linux-stable/drivers/vfio/vfio_main.c
Anthony DeRossi 5cd189e410 vfio: Export the device set open count
The open count of a device set is the sum of the open counts of all
devices in the set. Drivers can use this value to determine whether
shared resources are in use without tracking them manually or accessing
the private open_count in vfio_device.

Signed-off-by: Anthony DeRossi <ajderossi@gmail.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Yi Liu <yi.l.liu@intel.com>
Link: https://lore.kernel.org/r/20221110014027.28780-3-ajderossi@gmail.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-11-10 12:03:36 -07:00

1891 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* VFIO core
*
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
* Author: Alex Williamson <alex.williamson@redhat.com>
*
* Derived from original vfio:
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
* Author: Tom Lyon, pugs@cisco.com
*/
#include <linux/cdev.h>
#include <linux/compat.h>
#include <linux/device.h>
#include <linux/file.h>
#include <linux/anon_inodes.h>
#include <linux/fs.h>
#include <linux/idr.h>
#include <linux/iommu.h>
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/vfio.h>
#include <linux/wait.h>
#include <linux/sched/signal.h>
#include <linux/pm_runtime.h>
#include <linux/interval_tree.h>
#include <linux/iova_bitmap.h>
#include "vfio.h"
#define DRIVER_VERSION "0.3"
#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
#define DRIVER_DESC "VFIO - User Level meta-driver"
static struct vfio {
struct class *class;
struct list_head group_list;
struct mutex group_lock; /* locks group_list */
struct ida group_ida;
dev_t group_devt;
struct class *device_class;
struct ida device_ida;
} vfio;
static DEFINE_XARRAY(vfio_device_set_xa);
static const struct file_operations vfio_group_fops;
int vfio_assign_device_set(struct vfio_device *device, void *set_id)
{
unsigned long idx = (unsigned long)set_id;
struct vfio_device_set *new_dev_set;
struct vfio_device_set *dev_set;
if (WARN_ON(!set_id))
return -EINVAL;
/*
* Atomically acquire a singleton object in the xarray for this set_id
*/
xa_lock(&vfio_device_set_xa);
dev_set = xa_load(&vfio_device_set_xa, idx);
if (dev_set)
goto found_get_ref;
xa_unlock(&vfio_device_set_xa);
new_dev_set = kzalloc(sizeof(*new_dev_set), GFP_KERNEL);
if (!new_dev_set)
return -ENOMEM;
mutex_init(&new_dev_set->lock);
INIT_LIST_HEAD(&new_dev_set->device_list);
new_dev_set->set_id = set_id;
xa_lock(&vfio_device_set_xa);
dev_set = __xa_cmpxchg(&vfio_device_set_xa, idx, NULL, new_dev_set,
GFP_KERNEL);
if (!dev_set) {
dev_set = new_dev_set;
goto found_get_ref;
}
kfree(new_dev_set);
if (xa_is_err(dev_set)) {
xa_unlock(&vfio_device_set_xa);
return xa_err(dev_set);
}
found_get_ref:
dev_set->device_count++;
xa_unlock(&vfio_device_set_xa);
mutex_lock(&dev_set->lock);
device->dev_set = dev_set;
list_add_tail(&device->dev_set_list, &dev_set->device_list);
mutex_unlock(&dev_set->lock);
return 0;
}
EXPORT_SYMBOL_GPL(vfio_assign_device_set);
static void vfio_release_device_set(struct vfio_device *device)
{
struct vfio_device_set *dev_set = device->dev_set;
if (!dev_set)
return;
mutex_lock(&dev_set->lock);
list_del(&device->dev_set_list);
mutex_unlock(&dev_set->lock);
xa_lock(&vfio_device_set_xa);
if (!--dev_set->device_count) {
__xa_erase(&vfio_device_set_xa,
(unsigned long)dev_set->set_id);
mutex_destroy(&dev_set->lock);
kfree(dev_set);
}
xa_unlock(&vfio_device_set_xa);
}
unsigned int vfio_device_set_open_count(struct vfio_device_set *dev_set)
{
struct vfio_device *cur;
unsigned int open_count = 0;
lockdep_assert_held(&dev_set->lock);
list_for_each_entry(cur, &dev_set->device_list, dev_set_list)
open_count += cur->open_count;
return open_count;
}
EXPORT_SYMBOL_GPL(vfio_device_set_open_count);
/*
* Group objects - create, release, get, put, search
*/
static struct vfio_group *
__vfio_group_get_from_iommu(struct iommu_group *iommu_group)
{
struct vfio_group *group;
/*
* group->iommu_group from the vfio.group_list cannot be NULL
* under the vfio.group_lock.
