgbG
 1Y2pMjDIdXDOsljM6Of5D3XjM1kuDwEmFxWGy+cKLgoEbHLeE1xIbTjUir4687+d
 VNHdtsIRFPRZzz2lUSmI8vlA2aewMWrkOF/Ulz8xh6gG8uitMSfOxghg4IWOfRVM
 mlvgFP5eqTInmQcbWRxaRO9JzP+rPp1sAcEpsBmuEHw5Akflbc8=
 =XoLF
 -----END PGP SIGNATURE-----

Merge tag 'arm-drivers-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc

Pull ARM driver updates from Arnd Bergmann:
 "There are minor updates to SoC specific drivers for chips by Rockchip,
  Samsung, NVIDIA, TI, NXP, i.MX, Qualcomm, and Broadcom.

  Noteworthy driver changes include:

   - Several conversions of DT bindings to yaml format.

   - Renesas adds driver support for R-Car V4H, RZ/V2M and RZ/G2UL SoCs.

   - Qualcomm adds a bus driver for the SSC (Snapdragon Sensor Core),
     and support for more chips in the RPMh power domains and the
     soc-id.

   - NXP has a new driver for the HDMI blk-ctrl on i.MX8MP.

   - Apple M1 gains support for the on-chip NVMe controller, making it
     possible to finally use the internal disks. This also includes SoC
     drivers for their RTKit IPC and for the SART DMA address filter.

  For other subsystems that merge their drivers through the SoC tree, we
  have

   - Firmware drivers for the ARM firmware stack including TEE, OP-TEE,
     SCMI and FF-A get a number of smaller updates and cleanups. OP-TEE
     now has a cache for firmware argument structures as an
     optimization, and SCMI now supports the 3.1 version of the
     specification.

   - Reset controller updates to Amlogic, ASpeed, Renesas and ACPI
     drivers

   - Memory controller updates for Tegra, and a few updates for other
     platforms"

* tag 'arm-drivers-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (159 commits)
  memory: tegra: Add MC error logging on Tegra186 onward
  memory: tegra: Add memory controller channels support
  memory: tegra: Add APE memory clients for Tegra234
  memory: tegra: Add Tegra234 support
  nvme-apple: fix sparse endianess warnings
  soc/tegra: pmc: Document core domain fields
  soc: qcom: pdr: use static for servreg_* variables
  soc: imx: fix semicolon.cocci warnings
  soc: renesas: R-Car V3U is R-Car Gen4
  soc: imx: add i.MX8MP HDMI blk-ctrl
  soc: imx: imx8m-blk-ctrl: Add i.MX8MP media blk-ctrl
  soc: imx: add i.MX8MP HSIO blk-ctrl
  soc: imx: imx8m-blk-ctrl: set power device name
  soc: qcom: llcc: Add sc8180x and sc8280xp configurations
  dt-bindings: arm: msm: Add sc8180x and sc8280xp LLCC compatibles
  soc/tegra: pmc: Select REGMAP
  dt-bindings: reset: st,sti-powerdown: Convert to yaml
  dt-bindings: reset: st,sti-picophyreset: Convert to yaml
  dt-bindings: reset: socfpga: Convert to yaml
  dt-bindings: reset: snps,axs10x-reset: Convert to yaml
  ...
2022-05-26 10:32:47 -07:00

