linux-stable/drivers/gpu/drm/omapdrm/omap_dmm_tiler.c
Tomi Valkeinen 96cbd14231 drm/omap: increase DMM transaction timeout
The DMM driver uses a timeout of 1 ms to wait for DMM transaction to
finish. While DMM should always finish the operation within that time,
the timeout is rather strict. Small misbehavior of the system (e.g. an
irq taking too long) could trigger the timeout.

As the DMM is a critical piece of code for display memory management,
let's increase the timeout to 100 ms so that we are less likely to fail
a memory allocation in case of system misbehaviors. 100 ms is just a
guess of a reasonably large timeout. The HW should accomplish the task
in less than 1 ms.

Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
2015-07-02 15:58:06 +03:00

1033 lines
26 KiB
C

/*
* DMM IOMMU driver support functions for TI OMAP processors.
*
* Author: Rob Clark <rob@ti.com>
* Andy Gross <andy.gross@ti.com>
*
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/platform_device.h> /* platform_device() */
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include "omap_dmm_tiler.h"
#include "omap_dmm_priv.h"
#define DMM_DRIVER_NAME "dmm"
/* mappings for associating views to luts */
static struct tcm *containers[TILFMT_NFORMATS];
static struct dmm *omap_dmm;
#if defined(CONFIG_OF)
static const struct of_device_id dmm_of_match[];
#endif
/* global spinlock for protecting lists */
static DEFINE_SPINLOCK(list_lock);
/* Geometry table */
#define GEOM(xshift, yshift, bytes_per_pixel) { \
.x_shft = (xshift), \
.y_shft = (yshift), \
.cpp = (bytes_per_pixel), \
.slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \
.slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \
}
static const struct {
uint32_t x_shft; /* unused X-bits (as part of bpp) */
uint32_t y_shft; /* unused Y-bits (as part of bpp) */
uint32_t cpp; /* bytes/chars per pixel */
uint32_t slot_w; /* width of each slot (in pixels) */
uint32_t slot_h; /* height of each slot (in pixels) */
} geom[TILFMT_NFORMATS] = {
[TILFMT_8BIT] = GEOM(0, 0, 1),
[TILFMT_16BIT] = GEOM(0, 1, 2),
[TILFMT_32BIT] = GEOM(1, 1, 4),
[TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1),
};
/* lookup table for registers w/ per-engine instances */
static const uint32_t reg[][4] = {
[PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1,
DMM_PAT_STATUS__2, DMM_PAT_STATUS__3},
[PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1,
DMM_PAT_DESCR__2, DMM_PAT_DESCR__3},
};
/* simple allocator to grab next 16 byte aligned memory from txn */
static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa)
{
void *ptr;
struct refill_engine *engine = txn->engine_handle;
/* dmm programming requires 16 byte aligned addresses */
txn->current_pa = round_up(txn->current_pa, 16);
txn->current_va = (void *)round_up((long)txn->current_va, 16);
ptr = txn->current_va;
*pa = txn->current_pa;
txn->current_pa += sz;
txn->current_va += sz;
BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE);
return ptr;
}
/* check status and spin until wait_mask comes true */
