linux-stable/drivers/net/usb/ch9200.c
Johan Hovold b12ca80ca1 net: ch9200: add missing USB-descriptor endianness conversions
Add the missing endianness conversions to a debug statement printing
the USB device-descriptor idVendor and idProduct fields during probe.

Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-12 12:15:46 -04:00

426 lines
9.5 KiB
C

/*
* USB 10M/100M ethernet adapter
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
#include <linux/slab.h>
#define CH9200_VID 0x1A86
#define CH9200_PID_E092 0xE092
#define CTRL_TIMEOUT_MS 1000
#define CONTROL_TIMEOUT_MS 1000
#define REQUEST_READ 0x0E
#define REQUEST_WRITE 0x0F
/* Address space:
* 00-63 : MII
* 64-128: MAC
*
* Note: all accesses must be 16-bit
*/
#define MAC_REG_CTRL 64
#define MAC_REG_STATUS 66
#define MAC_REG_INTERRUPT_MASK 68
#define MAC_REG_PHY_COMMAND 70
#define MAC_REG_PHY_DATA 72
#define MAC_REG_STATION_L 74
#define MAC_REG_STATION_M 76
#define MAC_REG_STATION_H 78
#define MAC_REG_HASH_L 80
#define MAC_REG_HASH_M1 82
#define MAC_REG_HASH_M2 84
#define MAC_REG_HASH_H 86
#define MAC_REG_THRESHOLD 88
#define MAC_REG_FIFO_DEPTH 90
#define MAC_REG_PAUSE 92
#define MAC_REG_FLOW_CONTROL 94
/* Control register bits
*
* Note: bits 13 and 15 are reserved
*/
#define LOOPBACK (0x01 << 14)
#define BASE100X (0x01 << 12)
#define MBPS_10 (0x01 << 11)
#define DUPLEX_MODE (0x01 << 10)
#define PAUSE_FRAME (0x01 << 9)
#define PROMISCUOUS (0x01 << 8)
#define MULTICAST (0x01 << 7)
#define BROADCAST (0x01 << 6)
#define HASH (0x01 << 5)
#define APPEND_PAD (0x01 << 4)
#define APPEND_CRC (0x01 << 3)
#define TRANSMITTER_ACTION (0x01 << 2)
#define RECEIVER_ACTION (0x01 << 1)
#define DMA_ACTION (0x01 << 0)
/* Status register bits
*
* Note: bits 7-15 are reserved
*/
#define ALIGNMENT (0x01 << 6)
#define FIFO_OVER_RUN (0x01 << 5)
#define FIFO_UNDER_RUN (0x01 << 4)
#define RX_ERROR (0x01 << 3)
#define RX_COMPLETE (0x01 << 2)
#define TX_ERROR (0x01 << 1)
#define TX_COMPLETE (0x01 << 0)
/* FIFO depth register bits
*
* Note: bits 6 and 14 are reserved
*/
#define ETH_TXBD (0x01 << 15)
#define ETN_TX_FIFO_DEPTH (0x01 << 8)
#define ETH_RXBD (0x01 << 7)
#define ETH_RX_FIFO_DEPTH (0x01 << 0)
static int control_read(struct usbnet *dev,
unsigned char request, unsigned short value,
unsigned short index, void *data, unsigned short size,
int timeout)
{
unsigned char *buf = NULL;
unsigned char request_type;
int err = 0;
if (request == REQUEST_READ)
request_type = (USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_OTHER);
else
request_type = (USB_DIR_IN | USB_TYPE_VENDOR |
USB_RECIP_DEVICE);
netdev_dbg(dev->net, "Control_read() index=0x%02x size=%d\n",
index, size);
buf = kmalloc(size, GFP_KERNEL);
if (!buf) {
err = -ENOMEM;
goto err_out;
}
err = usb_control_msg(dev->udev,
usb_rcvctrlpipe(dev->udev, 0),
request, request_type, value, index, buf, size,
timeout);
if (err == size)
memcpy(data, buf, size);
else if (err >= 0)
err = -EINVAL;
kfree(buf);
return err;
err_out:
return err;
}
static int control_write(struct usbnet *dev, unsigned char request,