734 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Renesas RPC-IF core driver
*
* Copyright (C) 2018-2019 Renesas Solutions Corp.
* Copyright (C) 2019 Macronix International Co., Ltd.
* Copyright (C) 2019-2020 Cogent Embedded, Inc.
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <memory/renesas-rpc-if.h>
#define RPCIF_CMNCR 0x0000 /* R/W */
#define RPCIF_CMNCR_MD BIT(31)
#define RPCIF_CMNCR_MOIIO3(val) (((val) & 0x3) << 22)
#define RPCIF_CMNCR_MOIIO2(val) (((val) & 0x3) << 20)
#define RPCIF_CMNCR_MOIIO1(val) (((val) & 0x3) << 18)
#define RPCIF_CMNCR_MOIIO0(val) (((val) & 0x3) << 16)
#define RPCIF_CMNCR_MOIIO(val) (RPCIF_CMNCR_MOIIO0(val) | RPCIF_CMNCR_MOIIO1(val) | \
RPCIF_CMNCR_MOIIO2(val) | RPCIF_CMNCR_MOIIO3(val))
#define RPCIF_CMNCR_IO3FV(val) (((val) & 0x3) << 14) /* documented for RZ/G2L */
#define RPCIF_CMNCR_IO2FV(val) (((val) & 0x3) << 12) /* documented for RZ/G2L */
#define RPCIF_CMNCR_IO0FV(val) (((val) & 0x3) << 8)
#define RPCIF_CMNCR_IOFV(val) (RPCIF_CMNCR_IO0FV(val) | RPCIF_CMNCR_IO2FV(val) | \
RPCIF_CMNCR_IO3FV(val))
#define RPCIF_CMNCR_BSZ(val) (((val) & 0x3) << 0)
#define RPCIF_SSLDR 0x0004 /* R/W */
#define RPCIF_SSLDR_SPNDL(d) (((d) & 0x7) << 16)
#define RPCIF_SSLDR_SLNDL(d) (((d) & 0x7) << 8)
#define RPCIF_SSLDR_SCKDL(d) (((d) & 0x7) << 0)
#define RPCIF_DRCR 0x000C /* R/W */
#define RPCIF_DRCR_SSLN BIT(24)
#define RPCIF_DRCR_RBURST(v) ((((v) - 1) & 0x1F) << 16)
#define RPCIF_DRCR_RCF BIT(9)
#define RPCIF_DRCR_RBE BIT(8)
#define RPCIF_DRCR_SSLE BIT(0)
#define RPCIF_DRCMR 0x0010 /* R/W */
#define RPCIF_DRCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPCIF_DRCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPCIF_DREAR 0x0014 /* R/W */
#define RPCIF_DREAR_EAV(c) (((c) & 0xF) << 16)
#define RPCIF_DREAR_EAC(c) (((c) & 0x7) << 0)
#define RPCIF_DROPR 0x0018 /* R/W */
#define RPCIF_DRENR 0x001C /* R/W */
#define RPCIF_DRENR_CDB(o) (u32)((((o) & 0x3) << 30))
#define RPCIF_DRENR_OCDB(o) (((o) & 0x3) << 28)
#define RPCIF_DRENR_ADB(o) (((o) & 0x3) << 24)
#define RPCIF_DRENR_OPDB(o) (((o) & 0x3) << 20)
#define RPCIF_DRENR_DRDB(o) (((o) & 0x3) << 16)
#define RPCIF_DRENR_DME BIT(15)
#define RPCIF_DRENR_CDE BIT(14)
#define RPCIF_DRENR_OCDE BIT(12)
#define RPCIF_DRENR_ADE(v) (((v) & 0xF) << 8)
#define RPCIF_DRENR_OPDE(v) (((v) & 0xF) << 4)
#define RPCIF_SMCR 0x0020 /* R/W */
#define RPCIF_SMCR_SSLKP BIT(8)
#define RPCIF_SMCR_SPIRE BIT(2)
#define RPCIF_SMCR_SPIWE BIT(1)
#define RPCIF_SMCR_SPIE BIT(0)
#define RPCIF_SMCMR 0x0024 /* R/W */
#define RPCIF_SMCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPCIF_SMCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPCIF_SMADR 0x0028 /* R/W */
#define RPCIF_SMOPR 0x002C /* R/W */
#define RPCIF_SMOPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPCIF_SMOPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPCIF_SMOPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPCIF_SMOPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPCIF_SMENR 0x0030 /* R/W */
#define RPCIF_SMENR_CDB(o) (((o) & 0x3) << 30)
#define RPCIF_SMENR_OCDB(o) (((o) & 0x3) << 28)
#define RPCIF_SMENR_ADB(o) (((o) & 0x3) << 24)