*/
list_for_each_entry(group, &vfio.group_list, vfio_next) {
if (group->iommu_group == iommu_group) {
refcount_inc(&group->drivers);
return group;
}
}
return NULL;
}
static struct vfio_group *
vfio_group_get_from_iommu(struct iommu_group *iommu_group)
{
struct vfio_group *group;
mutex_lock(&vfio.group_lock);
group = __vfio_group_get_from_iommu(iommu_group);
mutex_unlock(&vfio.group_lock);
return group;
}
static void vfio_group_release(struct device *dev)
{
struct vfio_group *group = container_of(dev, struct vfio_group, dev);
mutex_destroy(&group->device_lock);
mutex_destroy(&group->group_lock);
WARN_ON(group->iommu_group);
ida_free(&vfio.group_ida, MINOR(group->dev.devt));
kfree(group);
}
static struct vfio_group *vfio_group_alloc(struct iommu_group *iommu_group,
enum vfio_group_type type)
{
struct vfio_group *group;
int minor;
group = kzalloc(sizeof(*group), GFP_KERNEL);
if (!group)
return ERR_PTR(-ENOMEM);
minor = ida_alloc_max(&vfio.group_ida, MINORMASK, GFP_KERNEL);
if (minor < 0) {
kfree(group);
return ERR_PTR(minor);
}
device_initialize(&group->dev);
group->dev.devt = MKDEV(MAJOR(vfio.group_devt), minor);
group->dev.class = vfio.class;
group->dev.release = vfio_group_release;
cdev_init(&group->cdev, &vfio_group_fops);
group->cdev.owner = THIS_MODULE;
refcount_set(&group->drivers, 1);
mutex_init(&group->group_lock);
INIT_LIST_HEAD(&group->device_list);
mutex_init(&group->device_lock);
group->iommu_group = iommu_group;
/* put in vfio_group_release() */
iommu_group_ref_get(iommu_group);
group->type = type;
BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
return group;
}
static struct vfio_group *vfio_create_group(struct iommu_group *iommu_group,
enum vfio_group_type type)
{
struct vfio_group *group;
struct vfio_group *ret;
int err;
group = vfio_group_alloc(iommu_group, type);
if (IS_ERR(group))
return group;
err = dev_set_name(&group->dev, "%s%d",
group->type == VFIO_NO_IOMMU ? "noiommu-" : "",
iommu_group_id(iommu_group));
if (err) {
ret = ERR_PTR(err);
goto err_put;
}
mutex_lock(&vfio.group_lock);
/* Did we race creating this group? */
ret = __vfio_group_get_from_iommu(iommu_group);
if (ret)
goto err_unlock;
err = cdev_device_add(&group->cdev, &group->dev);
if (err) {
ret = ERR_PTR(err);
goto err_unlock;
}
list_add(&group->vfio_next, &vfio.group_list);
mutex_unlock(&vfio.group_lock);
return group;
err_unlock:
mutex_unlock(&vfio.group_lock);
err_put:
put_device(&group->dev);
return ret;
}
static void vfio_device_remove_group(struct vfio_device *device)
{
struct vfio_group *group = device->group;
struct iommu_group *iommu_group;
if (group->type == VFIO_NO_IOMMU || group->type == VFIO_EMULATED_IOMMU)
iommu_group_remove_device(device->dev);
/* Pairs with vfio_create_group() / vfio_group_get_from_iommu() */
if (!refcount_dec_and_mutex_lock(&group->drivers, &vfio.group_lock))
return;
list_del(&group->vfio_next);
/*
* We could concurrently probe another driver in the group that might
* race vfio_device_remove_group() with vfio_get_group(), so we have to
* ensure that the sysfs is all cleaned up under lock otherwise the
* cdev_device_add() will fail due to the name aready existing.