unsigned short value, unsigned short index,
void *data, unsigned short size, int timeout)
{
unsigned char *buf = NULL;
unsigned char request_type;
int err = 0;
if (request == REQUEST_WRITE)
request_type = (USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_OTHER);
else
request_type = (USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_DEVICE);
netdev_dbg(dev->net, "Control_write() index=0x%02x size=%d\n",
index, size);
if (data) {
buf = kmemdup(data, size, GFP_KERNEL);
if (!buf) {
err = -ENOMEM;
goto err_out;
}
}
err = usb_control_msg(dev->udev,
usb_sndctrlpipe(dev->udev, 0),
request, request_type, value, index, buf, size,
timeout);
if (err >= 0 && err < size)
err = -EINVAL;
kfree(buf);
return 0;
err_out:
return err;
}
static int ch9200_mdio_read(struct net_device *netdev, int phy_id, int loc)
{
struct usbnet *dev = netdev_priv(netdev);
unsigned char buff[2];
netdev_dbg(netdev, "ch9200_mdio_read phy_id:%02x loc:%02x\n",
phy_id, loc);
if (phy_id != 0)
return -ENODEV;
control_read(dev, REQUEST_READ, 0, loc * 2, buff, 0x02,
CONTROL_TIMEOUT_MS);
return (buff[0] | buff[1] << 8);
}
static void ch9200_mdio_write(struct net_device *netdev,
int phy_id, int loc, int val)
{
struct usbnet *dev = netdev_priv(netdev);
unsigned char buff[2];
netdev_dbg(netdev, "ch9200_mdio_write() phy_id=%02x loc:%02x\n",
phy_id, loc);
if (phy_id != 0)
return;
buff[0] = (unsigned char)val;
buff[1] = (unsigned char)(val >> 8);
control_write(dev, REQUEST_WRITE, 0, loc * 2, buff, 0x02,
CONTROL_TIMEOUT_MS);
}
static int ch9200_link_reset(struct usbnet *dev)
{
struct ethtool_cmd ecmd;
mii_check_media(&dev->mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
netdev_dbg(dev->net, "link_reset() speed:%d duplex:%d\n",
ecmd.speed, ecmd.duplex);
return 0;
}
static void ch9200_status(struct usbnet *dev, struct urb *urb)
{
int link;
unsigned char *buf;
if (urb->actual_length < 16)
return;
buf = urb->transfer_buffer;
link = !!(buf[0] & 0x01);
if (link) {
netif_carrier_on(dev->net);
usbnet_defer_kevent(dev, EVENT_LINK_RESET);
} else {
netif_carrier_off(dev->net);
}
}
static struct sk_buff *ch9200_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
gfp_t flags)
{
int i = 0;
int len = 0;
int tx_overhead = 0;
tx_overhead = 0x40;
len = skb->len;
if (skb_cow_head(skb, tx_overhead)) {
dev_kfree_skb_any(skb);
return NULL;
}
__skb_push(skb, tx_overhead);
/* usbnet adds padding if length is a multiple of packet size
* if so, adjust length value in header
*/
if ((skb->len % dev->maxpacket) == 0)
len++;
skb->data[0] = len;
skb->data[1] = len >> 8;
skb->data[2] = 0x00;
skb->data[3] = 0x80;
for (i = 4; i < 48; i++)
skb->data[i] = 0x00;
skb->data[48] = len;
skb->data[49] = len >> 8;
skb->data[50] = 0x00;
skb->data[51] = 0x80;
for (i = 52; i < 64; i++)
skb->data[i] = 0x00;
return skb;
}
static int ch9200_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
int len = 0;
int rx_overhead = 0;
rx_overhead = 64;
if (unlikely(skb->len < rx_overhead)) {
dev_err(&dev->udev->dev, "unexpected tiny rx frame\n");
return 0;
}