#define RPCIF_SMENR_OPDB(o) (((o) & 0x3) << 20)
#define RPCIF_SMENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPCIF_SMENR_DME BIT(15)
#define RPCIF_SMENR_CDE BIT(14)
#define RPCIF_SMENR_OCDE BIT(12)
#define RPCIF_SMENR_ADE(v) (((v) & 0xF) << 8)
#define RPCIF_SMENR_OPDE(v) (((v) & 0xF) << 4)
#define RPCIF_SMENR_SPIDE(v) (((v) & 0xF) << 0)
#define RPCIF_SMRDR0 0x0038 /* R */
#define RPCIF_SMRDR1 0x003C /* R */
#define RPCIF_SMWDR0 0x0040 /* W */
#define RPCIF_SMWDR1 0x0044 /* W */
#define RPCIF_CMNSR 0x0048 /* R */
#define RPCIF_CMNSR_SSLF BIT(1)
#define RPCIF_CMNSR_TEND BIT(0)
#define RPCIF_DRDMCR 0x0058 /* R/W */
#define RPCIF_DMDMCR_DMCYC(v) ((((v) - 1) & 0x1F) << 0)
#define RPCIF_DRDRENR 0x005C /* R/W */
#define RPCIF_DRDRENR_HYPE(v) (((v) & 0x7) << 12)
#define RPCIF_DRDRENR_ADDRE BIT(8)
#define RPCIF_DRDRENR_OPDRE BIT(4)
#define RPCIF_DRDRENR_DRDRE BIT(0)
#define RPCIF_SMDMCR 0x0060 /* R/W */
#define RPCIF_SMDMCR_DMCYC(v) ((((v) - 1) & 0x1F) << 0)
#define RPCIF_SMDRENR 0x0064 /* R/W */
#define RPCIF_SMDRENR_HYPE(v) (((v) & 0x7) << 12)
#define RPCIF_SMDRENR_ADDRE BIT(8)
#define RPCIF_SMDRENR_OPDRE BIT(4)
#define RPCIF_SMDRENR_SPIDRE BIT(0)
#define RPCIF_PHYADD 0x0070 /* R/W available on R-Car E3/D3/V3M and RZ/G2{E,L} */
#define RPCIF_PHYWR 0x0074 /* R/W available on R-Car E3/D3/V3M and RZ/G2{E,L} */
#define RPCIF_PHYCNT 0x007C /* R/W */
#define RPCIF_PHYCNT_CAL BIT(31)
#define RPCIF_PHYCNT_OCTA(v) (((v) & 0x3) << 22)
#define RPCIF_PHYCNT_EXDS BIT(21)
#define RPCIF_PHYCNT_OCT BIT(20)
#define RPCIF_PHYCNT_DDRCAL BIT(19)
#define RPCIF_PHYCNT_HS BIT(18)
#define RPCIF_PHYCNT_CKSEL(v) (((v) & 0x3) << 16) /* valid only for RZ/G2L */
#define RPCIF_PHYCNT_STRTIM(v) (((v) & 0x7) << 15) /* valid for R-Car and RZ/G2{E,H,M,N} */
#define RPCIF_PHYCNT_WBUF2 BIT(4)
#define RPCIF_PHYCNT_WBUF BIT(2)
#define RPCIF_PHYCNT_PHYMEM(v) (((v) & 0x3) << 0)
#define RPCIF_PHYCNT_PHYMEM_MASK GENMASK(1, 0)
#define RPCIF_PHYOFFSET1 0x0080 /* R/W */
#define RPCIF_PHYOFFSET1_DDRTMG(v) (((v) & 0x3) << 28)
#define RPCIF_PHYOFFSET2 0x0084 /* R/W */
#define RPCIF_PHYOFFSET2_OCTTMG(v) (((v) & 0x7) << 8)
#define RPCIF_PHYINT 0x0088 /* R/W */
#define RPCIF_PHYINT_WPVAL BIT(1)
static const struct regmap_range rpcif_volatile_ranges[] = {
regmap_reg_range(RPCIF_SMRDR0, RPCIF_SMRDR1),
regmap_reg_range(RPCIF_SMWDR0, RPCIF_SMWDR1),
regmap_reg_range(RPCIF_CMNSR, RPCIF_CMNSR),
};
static const struct regmap_access_table rpcif_volatile_table = {
.yes_ranges = rpcif_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(rpcif_volatile_ranges),
};
/*
* Custom accessor functions to ensure SM[RW]DR[01] are always accessed with
* proper width. Requires rpcif.xfer_size to be correctly set before!
*/
static int rpcif_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct rpcif *rpc = context;
switch (reg) {
case RPCIF_SMRDR0:
case RPCIF_SMWDR0:
switch (rpc->xfer_size) {
case 1:
*val = readb(rpc->base + reg);
return 0;
case 2:
*val = readw(rpc->base + reg);
return 0;
case 4:
case 8:
*val = readl(rpc->base + reg);
return 0;
default:
return -EILSEQ;
}
case RPCIF_SMRDR1:
case RPCIF_SMWDR1:
if (rpc->xfer_size != 8)