*/
cdev_device_del(&group->cdev, &group->dev);
mutex_lock(&group->group_lock);
/*
* These data structures all have paired operations that can only be
* undone when the caller holds a live reference on the device. Since
* all pairs must be undone these WARN_ON's indicate some caller did not
* properly hold the group reference.
*/
WARN_ON(!list_empty(&group->device_list));
WARN_ON(group->notifier.head);
/*
* Revoke all users of group->iommu_group. At this point we know there
* are no devices active because we are unplugging the last one. Setting
* iommu_group to NULL blocks all new users.
*/
if (group->container)
vfio_group_detach_container(group);
iommu_group = group->iommu_group;
group->iommu_group = NULL;
mutex_unlock(&group->group_lock);
mutex_unlock(&vfio.group_lock);
iommu_group_put(iommu_group);
put_device(&group->dev);
}
/*
* Device objects - create, release, get, put, search
*/
/* Device reference always implies a group reference */
static void vfio_device_put_registration(struct vfio_device *device)
{
if (refcount_dec_and_test(&device->refcount))
complete(&device->comp);
}
static bool vfio_device_try_get_registration(struct vfio_device *device)
{
return refcount_inc_not_zero(&device->refcount);
}
static struct vfio_device *vfio_group_get_device(struct vfio_group *group,
struct device *dev)
{
struct vfio_device *device;
mutex_lock(&group->device_lock);
list_for_each_entry(device, &group->device_list, group_next) {
if (device->dev == dev &&
vfio_device_try_get_registration(device)) {
mutex_unlock(&group->device_lock);
return device;
}
}
mutex_unlock(&group->device_lock);
return NULL;
}
/*
* VFIO driver API
*/
/* Release helper called by vfio_put_device() */
static void vfio_device_release(struct device *dev)
{
struct vfio_device *device =
container_of(dev, struct vfio_device, device);
vfio_release_device_set(device);
ida_free(&vfio.device_ida, device->index);
/*
* kvfree() cannot be done here due to a life cycle mess in
* vfio-ccw. Before the ccw part is fixed all drivers are
* required to support @release and call vfio_free_device()
* from there.
*/
device->ops->release(device);
}
/*
* Allocate and initialize vfio_device so it can be registered to vfio
* core.
*
* Drivers should use the wrapper vfio_alloc_device() for allocation.
* @size is the size of the structure to be allocated, including any
* private data used by the driver.
*
* Driver may provide an @init callback to cover device private data.
*
* Use vfio_put_device() to release the structure after success return.
*/
struct vfio_device *_vfio_alloc_device(size_t size, struct device *dev,
const struct vfio_device_ops *ops)
{
struct vfio_device *device;
int ret;
if (WARN_ON(size < sizeof(struct vfio_device)))
return ERR_PTR(-EINVAL);
device = kvzalloc(size, GFP_KERNEL);
if (!device)
return ERR_PTR(-ENOMEM);
ret = vfio_init_device(device, dev, ops);
if (ret)
goto out_free;
return device;
out_free:
kvfree(device);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(_vfio_alloc_device);
/*
* Initialize a vfio_device so it can be registered to vfio core.
*
* Only vfio-ccw driver should call this interface.
*/
int vfio_init_device(struct vfio_device *device, struct device *dev,
const struct vfio_device_ops *ops)
{
int ret;
ret = ida_alloc_max(&vfio.device_ida, MINORMASK, GFP_KERNEL);
if (ret < 0) {
dev_dbg(dev, "Error to alloc index\n");
return ret;
}
device->index = ret;
init_completion(&device->comp);
device->dev = dev;
device->ops = ops;
if (ops->init) {
ret = ops->init(device);
if (ret)
goto out_uninit;
}
device_initialize(&device->device);
device->device.release = vfio_device_release;
device->device.class = vfio.device_class;
device->device.parent = device->dev;
return 0;
out_uninit:
vfio_release_device_set(device);
ida_free(&vfio.device_ida, device->index);
return ret;
}
EXPORT_SYMBOL_GPL(vfio_init_device);
/*
* The helper called by driver @release callback to free the device
* structure. Drivers which don't have private data to clean can
* simply use this helper as its @release.