static int wait_status(struct refill_engine *engine, uint32_t wait_mask)
{
struct dmm *dmm = engine->dmm;
uint32_t r = 0, err, i;
i = DMM_FIXED_RETRY_COUNT;
while (true) {
r = readl(dmm->base + reg[PAT_STATUS][engine->id]);
err = r & DMM_PATSTATUS_ERR;
if (err)
return -EFAULT;
if ((r & wait_mask) == wait_mask)
break;
if (--i == 0)
return -ETIMEDOUT;
udelay(1);
}
return 0;
}
static void release_engine(struct refill_engine *engine)
{
unsigned long flags;
spin_lock_irqsave(&list_lock, flags);
list_add(&engine->idle_node, &omap_dmm->idle_head);
spin_unlock_irqrestore(&list_lock, flags);
atomic_inc(&omap_dmm->engine_counter);
wake_up_interruptible(&omap_dmm->engine_queue);
}
static irqreturn_t omap_dmm_irq_handler(int irq, void *arg)
{
struct dmm *dmm = arg;
uint32_t status = readl(dmm->base + DMM_PAT_IRQSTATUS);
int i;
/* ack IRQ */
writel(status, dmm->base + DMM_PAT_IRQSTATUS);
for (i = 0; i < dmm->num_engines; i++) {
if (status & DMM_IRQSTAT_LST) {
if (dmm->engines[i].async)
release_engine(&dmm->engines[i]);
complete(&dmm->engines[i].compl);
}
status >>= 8;
}
return IRQ_HANDLED;
}
/**
* Get a handle for a DMM transaction
*/
static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm)
{
struct dmm_txn *txn = NULL;
struct refill_engine *engine = NULL;
int ret;
unsigned long flags;
/* wait until an engine is available */
ret = wait_event_interruptible(omap_dmm->engine_queue,
atomic_add_unless(&omap_dmm->engine_counter, -1, 0));
if (ret)
return ERR_PTR(ret);
/* grab an idle engine */
spin_lock_irqsave(&list_lock, flags);
if (!list_empty(&dmm->idle_head)) {
engine = list_entry(dmm->idle_head.next, struct refill_engine,
idle_node);
list_del(&engine->idle_node);
}
spin_unlock_irqrestore(&list_lock, flags);
BUG_ON(!engine);
txn = &engine->txn;
engine->tcm = tcm;
txn->engine_handle = engine;
txn->last_pat = NULL;
txn->current_va = engine->refill_va;
txn->current_pa = engine->refill_pa;
return txn;
}
/**
* Add region to DMM transaction. If pages or pages[i] is NULL, then the
* corresponding slot is cleared (ie. dummy_pa is programmed)
*/
static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area,
struct page **pages, uint32_t npages, uint32_t roll)
{
dma_addr_t pat_pa = 0, data_pa = 0;
uint32_t *data;
struct pat *pat;
struct refill_engine *engine = txn->engine_handle;
int columns = (1 + area->x1 - area->x0);
int rows = (1 + area->y1 - area->y0);
int i = columns*rows;
pat = alloc_dma(txn, sizeof(struct pat), &pat_pa);
if (txn->last_pat)
txn->last_pat->next_pa = (uint32_t)pat_pa;
pat->area = *area;
/* adjust Y coordinates based off of container parameters */
pat->area.y0 += engine->tcm->y_offset;
pat->area.y1 += engine->tcm->y_offset;
pat->ctrl = (struct pat_ctrl){
.start = 1,
.lut_id = engine->tcm->lut_id,
};
data = alloc_dma(txn, 4*i, &data_pa);
/* FIXME: what if data_pa is more than 32-bit ? */
pat->data_pa = data_pa;
while (i--) {
int n = i + roll;
if (n >= npages)
n -= npages;
data[i] = (pages && pages[n]) ?
page_to_phys(pages[n]) : engine->dmm->dummy_pa;
}
txn->last_pat = pat;
return;
}
/**
* Commit the DMM transaction.