return -EILSEQ;
break;
}
*val = readl(rpc->base + reg);
return 0;
}
static int rpcif_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct rpcif *rpc = context;
switch (reg) {
case RPCIF_SMWDR0:
switch (rpc->xfer_size) {
case 1:
writeb(val, rpc->base + reg);
return 0;
case 2:
writew(val, rpc->base + reg);
return 0;
case 4:
case 8:
writel(val, rpc->base + reg);
return 0;
default:
return -EILSEQ;
}
case RPCIF_SMWDR1:
if (rpc->xfer_size != 8)
return -EILSEQ;
break;
case RPCIF_SMRDR0:
case RPCIF_SMRDR1:
return -EPERM;
}
writel(val, rpc->base + reg);
return 0;
}
static const struct regmap_config rpcif_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.reg_read = rpcif_reg_read,
.reg_write = rpcif_reg_write,
.fast_io = true,
.max_register = RPCIF_PHYINT,
.volatile_table = &rpcif_volatile_table,
};
int rpcif_sw_init(struct rpcif *rpc, struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct resource *res;
rpc->dev = dev;
rpc->base = devm_platform_ioremap_resource_byname(pdev, "regs");
if (IS_ERR(rpc->base))
return PTR_ERR(rpc->base);
rpc->regmap = devm_regmap_init(&pdev->dev, NULL, rpc, &rpcif_regmap_config);
if (IS_ERR(rpc->regmap)) {
dev_err(&pdev->dev,
"failed to init regmap for rpcif, error %ld\n",
PTR_ERR(rpc->regmap));
return PTR_ERR(rpc->regmap);
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap");
rpc->dirmap = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(rpc->dirmap))
return PTR_ERR(rpc->dirmap);
rpc->size = resource_size(res);
rpc->type = (uintptr_t)of_device_get_match_data(dev);
rpc->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
return PTR_ERR_OR_ZERO(rpc->rstc);
}
EXPORT_SYMBOL(rpcif_sw_init);
static void rpcif_rzg2l_timing_adjust_sdr(struct rpcif *rpc)
{
regmap_write(rpc->regmap, RPCIF_PHYWR, 0xa5390000);
regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000000);
regmap_write(rpc->regmap, RPCIF_PHYWR, 0x00008080);
regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000022);
regmap_write(rpc->regmap, RPCIF_PHYWR, 0x00008080);
regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000024);
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_CKSEL(3),
RPCIF_PHYCNT_CKSEL(3));
regmap_write(rpc->regmap, RPCIF_PHYWR, 0x00000030);
regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000032);
}
int rpcif_hw_init(struct rpcif *rpc, bool hyperflash)
{
u32 dummy;
pm_runtime_get_sync(rpc->dev);
if (rpc->type == RPCIF_RZ_G2L) {
int ret;
ret = reset_control_reset(rpc->rstc);
if (ret)
return ret;
usleep_range(200, 300);
rpcif_rzg2l_timing_adjust_sdr(rpc);
}
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_PHYMEM_MASK,
RPCIF_PHYCNT_PHYMEM(hyperflash ? 3 : 0));
if (rpc->type == RPCIF_RCAR_GEN3)
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT,
RPCIF_PHYCNT_STRTIM(7), RPCIF_PHYCNT_STRTIM(7));
regmap_update_bits(rpc->regmap, RPCIF_PHYOFFSET1, RPCIF_PHYOFFSET1_DDRTMG(3),
RPCIF_PHYOFFSET1_DDRTMG(3));
regmap_update_bits(rpc->regmap, RPCIF_PHYOFFSET2, RPCIF_PHYOFFSET2_OCTTMG(7),
RPCIF_PHYOFFSET2_OCTTMG(4));
if (hyperflash)
regmap_update_bits(rpc->regmap, RPCIF_PHYINT,
RPCIF_PHYINT_WPVAL, 0);
if (rpc->type == RPCIF_RCAR_GEN3)