*/
void vfio_free_device(struct vfio_device *device)
{
kvfree(device);
}
EXPORT_SYMBOL_GPL(vfio_free_device);
static struct vfio_group *vfio_noiommu_group_alloc(struct device *dev,
enum vfio_group_type type)
{
struct iommu_group *iommu_group;
struct vfio_group *group;
int ret;
iommu_group = iommu_group_alloc();
if (IS_ERR(iommu_group))
return ERR_CAST(iommu_group);
ret = iommu_group_set_name(iommu_group, "vfio-noiommu");
if (ret)
goto out_put_group;
ret = iommu_group_add_device(iommu_group, dev);
if (ret)
goto out_put_group;
group = vfio_create_group(iommu_group, type);
if (IS_ERR(group)) {
ret = PTR_ERR(group);
goto out_remove_device;
}
iommu_group_put(iommu_group);
return group;
out_remove_device:
iommu_group_remove_device(dev);
out_put_group:
iommu_group_put(iommu_group);
return ERR_PTR(ret);
}
static struct vfio_group *vfio_group_find_or_alloc(struct device *dev)
{
struct iommu_group *iommu_group;
struct vfio_group *group;
iommu_group = iommu_group_get(dev);
if (!iommu_group && vfio_noiommu) {
/*
* With noiommu enabled, create an IOMMU group for devices that
* don't already have one, implying no IOMMU hardware/driver
* exists. Taint the kernel because we're about to give a DMA
* capable device to a user without IOMMU protection.
*/
group = vfio_noiommu_group_alloc(dev, VFIO_NO_IOMMU);
if (!IS_ERR(group)) {
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
dev_warn(dev, "Adding kernel taint for vfio-noiommu group on device\n");
}
return group;
}
if (!iommu_group)
return ERR_PTR(-EINVAL);
/*
* VFIO always sets IOMMU_CACHE because we offer no way for userspace to
* restore cache coherency. It has to be checked here because it is only
* valid for cases where we are using iommu groups.
*/
if (!device_iommu_capable(dev, IOMMU_CAP_CACHE_COHERENCY)) {
iommu_group_put(iommu_group);
return ERR_PTR(-EINVAL);
}
group = vfio_group_get_from_iommu(iommu_group);
if (!group)
group = vfio_create_group(iommu_group, VFIO_IOMMU);
/* The vfio_group holds a reference to the iommu_group */
iommu_group_put(iommu_group);
return group;
}
static int __vfio_register_dev(struct vfio_device *device,
struct vfio_group *group)
{
struct vfio_device *existing_device;
int ret;
/*
* In all cases group is the output of one of the group allocation
* functions and we have group->drivers incremented for us.
*/
if (IS_ERR(group))
return PTR_ERR(group);
/*
* If the driver doesn't specify a set then the device is added to a
* singleton set just for itself.
*/
if (!device->dev_set)
vfio_assign_device_set(device, device);
existing_device = vfio_group_get_device(group, device->dev);
if (existing_device) {
/*
* group->iommu_group is non-NULL because we hold the drivers
* refcount.
*/
dev_WARN(device->dev, "Device already exists on group %d\n",
iommu_group_id(group->iommu_group));
vfio_device_put_registration(existing_device);
ret = -EBUSY;
goto err_out;
}
/* Our reference on group is moved to the device */
device->group = group;
ret = dev_set_name(&device->device, "vfio%d", device->index);
if (ret)
goto err_out;
ret = device_add(&device->device);
if (ret)
goto err_out;
/* Refcounting can't start until the driver calls register */
refcount_set(&device->refcount, 1);
mutex_lock(&group->device_lock);
list_add(&device->group_next, &group->device_list);
mutex_unlock(&group->device_lock);
return 0;
err_out:
vfio_device_remove_group(device);
return ret;
}
int vfio_register_group_dev(struct vfio_device *device)
{
return __vfio_register_dev(device,
vfio_group_find_or_alloc(device->dev));
}
EXPORT_SYMBOL_GPL(vfio_register_group_dev);
/*
* Register a virtual device without IOMMU backing. The user of this
* device must not be able to directly trigger unmediated DMA.