*/
static int dmm_txn_commit(struct dmm_txn *txn, bool wait)
{
int ret = 0;
struct refill_engine *engine = txn->engine_handle;
struct dmm *dmm = engine->dmm;
if (!txn->last_pat) {
dev_err(engine->dmm->dev, "need at least one txn\n");
ret = -EINVAL;
goto cleanup;
}
txn->last_pat->next_pa = 0;
/* write to PAT_DESCR to clear out any pending transaction */
writel(0x0, dmm->base + reg[PAT_DESCR][engine->id]);
/* wait for engine ready: */
ret = wait_status(engine, DMM_PATSTATUS_READY);
if (ret) {
ret = -EFAULT;
goto cleanup;
}
/* mark whether it is async to denote list management in IRQ handler */
engine->async = wait ? false : true;
reinit_completion(&engine->compl);
/* verify that the irq handler sees the 'async' and completion value */
smp_mb();
/* kick reload */
writel(engine->refill_pa,
dmm->base + reg[PAT_DESCR][engine->id]);
if (wait) {
if (!wait_for_completion_timeout(&engine->compl,
msecs_to_jiffies(100))) {
dev_err(dmm->dev, "timed out waiting for done\n");
ret = -ETIMEDOUT;
}
}
cleanup:
/* only place engine back on list if we are done with it */
if (ret || wait)
release_engine(engine);
return ret;
}
/*
* DMM programming
*/
static int fill(struct tcm_area *area, struct page **pages,
uint32_t npages, uint32_t roll, bool wait)
{
int ret = 0;
struct tcm_area slice, area_s;
struct dmm_txn *txn;
txn = dmm_txn_init(omap_dmm, area->tcm);
if (IS_ERR_OR_NULL(txn))
return -ENOMEM;
tcm_for_each_slice(slice, *area, area_s) {
struct pat_area p_area = {
.x0 = slice.p0.x, .y0 = slice.p0.y,
.x1 = slice.p1.x, .y1 = slice.p1.y,
};
dmm_txn_append(txn, &p_area, pages, npages, roll);
roll += tcm_sizeof(slice);
}
ret = dmm_txn_commit(txn, wait);
return ret;
}
/*
* Pin/unpin
*/
/* note: slots for which pages[i] == NULL are filled w/ dummy page
*/
int tiler_pin(struct tiler_block *block, struct page **pages,
uint32_t npages, uint32_t roll, bool wait)
{
int ret;
ret = fill(&block->area, pages, npages, roll, wait);
if (ret)
tiler_unpin(block);
return ret;
}
int tiler_unpin(struct tiler_block *block)
{
return fill(&block->area, NULL, 0, 0, false);
}
/*
* Reserve/release
*/
struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, uint16_t w,
uint16_t h, uint16_t align)
{
struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL);
u32 min_align = 128;
int ret;
unsigned long flags;
BUG_ON(!validfmt(fmt));
/* convert width/height to slots */
w = DIV_ROUND_UP(w, geom[fmt].slot_w);
h = DIV_ROUND_UP(h, geom[fmt].slot_h);
/* convert alignment to slots */
min_align = max(min_align, (geom[fmt].slot_w * geom[fmt].cpp));
align = ALIGN(align, min_align);
align /= geom[fmt].slot_w * geom[fmt].cpp;
block->fmt = fmt;
ret = tcm_reserve_2d(containers[fmt], w, h, align, &block->area);
if (ret) {
kfree(block);
return ERR_PTR(-ENOMEM);
}
/* add to allocation list */
spin_lock_irqsave(&list_lock, flags);
list_add(&block->alloc_node, &omap_dmm->alloc_head);
spin_unlock_irqrestore(&list_lock, flags);
return block;
}
struct tiler_block *tiler_reserve_1d(size_t size)
{
struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL);
int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long flags;
if (!block)
return ERR_PTR(-ENOMEM);
block->fmt = TILFMT_PAGE;
if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages,
&block->area)) {
kfree(block);
return ERR_PTR(-ENOMEM);
}
spin_lock_irqsave(&list_lock, flags);
list_add(&block->alloc_node, &omap_dmm->alloc_head);
spin_unlock_irqrestore(&list_lock, flags);
return block;
}
/* note: if you have pin'd pages, you should have already unpin'd first! */
int tiler_release(struct tiler_block *block)
{
int ret = tcm_free(&block->area);
unsigned long flags;
if (block->area.tcm)
dev_err(omap_dmm->dev, "failed to release block\n");
spin_lock_irqsave(&list_lock, flags);
list_del(&block->alloc_node);
spin_unlock_irqrestore(&list_lock, flags);
kfree(block);
return ret;
}
/*
* Utils
*/
/* calculate the tiler space address of a pixel in a view orientation...
* below description copied from the display subsystem section of TRM:
*
* When the TILER is addressed, the bits:
* [28:27] = 0x0 for 8-bit tiled
* 0x1 for 16-bit tiled
* 0x2 for 32-bit tiled
* 0x3 for page mode
* [31:29] = 0x0 for 0-degree view
* 0x1 for 180-degree view + mirroring
* 0x2 for 0-degree view + mirroring
* 0x3 for 180-degree view
* 0x4 for 270-degree view + mirroring
* 0x5 for 270-degree view
* 0x6 for 90-degree view
* 0x7 for 90-degree view + mirroring
* Otherwise the bits indicated the corresponding bit address to access
* the SDRAM.