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MOIIO(3) | RPCIF_CMNCR_BSZ(3),
RPCIF_CMNCR_MOIIO(3) |
RPCIF_CMNCR_BSZ(hyperflash ? 1 : 0));
else
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MOIIO(3) | RPCIF_CMNCR_IOFV(3) |
RPCIF_CMNCR_BSZ(3),
RPCIF_CMNCR_MOIIO(1) | RPCIF_CMNCR_IOFV(2) |
RPCIF_CMNCR_BSZ(hyperflash ? 1 : 0));
/* Set RCF after BSZ update */
regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF);
/* Dummy read according to spec */
regmap_read(rpc->regmap, RPCIF_DRCR, &dummy);
regmap_write(rpc->regmap, RPCIF_SSLDR, RPCIF_SSLDR_SPNDL(7) |
RPCIF_SSLDR_SLNDL(7) | RPCIF_SSLDR_SCKDL(7));
pm_runtime_put(rpc->dev);
rpc->bus_size = hyperflash ? 2 : 1;
return 0;
}
EXPORT_SYMBOL(rpcif_hw_init);
static int wait_msg_xfer_end(struct rpcif *rpc)
{
u32 sts;
return regmap_read_poll_timeout(rpc->regmap, RPCIF_CMNSR, sts,
sts & RPCIF_CMNSR_TEND, 0,
USEC_PER_SEC);
}
static u8 rpcif_bits_set(struct rpcif *rpc, u32 nbytes)
{
if (rpc->bus_size == 2)
nbytes /= 2;
nbytes = clamp(nbytes, 1U, 4U);
return GENMASK(3, 4 - nbytes);
}
static u8 rpcif_bit_size(u8 buswidth)
{
return buswidth > 4 ? 2 : ilog2(buswidth);
}
void rpcif_prepare(struct rpcif *rpc, const struct rpcif_op *op, u64 *offs,
size_t *len)
{
rpc->smcr = 0;
rpc->smadr = 0;
rpc->enable = 0;
rpc->command = 0;
rpc->option = 0;
rpc->dummy = 0;
rpc->ddr = 0;
rpc->xferlen = 0;
if (op->cmd.buswidth) {
rpc->enable = RPCIF_SMENR_CDE |
RPCIF_SMENR_CDB(rpcif_bit_size(op->cmd.buswidth));
rpc->command = RPCIF_SMCMR_CMD(op->cmd.opcode);
if (op->cmd.ddr)
rpc->ddr = RPCIF_SMDRENR_HYPE(0x5);
}
if (op->ocmd.buswidth) {
rpc->enable |= RPCIF_SMENR_OCDE |
RPCIF_SMENR_OCDB(rpcif_bit_size(op->ocmd.buswidth));
rpc->command |= RPCIF_SMCMR_OCMD(op->ocmd.opcode);
}
if (op->addr.buswidth) {
rpc->enable |=
RPCIF_SMENR_ADB(rpcif_bit_size(op->addr.buswidth));
if (op->addr.nbytes == 4)
rpc->enable |= RPCIF_SMENR_ADE(0xF);
else
rpc->enable |= RPCIF_SMENR_ADE(GENMASK(
2, 3 - op->addr.nbytes));
if (op->addr.ddr)
rpc->ddr |= RPCIF_SMDRENR_ADDRE;
if (offs && len)
rpc->smadr = *offs;
else
rpc->smadr = op->addr.val;
}
if (op->dummy.buswidth) {
rpc->enable |= RPCIF_SMENR_DME;
rpc->dummy = RPCIF_SMDMCR_DMCYC(op->dummy.ncycles /
op->dummy.buswidth);
}
if (op->option.buswidth) {
rpc->enable |= RPCIF_SMENR_OPDE(
rpcif_bits_set(rpc, op->option.nbytes)) |
RPCIF_SMENR_OPDB(rpcif_bit_size(op->option.buswidth));
if (op->option.ddr)
rpc->ddr |= RPCIF_SMDRENR_OPDRE;
rpc->option = op->option.val;
}
rpc->dir = op->data.dir;
if (op->data.buswidth) {
u32 nbytes;
rpc->buffer = op->data.buf.in;
switch (op->data.dir) {
case RPCIF_DATA_IN:
rpc->smcr = RPCIF_SMCR_SPIRE;
break;
case RPCIF_DATA_OUT:
rpc->smcr = RPCIF_SMCR_SPIWE;
break;
default:
break;
}
if (op->data.ddr)
rpc->ddr |= RPCIF_SMDRENR_SPIDRE;
if (offs && len)
nbytes = *len;
else
nbytes = op->data.nbytes;
rpc->xferlen = nbytes;
rpc->enable |= RPCIF_SMENR_SPIDB(rpcif_bit_size(op->data.buswidth));
}
}
EXPORT_SYMBOL(rpcif_prepare);
int rpcif_manual_xfer(struct rpcif *rpc)
{
u32 smenr, smcr, pos = 0, max = rpc->bus_size == 2 ? 8 : 4;
int ret = 0;
pm_runtime_get_sync(rpc->dev);
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT,