*/
int vfio_register_emulated_iommu_dev(struct vfio_device *device)
{
return __vfio_register_dev(device,
vfio_noiommu_group_alloc(device->dev, VFIO_EMULATED_IOMMU));
}
EXPORT_SYMBOL_GPL(vfio_register_emulated_iommu_dev);
static struct vfio_device *vfio_device_get_from_name(struct vfio_group *group,
char *buf)
{
struct vfio_device *it, *device = ERR_PTR(-ENODEV);
mutex_lock(&group->device_lock);
list_for_each_entry(it, &group->device_list, group_next) {
int ret;
if (it->ops->match) {
ret = it->ops->match(it, buf);
if (ret < 0) {
device = ERR_PTR(ret);
break;
}
} else {
ret = !strcmp(dev_name(it->dev), buf);
}
if (ret && vfio_device_try_get_registration(it)) {
device = it;
break;
}
}
mutex_unlock(&group->device_lock);
return device;
}
/*
* Decrement the device reference count and wait for the device to be
* removed. Open file descriptors for the device... */
void vfio_unregister_group_dev(struct vfio_device *device)
{
struct vfio_group *group = device->group;
unsigned int i = 0;
bool interrupted = false;
long rc;
vfio_device_put_registration(device);
rc = try_wait_for_completion(&device->comp);
while (rc <= 0) {
if (device->ops->request)
device->ops->request(device, i++);
if (interrupted) {
rc = wait_for_completion_timeout(&device->comp,
HZ * 10);
} else {
rc = wait_for_completion_interruptible_timeout(
&device->comp, HZ * 10);
if (rc < 0) {
interrupted = true;
dev_warn(device->dev,
"Device is currently in use, task"
" \"%s\" (%d) "
"blocked until device is released",
current->comm, task_pid_nr(current));
}
}
}
mutex_lock(&group->device_lock);
list_del(&device->group_next);
mutex_unlock(&group->device_lock);
/* Balances device_add in register path */
device_del(&device->device);
vfio_device_remove_group(device);
}
EXPORT_SYMBOL_GPL(vfio_unregister_group_dev);
/*
* VFIO Group fd, /dev/vfio/$GROUP
*/
/*
* VFIO_GROUP_UNSET_CONTAINER should fail if there are other users or
* if there was no container to unset. Since the ioctl is called on
* the group, we know that still exists, therefore the only valid
* transition here is 1->0.
*/
static int vfio_group_ioctl_unset_container(struct vfio_group *group)
{
int ret = 0;
mutex_lock(&group->group_lock);
if (!group->container) {
ret = -EINVAL;
goto out_unlock;
}
if (group->container_users != 1) {
ret = -EBUSY;
goto out_unlock;
}
vfio_group_detach_container(group);
out_unlock:
mutex_unlock(&group->group_lock);
return ret;
}
static int vfio_group_ioctl_set_container(struct vfio_group *group,
int __user *arg)
{
struct vfio_container *container;
struct fd f;
int ret;
int fd;
if (get_user(fd, arg))
return -EFAULT;
f = fdget(fd);
if (!f.file)
return -EBADF;
mutex_lock(&group->group_lock);
if (group->container || WARN_ON(group->container_users)) {
ret = -EINVAL;
goto out_unlock;
}
if (!group->iommu_group) {
ret = -ENODEV;
goto out_unlock;
}
container = vfio_container_from_file(f.file);
ret = -EINVAL;
if (container) {
ret = vfio_container_attach_group(container, group);
goto out_unlock;
}
out_unlock:
mutex_unlock(&group->group_lock);
fdput(f);
return ret;
}
static const struct file_operations vfio_device_fops;
/* true if the vfio_device has open_device() called but not close_device() */
bool vfio_assert_device_open(struct vfio_device *device)
{
return !WARN_ON_ONCE(!READ_ONCE(device->open_count));
}
static struct file *vfio_device_open(struct vfio_device *device)
{
struct file *filep;
int ret;
mutex_lock(&device->group->group_lock);
ret = vfio_device_assign_container(device);
mutex_unlock(&device->group->group_lock);
if (ret)
return ERR_PTR(ret);
if (!try_module_get(device->dev->driver->owner)) {
ret = -ENODEV;
goto err_unassign_container;
}
mutex_lock(&device->dev_set->lock);
device->open_count++;
if (device->open_count == 1) {
/*
* Here we pass the KVM pointer with the group under the read
* lock. If the device driver will use it, it must obtain a
* reference and release it during close_device.