*/
static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y)
{
u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment;
x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft;
y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft;
alignment = geom[fmt].x_shft + geom[fmt].y_shft;
/* validate coordinate */
x_mask = MASK(x_bits);
y_mask = MASK(y_bits);
if (x < 0 || x > x_mask || y < 0 || y > y_mask) {
DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u",
x, x, x_mask, y, y, y_mask);
return 0;
}
/* account for mirroring */
if (orient & MASK_X_INVERT)
x ^= x_mask;
if (orient & MASK_Y_INVERT)
y ^= y_mask;
/* get coordinate address */
if (orient & MASK_XY_FLIP)
tmp = ((x << y_bits) + y);
else
tmp = ((y << x_bits) + x);
return TIL_ADDR((tmp << alignment), orient, fmt);
}
dma_addr_t tiler_ssptr(struct tiler_block *block)
{
BUG_ON(!validfmt(block->fmt));
return TILVIEW_8BIT + tiler_get_address(block->fmt, 0,
block->area.p0.x * geom[block->fmt].slot_w,
block->area.p0.y * geom[block->fmt].slot_h);
}
dma_addr_t tiler_tsptr(struct tiler_block *block, uint32_t orient,
uint32_t x, uint32_t y)
{
struct tcm_pt *p = &block->area.p0;
BUG_ON(!validfmt(block->fmt));
return tiler_get_address(block->fmt, orient,
(p->x * geom[block->fmt].slot_w) + x,
(p->y * geom[block->fmt].slot_h) + y);
}
void tiler_align(enum tiler_fmt fmt, uint16_t *w, uint16_t *h)
{
BUG_ON(!validfmt(fmt));
*w = round_up(*w, geom[fmt].slot_w);
*h = round_up(*h, geom[fmt].slot_h);
}
uint32_t tiler_stride(enum tiler_fmt fmt, uint32_t orient)
{
BUG_ON(!validfmt(fmt));
if (orient & MASK_XY_FLIP)
return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft);
else
return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft);
}
size_t tiler_size(enum tiler_fmt fmt, uint16_t w, uint16_t h)
{
tiler_align(fmt, &w, &h);
return geom[fmt].cpp * w * h;
}
size_t tiler_vsize(enum tiler_fmt fmt, uint16_t w, uint16_t h)
{
BUG_ON(!validfmt(fmt));
return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h;
}
uint32_t tiler_get_cpu_cache_flags(void)
{
return omap_dmm->plat_data->cpu_cache_flags;
}
bool dmm_is_available(void)
{
return omap_dmm ? true : false;
}
static int omap_dmm_remove(struct platform_device *dev)
{
struct tiler_block *block, *_block;
int i;
unsigned long flags;
if (omap_dmm) {
/* free all area regions */
spin_lock_irqsave(&list_lock, flags);
list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head,
alloc_node) {
list_del(&block->alloc_node);
kfree(block);
}
spin_unlock_irqrestore(&list_lock, flags);
for (i = 0; i < omap_dmm->num_lut; i++)
if (omap_dmm->tcm && omap_dmm->tcm[i])
omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]);
kfree(omap_dmm->tcm);
kfree(omap_dmm->engines);
if (omap_dmm->refill_va)
dma_free_writecombine(omap_dmm->dev,
REFILL_BUFFER_SIZE * omap_dmm->num_engines,
omap_dmm->refill_va,
omap_dmm->refill_pa);
if (omap_dmm->dummy_page)
__free_page(omap_dmm->dummy_page);
if (omap_dmm->irq > 0)
free_irq(omap_dmm->irq, omap_dmm);
iounmap(omap_dmm->base);
kfree(omap_dmm);
omap_dmm = NULL;
}
return 0;
}
static int omap_dmm_probe(struct platform_device *dev)
{
int ret = -EFAULT, i;
struct tcm_area area = {0};
u32 hwinfo, pat_geom;
struct resource *mem;
omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL);
if (!omap_dmm)
goto fail;
/* initialize lists */
INIT_LIST_HEAD(&omap_dmm->alloc_head);
INIT_LIST_HEAD(&omap_dmm->idle_head);
init_waitqueue_head(&omap_dmm->engine_queue);
if (dev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(dmm_of_match, dev->dev.of_node);