len = (skb->data[skb->len - 16] | skb->data[skb->len - 15] << 8);
skb_trim(skb, len);
return 1;
}
static int get_mac_address(struct usbnet *dev, unsigned char *data)
{
int err = 0;
unsigned char mac_addr[0x06];
int rd_mac_len = 0;
netdev_dbg(dev->net, "get_mac_address:\n\tusbnet VID:%0x PID:%0x\n",
le16_to_cpu(dev->udev->descriptor.idVendor),
le16_to_cpu(dev->udev->descriptor.idProduct));
memset(mac_addr, 0, sizeof(mac_addr));
rd_mac_len = control_read(dev, REQUEST_READ, 0,
MAC_REG_STATION_L, mac_addr, 0x02,
CONTROL_TIMEOUT_MS);
rd_mac_len += control_read(dev, REQUEST_READ, 0, MAC_REG_STATION_M,
mac_addr + 2, 0x02, CONTROL_TIMEOUT_MS);
rd_mac_len += control_read(dev, REQUEST_READ, 0, MAC_REG_STATION_H,
mac_addr + 4, 0x02, CONTROL_TIMEOUT_MS);
if (rd_mac_len != ETH_ALEN)
err = -EINVAL;
data[0] = mac_addr[5];
data[1] = mac_addr[4];
data[2] = mac_addr[3];
data[3] = mac_addr[2];
data[4] = mac_addr[1];
data[5] = mac_addr[0];
return err;
}
static int ch9200_bind(struct usbnet *dev, struct usb_interface *intf)
{
int retval = 0;
unsigned char data[2];
retval = usbnet_get_endpoints(dev, intf);
if (retval)
return retval;
dev->mii.dev = dev->net;
dev->mii.mdio_read = ch9200_mdio_read;
dev->mii.mdio_write = ch9200_mdio_write;
dev->mii.reg_num_mask = 0x1f;
dev->mii.phy_id_mask = 0x1f;
dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len;
dev->rx_urb_size = 24 * 64 + 16;
mii_nway_restart(&dev->mii);
data[0] = 0x01;
data[1] = 0x0F;
retval = control_write(dev, REQUEST_WRITE, 0, MAC_REG_THRESHOLD, data,
0x02, CONTROL_TIMEOUT_MS);
data[0] = 0xA0;
data[1] = 0x90;
retval = control_write(dev, REQUEST_WRITE, 0, MAC_REG_FIFO_DEPTH, data,
0x02, CONTROL_TIMEOUT_MS);
data[0] = 0x30;
data[1] = 0x00;
retval = control_write(dev, REQUEST_WRITE, 0, MAC_REG_PAUSE, data,
0x02, CONTROL_TIMEOUT_MS);
data[0] = 0x17;
data[1] = 0xD8;
retval = control_write(dev, REQUEST_WRITE, 0, MAC_REG_FLOW_CONTROL,
data, 0x02, CONTROL_TIMEOUT_MS);
/* Undocumented register */
data[0] = 0x01;
data[1] = 0x00;
retval = control_write(dev, REQUEST_WRITE, 0, 254, data, 0x02,
CONTROL_TIMEOUT_MS);
data[0] = 0x5F;
data[1] = 0x0D;
retval = control_write(dev, REQUEST_WRITE, 0, MAC_REG_CTRL, data, 0x02,
CONTROL_TIMEOUT_MS);
retval = get_mac_address(dev, dev->net->dev_addr);
return retval;
}
static const struct driver_info ch9200_info = {
.description = "CH9200 USB to Network Adaptor",
.flags = FLAG_ETHER,
.bind = ch9200_bind,
.rx_fixup = ch9200_rx_fixup,
.tx_fixup = ch9200_tx_fixup,
.status = ch9200_status,
.link_reset = ch9200_link_reset,
.reset = ch9200_link_reset,
};
static const struct usb_device_id ch9200_products[] = {
{
USB_DEVICE(0x1A86, 0xE092),
.driver_info = (unsigned long)&ch9200_info,
},
{},
};
MODULE_DEVICE_TABLE(usb, ch9200_products);
static struct usb_driver ch9200_driver = {
.name = "ch9200",
.id_table = ch9200_products,
.probe = usbnet_probe,
.disconnect = usbnet_disconnect,
.suspend = usbnet_suspend,
.resume = usbnet_resume,
};
module_usb_driver(ch9200_driver);
MODULE_DESCRIPTION("QinHeng CH9200 USB Network device");
MODULE_LICENSE("GPL");