*/
mutex_lock(&device->group->group_lock);
device->kvm = device->group->kvm;
if (device->ops->open_device) {
ret = device->ops->open_device(device);
if (ret)
goto err_undo_count;
}
vfio_device_container_register(device);
mutex_unlock(&device->group->group_lock);
}
mutex_unlock(&device->dev_set->lock);
/*
* We can't use anon_inode_getfd() because we need to modify
* the f_mode flags directly to allow more than just ioctls
*/
filep = anon_inode_getfile("[vfio-device]", &vfio_device_fops,
device, O_RDWR);
if (IS_ERR(filep)) {
ret = PTR_ERR(filep);
goto err_close_device;
}
/*
* TODO: add an anon_inode interface to do this.
* Appears to be missing by lack of need rather than
* explicitly prevented. Now there's need.
*/
filep->f_mode |= (FMODE_PREAD | FMODE_PWRITE);
if (device->group->type == VFIO_NO_IOMMU)
dev_warn(device->dev, "vfio-noiommu device opened by user "
"(%s:%d)\n", current->comm, task_pid_nr(current));
/*
* On success the ref of device is moved to the file and
* put in vfio_device_fops_release()
*/
return filep;
err_close_device:
mutex_lock(&device->dev_set->lock);
mutex_lock(&device->group->group_lock);
if (device->open_count == 1) {
if (device->ops->close_device)
device->ops->close_device(device);
vfio_device_container_unregister(device);
}
err_undo_count:
mutex_unlock(&device->group->group_lock);
device->open_count--;
if (device->open_count == 0 && device->kvm)
device->kvm = NULL;
mutex_unlock(&device->dev_set->lock);
module_put(device->dev->driver->owner);
err_unassign_container:
vfio_device_unassign_container(device);
return ERR_PTR(ret);
}
static int vfio_group_ioctl_get_device_fd(struct vfio_group *group,
char __user *arg)
{
struct vfio_device *device;
struct file *filep;
char *buf;
int fdno;
int ret;
buf = strndup_user(arg, PAGE_SIZE);
if (IS_ERR(buf))
return PTR_ERR(buf);
device = vfio_device_get_from_name(group, buf);
kfree(buf);
if (IS_ERR(device))
return PTR_ERR(device);
fdno = get_unused_fd_flags(O_CLOEXEC);
if (fdno < 0) {
ret = fdno;
goto err_put_device;
}
filep = vfio_device_open(device);
if (IS_ERR(filep)) {
ret = PTR_ERR(filep);
goto err_put_fdno;
}
fd_install(fdno, filep);
return fdno;
err_put_fdno:
put_unused_fd(fdno);
err_put_device:
vfio_device_put_registration(device);
return ret;
}
static int vfio_group_ioctl_get_status(struct vfio_group *group,
struct vfio_group_status __user *arg)
{
unsigned long minsz = offsetofend(struct vfio_group_status, flags);
struct vfio_group_status status;
if (copy_from_user(&status, arg, minsz))
return -EFAULT;
if (status.argsz < minsz)
return -EINVAL;
status.flags = 0;
mutex_lock(&group->group_lock);
if (!group->iommu_group) {
mutex_unlock(&group->group_lock);
return -ENODEV;
}
if (group->container)
status.flags |= VFIO_GROUP_FLAGS_CONTAINER_SET |
VFIO_GROUP_FLAGS_VIABLE;
else if (!iommu_group_dma_owner_claimed(group->iommu_group))
status.flags |= VFIO_GROUP_FLAGS_VIABLE;
mutex_unlock(&group->group_lock);
if (copy_to_user(arg, &status, minsz))
return -EFAULT;
return 0;
}
static long vfio_group_fops_unl_ioctl(struct file *filep,
unsigned int cmd, unsigned long arg)
{
struct vfio_group *group = filep->private_data;
void __user *uarg = (void __user *)arg;
switch (cmd) {
case VFIO_GROUP_GET_DEVICE_FD:
return vfio_group_ioctl_get_device_fd(group, uarg);
case VFIO_GROUP_GET_STATUS:
return vfio_group_ioctl_get_status(group, uarg);
case VFIO_GROUP_SET_CONTAINER:
return vfio_group_ioctl_set_container(group, uarg);
case VFIO_GROUP_UNSET_CONTAINER:
return vfio_group_ioctl_unset_container(group);
default:
return -ENOTTY;
}
}
static int vfio_group_fops_open(struct inode *inode, struct file *filep)
{
struct vfio_group *group =
container_of(inode->i_cdev, struct vfio_group, cdev);
int ret;
mutex_lock(&group->group_lock);
/*
* drivers can be zero if this races with vfio_device_remove_group(), it
* will be stable at 0 under the group rwsem
*/
if (refcount_read(&group->drivers) == 0) {
ret = -ENODEV;
goto out_unlock;
}
if (group->type == VFIO_NO_IOMMU && !capable(CAP_SYS_RAWIO)) {
ret = -EPERM;
goto out_unlock;
}
/*
* Do we need multiple instances of the group open? Seems not.