if (!match) {
dev_err(&dev->dev, "failed to find matching device node\n");
return -ENODEV;
}
omap_dmm->plat_data = match->data;
}
/* lookup hwmod data - base address and irq */
mem = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(&dev->dev, "failed to get base address resource\n");
goto fail;
}
omap_dmm->base = ioremap(mem->start, SZ_2K);
if (!omap_dmm->base) {
dev_err(&dev->dev, "failed to get dmm base address\n");
goto fail;
}
omap_dmm->irq = platform_get_irq(dev, 0);
if (omap_dmm->irq < 0) {
dev_err(&dev->dev, "failed to get IRQ resource\n");
goto fail;
}
omap_dmm->dev = &dev->dev;
hwinfo = readl(omap_dmm->base + DMM_PAT_HWINFO);
omap_dmm->num_engines = (hwinfo >> 24) & 0x1F;
omap_dmm->num_lut = (hwinfo >> 16) & 0x1F;
omap_dmm->container_width = 256;
omap_dmm->container_height = 128;
atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines);
/* read out actual LUT width and height */
pat_geom = readl(omap_dmm->base + DMM_PAT_GEOMETRY);
omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5;
omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5;
/* increment LUT by one if on OMAP5 */
/* LUT has twice the height, and is split into a separate container */
if (omap_dmm->lut_height != omap_dmm->container_height)
omap_dmm->num_lut++;
/* initialize DMM registers */
writel(0x88888888, omap_dmm->base + DMM_PAT_VIEW__0);
writel(0x88888888, omap_dmm->base + DMM_PAT_VIEW__1);
writel(0x80808080, omap_dmm->base + DMM_PAT_VIEW_MAP__0);
writel(0x80000000, omap_dmm->base + DMM_PAT_VIEW_MAP_BASE);
writel(0x88888888, omap_dmm->base + DMM_TILER_OR__0);
writel(0x88888888, omap_dmm->base + DMM_TILER_OR__1);
ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED,
"omap_dmm_irq_handler", omap_dmm);
if (ret) {
dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n",
omap_dmm->irq, ret);
omap_dmm->irq = -1;
goto fail;
}
/* Enable all interrupts for each refill engine except
* ERR_LUT_MISS<n> (which is just advisory, and we don't care
* about because we want to be able to refill live scanout
* buffers for accelerated pan/scroll) and FILL_DSC<n> which
* we just generally don't care about.
*/
writel(0x7e7e7e7e, omap_dmm->base + DMM_PAT_IRQENABLE_SET);
omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32);
if (!omap_dmm->dummy_page) {
dev_err(&dev->dev, "could not allocate dummy page\n");
ret = -ENOMEM;
goto fail;
}
/* set dma mask for device */
ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32));
if (ret)
goto fail;
omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page);
/* alloc refill memory */
omap_dmm->refill_va = dma_alloc_writecombine(&dev->dev,
REFILL_BUFFER_SIZE * omap_dmm->num_engines,
&omap_dmm->refill_pa, GFP_KERNEL);
if (!omap_dmm->refill_va) {
dev_err(&dev->dev, "could not allocate refill memory\n");
goto fail;
}
/* alloc engines */
omap_dmm->engines = kcalloc(omap_dmm->num_engines,
sizeof(struct refill_engine), GFP_KERNEL);
if (!omap_dmm->engines) {
ret = -ENOMEM;
goto fail;
}
for (i = 0; i < omap_dmm->num_engines; i++) {
omap_dmm->engines[i].id = i;
omap_dmm->engines[i].dmm = omap_dmm;
omap_dmm->engines[i].refill_va = omap_dmm->refill_va +
(REFILL_BUFFER_SIZE * i);
omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa +
(REFILL_BUFFER_SIZE * i);
init_completion(&omap_dmm->engines[i].compl);
list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head);
}
omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm),
GFP_KERNEL);
if (!omap_dmm->tcm) {
ret = -ENOMEM;
goto fail;
}
/* init containers */