RPCIF_PHYCNT_CAL, RPCIF_PHYCNT_CAL);
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MD, RPCIF_CMNCR_MD);
regmap_write(rpc->regmap, RPCIF_SMCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_SMOPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_SMDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_SMDRENR, rpc->ddr);
regmap_write(rpc->regmap, RPCIF_SMADR, rpc->smadr);
smenr = rpc->enable;
switch (rpc->dir) {
case RPCIF_DATA_OUT:
while (pos < rpc->xferlen) {
u32 bytes_left = rpc->xferlen - pos;
u32 nbytes, data[2], *p = data;
smcr = rpc->smcr | RPCIF_SMCR_SPIE;
/* nbytes may only be 1, 2, 4, or 8 */
nbytes = bytes_left >= max ? max : (1 << ilog2(bytes_left));
if (bytes_left > nbytes)
smcr |= RPCIF_SMCR_SSLKP;
smenr |= RPCIF_SMENR_SPIDE(rpcif_bits_set(rpc, nbytes));
regmap_write(rpc->regmap, RPCIF_SMENR, smenr);
rpc->xfer_size = nbytes;
memcpy(data, rpc->buffer + pos, nbytes);
if (nbytes == 8)
regmap_write(rpc->regmap, RPCIF_SMWDR1, *p++);
regmap_write(rpc->regmap, RPCIF_SMWDR0, *p);
regmap_write(rpc->regmap, RPCIF_SMCR, smcr);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
pos += nbytes;
smenr = rpc->enable &
~RPCIF_SMENR_CDE & ~RPCIF_SMENR_ADE(0xF);
}
break;
case RPCIF_DATA_IN:
/*
* RPC-IF spoils the data for the commands without an address
* phase (like RDID) in the manual mode, so we'll have to work
* around this issue by using the external address space read
* mode instead.
*/
if (!(smenr & RPCIF_SMENR_ADE(0xF)) && rpc->dirmap) {
u32 dummy;
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MD, 0);
regmap_write(rpc->regmap, RPCIF_DRCR,
RPCIF_DRCR_RBURST(32) | RPCIF_DRCR_RBE);
regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_DREAR,
RPCIF_DREAR_EAC(1));
regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_DRENR,
smenr & ~RPCIF_SMENR_SPIDE(0xF));
regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr);
memcpy_fromio(rpc->buffer, rpc->dirmap, rpc->xferlen);
regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF);
/* Dummy read according to spec */
regmap_read(rpc->regmap, RPCIF_DRCR, &dummy);
break;
}
while (pos < rpc->xferlen) {
u32 bytes_left = rpc->xferlen - pos;
u32 nbytes, data[2], *p = data;
/* nbytes may only be 1, 2, 4, or 8 */
nbytes = bytes_left >= max ? max : (1 << ilog2(bytes_left));
regmap_write(rpc->regmap, RPCIF_SMADR,
rpc->smadr + pos);
smenr &= ~RPCIF_SMENR_SPIDE(0xF);
smenr |= RPCIF_SMENR_SPIDE(rpcif_bits_set(rpc, nbytes));
regmap_write(rpc->regmap, RPCIF_SMENR, smenr);
regmap_write(rpc->regmap, RPCIF_SMCR,
rpc->smcr | RPCIF_SMCR_SPIE);
rpc->xfer_size = nbytes;
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
if (nbytes == 8)
regmap_read(rpc->regmap, RPCIF_SMRDR1, p++);
regmap_read(rpc->regmap, RPCIF_SMRDR0, p);
memcpy(rpc->buffer + pos, data, nbytes);
pos += nbytes;
}
break;
default:
regmap_write(rpc->regmap, RPCIF_SMENR, rpc->enable);
regmap_write(rpc->regmap, RPCIF_SMCR,
rpc->smcr | RPCIF_SMCR_SPIE);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
}
exit:
pm_runtime_put(rpc->dev);
return ret;
err_out:
if (reset_control_reset(rpc->rstc))
dev_err(rpc->dev, "Failed to reset HW\n");