*/
if (group->opened_file) {
ret = -EBUSY;
goto out_unlock;
}
group->opened_file = filep;
filep->private_data = group;
ret = 0;
out_unlock:
mutex_unlock(&group->group_lock);
return ret;
}
static int vfio_group_fops_release(struct inode *inode, struct file *filep)
{
struct vfio_group *group = filep->private_data;
filep->private_data = NULL;
mutex_lock(&group->group_lock);
/*
* Device FDs hold a group file reference, therefore the group release
* is only called when there are no open devices.
*/
WARN_ON(group->notifier.head);
if (group->container)
vfio_group_detach_container(group);
group->opened_file = NULL;
mutex_unlock(&group->group_lock);
return 0;
}
static const struct file_operations vfio_group_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = vfio_group_fops_unl_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.open = vfio_group_fops_open,
.release = vfio_group_fops_release,
};
/*
* Wrapper around pm_runtime_resume_and_get().
* Return error code on failure or 0 on success.
*/
static inline int vfio_device_pm_runtime_get(struct vfio_device *device)
{
struct device *dev = device->dev;
if (dev->driver && dev->driver->pm) {
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret) {
dev_info_ratelimited(dev,
"vfio: runtime resume failed %d\n", ret);
return -EIO;
}
}
return 0;
}
/*
* Wrapper around pm_runtime_put().
*/
static inline void vfio_device_pm_runtime_put(struct vfio_device *device)
{
struct device *dev = device->dev;
if (dev->driver && dev->driver->pm)
pm_runtime_put(dev);
}
/*
* VFIO Device fd
*/
static int vfio_device_fops_release(struct inode *inode, struct file *filep)
{
struct vfio_device *device = filep->private_data;
mutex_lock(&device->dev_set->lock);
vfio_assert_device_open(device);
mutex_lock(&device->group->group_lock);
if (device->open_count == 1) {
if (device->ops->close_device)
device->ops->close_device(device);
vfio_device_container_unregister(device);
}
mutex_unlock(&device->group->group_lock);
device->open_count--;
if (device->open_count == 0)
device->kvm = NULL;
mutex_unlock(&device->dev_set->lock);
module_put(device->dev->driver->owner);
vfio_device_unassign_container(device);
vfio_device_put_registration(device);
return 0;
}
/*
* vfio_mig_get_next_state - Compute the next step in the FSM
* @cur_fsm - The current state the device is in
* @new_fsm - The target state to reach
* @next_fsm - Pointer to the next step to get to new_fsm
*
* Return 0 upon success, otherwise -errno
* Upon success the next step in the state progression between cur_fsm and
* new_fsm will be set in next_fsm.
*
* This breaks down requests for combination transitions into smaller steps and
* returns the next step to get to new_fsm. The function may need to be called
* multiple times before reaching new_fsm.