/* Each LUT is associated with a TCM (container manager). We use the
lut_id to denote the lut_id used to identify the correct LUT for
programming during reill operations */
for (i = 0; i < omap_dmm->num_lut; i++) {
omap_dmm->tcm[i] = sita_init(omap_dmm->container_width,
omap_dmm->container_height,
NULL);
if (!omap_dmm->tcm[i]) {
dev_err(&dev->dev, "failed to allocate container\n");
ret = -ENOMEM;
goto fail;
}
omap_dmm->tcm[i]->lut_id = i;
}
/* assign access mode containers to applicable tcm container */
/* OMAP 4 has 1 container for all 4 views */
/* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */
containers[TILFMT_8BIT] = omap_dmm->tcm[0];
containers[TILFMT_16BIT] = omap_dmm->tcm[0];
containers[TILFMT_32BIT] = omap_dmm->tcm[0];
if (omap_dmm->container_height != omap_dmm->lut_height) {
/* second LUT is used for PAGE mode. Programming must use
y offset that is added to all y coordinates. LUT id is still
0, because it is the same LUT, just the upper 128 lines */
containers[TILFMT_PAGE] = omap_dmm->tcm[1];
omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET;
omap_dmm->tcm[1]->lut_id = 0;
} else {
containers[TILFMT_PAGE] = omap_dmm->tcm[0];
}
area = (struct tcm_area) {
.tcm = NULL,
.p1.x = omap_dmm->container_width - 1,
.p1.y = omap_dmm->container_height - 1,
};
/* initialize all LUTs to dummy page entries */
for (i = 0; i < omap_dmm->num_lut; i++) {
area.tcm = omap_dmm->tcm[i];
if (fill(&area, NULL, 0, 0, true))
dev_err(omap_dmm->dev, "refill failed");
}
dev_info(omap_dmm->dev, "initialized all PAT entries\n");
return 0;
fail:
if (omap_dmm_remove(dev))
dev_err(&dev->dev, "cleanup failed\n");
return ret;
}
/*
* debugfs support
*/
#ifdef CONFIG_DEBUG_FS
static const char *alphabet = "abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
static const char *special = ".,:;'\"`~!^-+";
static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a,
char c, bool ovw)
{
int x, y;
for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++)
for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++)
if (map[y][x] == ' ' || ovw)
map[y][x] = c;
}
static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p,
char c)
{
map[p->y / ydiv][p->x / xdiv] = c;
}
static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p)
{
return map[p->y / ydiv][p->x / xdiv];
}
static int map_width(int xdiv, int x0, int x1)
{
return (x1 / xdiv) - (x0 / xdiv) + 1;
}
static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1)
{
char *p = map[yd] + (x0 / xdiv);
int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2;
if (w >= 0) {
p += w;
while (*nice)
*p++ = *nice++;
}
}
static void map_1d_info(char **map, int xdiv, int ydiv, char *nice,
struct tcm_area *a)
{
sprintf(nice, "%dK", tcm_sizeof(*a) * 4);
if (a->p0.y + 1 < a->p1.y) {
text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0,
256 - 1);
} else if (a->p0.y < a->p1.y) {
if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1))
text_map(map, xdiv, nice, a->p0.y / ydiv,
a->p0.x + xdiv, 256 - 1);
else if (strlen(nice) < map_width(xdiv, 0, a->p1.x))
text_map(map, xdiv, nice, a->p1.y / ydiv,
0, a->p1.y - xdiv);
} else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) {
text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x);
}
}
static void map_2d_info(char **map, int xdiv, int ydiv, char *nice,
struct tcm_area *a)
{
sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a));
if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x))
text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv,