rpcif_hw_init(rpc, rpc->bus_size == 2);
goto exit;
}
EXPORT_SYMBOL(rpcif_manual_xfer);
static void memcpy_fromio_readw(void *to,
const void __iomem *from,
size_t count)
{
const int maxw = (IS_ENABLED(CONFIG_64BIT)) ? 8 : 4;
u8 buf[2];
if (count && ((unsigned long)from & 1)) {
*(u16 *)buf = __raw_readw((void __iomem *)((unsigned long)from & ~1));
*(u8 *)to = buf[1];
from++;
to++;
count--;
}
while (count >= 2 && !IS_ALIGNED((unsigned long)from, maxw)) {
*(u16 *)to = __raw_readw(from);
from += 2;
to += 2;
count -= 2;
}
while (count >= maxw) {
#ifdef CONFIG_64BIT
*(u64 *)to = __raw_readq(from);
#else
*(u32 *)to = __raw_readl(from);
#endif
from += maxw;
to += maxw;
count -= maxw;
}
while (count >= 2) {
*(u16 *)to = __raw_readw(from);
from += 2;
to += 2;
count -= 2;
}
if (count) {
*(u16 *)buf = __raw_readw(from);
*(u8 *)to = buf[0];
}
}
ssize_t rpcif_dirmap_read(struct rpcif *rpc, u64 offs, size_t len, void *buf)
{
loff_t from = offs & (rpc->size - 1);
size_t size = rpc->size - from;
if (len > size)
len = size;
pm_runtime_get_sync(rpc->dev);
regmap_update_bits(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_MD, 0);
regmap_write(rpc->regmap, RPCIF_DRCR, 0);
regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_DREAR,
RPCIF_DREAR_EAV(offs >> 25) | RPCIF_DREAR_EAC(1));
regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_DRENR,
rpc->enable & ~RPCIF_SMENR_SPIDE(0xF));
regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr);
if (rpc->bus_size == 2)
memcpy_fromio_readw(buf, rpc->dirmap + from, len);
else
memcpy_fromio(buf, rpc->dirmap + from, len);
pm_runtime_put(rpc->dev);
return len;
}
EXPORT_SYMBOL(rpcif_dirmap_read);
static int rpcif_probe(struct platform_device *pdev)
{
struct platform_device *vdev;
struct device_node *flash;
const char *name;
int ret;
flash = of_get_next_child(pdev->dev.of_node, NULL);
if (!flash) {
dev_warn(&pdev->dev, "no flash node found\n");
return -ENODEV;
}
if (of_device_is_compatible(flash, "jedec,spi-nor")) {
name = "rpc-if-spi";
} else if (of_device_is_compatible(flash, "cfi-flash")) {
name = "rpc-if-hyperflash";
} else {
of_node_put(flash);
dev_warn(&pdev->dev, "unknown flash type\n");
return -ENODEV;
}
of_node_put(flash);
vdev = platform_device_alloc(name, pdev->id);
if (!vdev)
return -ENOMEM;
vdev->dev.parent = &pdev->dev;
platform_set_drvdata(pdev, vdev);
ret = platform_device_add(vdev);
if (ret) {
platform_device_put(vdev);
return ret;
}
return 0;
}
static int rpcif_remove(struct platform_device *pdev)
{
struct platform_device *vdev = platform_get_drvdata(pdev);
platform_device_unregister(vdev);
return 0;
}
static const struct of_device_id rpcif_of_match[] = {
{ .compatible = "renesas,rcar-gen3-rpc-if", .data = (void *)RPCIF_RCAR_GEN3 },
{ .compatible = "renesas,rzg2l-rpc-if", .data = (void *)RPCIF_RZ_G2L },
{},
};
MODULE_DEVICE_TABLE(of, rpcif_of_match);
static struct platform_driver rpcif_driver = {
.probe = rpcif_probe,
.remove = rpcif_remove,
.driver = {
.name = "rpc-if",
.of_match_table = rpcif_of_match,
},
};
module_platform_driver(rpcif_driver);
MODULE_DESCRIPTION("Renesas RPC-IF core driver");
MODULE_LICENSE("GPL v2");