a->p0.x, a->p1.x);
}
int tiler_map_show(struct seq_file *s, void *arg)
{
int xdiv = 2, ydiv = 1;
char **map = NULL, *global_map;
struct tiler_block *block;
struct tcm_area a, p;
int i;
const char *m2d = alphabet;
const char *a2d = special;
const char *m2dp = m2d, *a2dp = a2d;
char nice[128];
int h_adj;
int w_adj;
unsigned long flags;
int lut_idx;
if (!omap_dmm) {
/* early return if dmm/tiler device is not initialized */
return 0;
}
h_adj = omap_dmm->container_height / ydiv;
w_adj = omap_dmm->container_width / xdiv;
map = kmalloc(h_adj * sizeof(*map), GFP_KERNEL);
global_map = kmalloc((w_adj + 1) * h_adj, GFP_KERNEL);
if (!map || !global_map)
goto error;
for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) {
memset(map, 0, h_adj * sizeof(*map));
memset(global_map, ' ', (w_adj + 1) * h_adj);
for (i = 0; i < omap_dmm->container_height; i++) {
map[i] = global_map + i * (w_adj + 1);
map[i][w_adj] = 0;
}
spin_lock_irqsave(&list_lock, flags);
list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) {
if (block->area.tcm == omap_dmm->tcm[lut_idx]) {
if (block->fmt != TILFMT_PAGE) {
fill_map(map, xdiv, ydiv, &block->area,
*m2dp, true);
if (!*++a2dp)
a2dp = a2d;
if (!*++m2dp)
m2dp = m2d;
map_2d_info(map, xdiv, ydiv, nice,
&block->area);
} else {
bool start = read_map_pt(map, xdiv,
ydiv, &block->area.p0) == ' ';
bool end = read_map_pt(map, xdiv, ydiv,
&block->area.p1) == ' ';
tcm_for_each_slice(a, block->area, p)
fill_map(map, xdiv, ydiv, &a,
'=', true);
fill_map_pt(map, xdiv, ydiv,
&block->area.p0,
start ? '<' : 'X');
fill_map_pt(map, xdiv, ydiv,
&block->area.p1,
end ? '>' : 'X');
map_1d_info(map, xdiv, ydiv, nice,
&block->area);
}
}
}
spin_unlock_irqrestore(&list_lock, flags);
if (s) {
seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx);
for (i = 0; i < 128; i++)
seq_printf(s, "%03d:%s\n", i, map[i]);
seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx);
} else {
dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n",
lut_idx);
for (i = 0; i < 128; i++)
dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]);
dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n",
lut_idx);
}
}
error:
kfree(map);
kfree(global_map);
return 0;
}
#endif
#ifdef CONFIG_PM_SLEEP
static int omap_dmm_resume(struct device *dev)
{
struct tcm_area area;
int i;
if (!omap_dmm)
return -ENODEV;
area = (struct tcm_area) {
.tcm = NULL,
.p1.x = omap_dmm->container_width - 1,
.p1.y = omap_dmm->container_height - 1,
};
/* initialize all LUTs to dummy page entries */
for (i = 0; i < omap_dmm->num_lut; i++) {
area.tcm = omap_dmm->tcm[i];
if (fill(&area, NULL, 0, 0, true))
dev_err(dev, "refill failed");
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume);
#if defined(CONFIG_OF)
static const struct dmm_platform_data dmm_omap4_platform_data = {
.cpu_cache_flags = OMAP_BO_WC,
};
static const struct dmm_platform_data dmm_omap5_platform_data = {
.cpu_cache_flags = OMAP_BO_UNCACHED,
};
static const struct of_device_id dmm_of_match[] = {
{
.compatible = "ti,omap4-dmm",
.data = &dmm_omap4_platform_data,
},
{
.compatible = "ti,omap5-dmm",
.data = &dmm_omap5_platform_data,
},
{},
};
#endif
struct platform_driver omap_dmm_driver = {
.probe = omap_dmm_probe,
.remove = omap_dmm_remove,
.driver = {
.owner = THIS_MODULE,
.name = DMM_DRIVER_NAME,
.of_match_table = of_match_ptr(dmm_of_match),
.pm = &omap_dmm_pm_ops,
},
};
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>");
MODULE_DESCRIPTION("OMAP DMM/Tiler Driver");
MODULE_ALIAS("platform:" DMM_DRIVER_NAME);