*
*/
int vfio_mig_get_next_state(struct vfio_device *device,
enum vfio_device_mig_state cur_fsm,
enum vfio_device_mig_state new_fsm,
enum vfio_device_mig_state *next_fsm)
{
enum { VFIO_DEVICE_NUM_STATES = VFIO_DEVICE_STATE_RUNNING_P2P + 1 };
/*
* The coding in this table requires the driver to implement the
* following FSM arcs:
* RESUMING -> STOP
* STOP -> RESUMING
* STOP -> STOP_COPY
* STOP_COPY -> STOP
*
* If P2P is supported then the driver must also implement these FSM
* arcs:
* RUNNING -> RUNNING_P2P
* RUNNING_P2P -> RUNNING
* RUNNING_P2P -> STOP
* STOP -> RUNNING_P2P
* Without P2P the driver must implement:
* RUNNING -> STOP
* STOP -> RUNNING
*
* The coding will step through multiple states for some combination
* transitions; if all optional features are supported, this means the
* following ones:
* RESUMING -> STOP -> RUNNING_P2P
* RESUMING -> STOP -> RUNNING_P2P -> RUNNING
* RESUMING -> STOP -> STOP_COPY
* RUNNING -> RUNNING_P2P -> STOP
* RUNNING -> RUNNING_P2P -> STOP -> RESUMING
* RUNNING -> RUNNING_P2P -> STOP -> STOP_COPY
* RUNNING_P2P -> STOP -> RESUMING
* RUNNING_P2P -> STOP -> STOP_COPY
* STOP -> RUNNING_P2P -> RUNNING
* STOP_COPY -> STOP -> RESUMING
* STOP_COPY -> STOP -> RUNNING_P2P
* STOP_COPY -> STOP -> RUNNING_P2P -> RUNNING
*/
static const u8 vfio_from_fsm_table[VFIO_DEVICE_NUM_STATES][VFIO_DEVICE_NUM_STATES] = {
[VFIO_DEVICE_STATE_STOP] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_RUNNING] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_STOP_COPY] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_RESUMING] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_RUNNING_P2P] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_ERROR] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
};
static const unsigned int state_flags_table[VFIO_DEVICE_NUM_STATES] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_RUNNING_P2P] =
VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P,
[VFIO_DEVICE_STATE_ERROR] = ~0U,
};
if (WARN_ON(cur_fsm >= ARRAY_SIZE(vfio_from_fsm_table) ||
(state_flags_table[cur_fsm] & device->migration_flags) !=
state_flags_table[cur_fsm]))
return -EINVAL;
if (new_fsm >= ARRAY_SIZE(vfio_from_fsm_table) ||
(state_flags_table[new_fsm] & device->migration_flags) !=
state_flags_table[new_fsm])
return -EINVAL;
/*
* Arcs touching optional and unsupported states are skipped over. The
* driver will instead see an arc from the original state to the next
* logical state, as per the above comment.
*/
*next_fsm = vfio_from_fsm_table[cur_fsm][new_fsm];
while ((state_flags_table[*next_fsm] & device->migration_flags) !=
state_flags_table[*next_fsm])
*next_fsm = vfio_from_fsm_table[*next_fsm][new_fsm];
return (*next_fsm != VFIO_DEVICE_STATE_ERROR) ? 0 : -EINVAL;
}
EXPORT_SYMBOL_GPL(vfio_mig_get_next_state);
/*
* Convert the drivers's struct file into a FD number and return it to userspace
*/
static int vfio_ioct_mig_return_fd(struct file *filp, void __user *arg,
struct vfio_device_feature_mig_state *mig)
{
int ret;
int fd;
fd = get_unused_fd_flags(O_CLOEXEC);
if (fd < 0) {
ret = fd;
goto out_fput;
}
mig->data_fd = fd;
if (copy_to_user(arg, mig, sizeof(*mig))) {
ret = -EFAULT;
goto out_put_unused;
}
fd_install(fd, filp);
return 0;
out_put_unused:
put_unused_fd(fd);
out_fput:
fput(filp);
return ret;
}
static int
vfio_ioctl_device_feature_mig_device_state(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
size_t minsz =
offsetofend(struct vfio_device_feature_mig_state, data_fd);
struct vfio_device_feature_mig_state mig;
struct file *filp = NULL;
int ret;
if (!device->mig_ops)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz,
VFIO_DEVICE_FEATURE_SET |
VFIO_DEVICE_FEATURE_GET,
sizeof(mig));
if (ret != 1)
return ret;
if (copy_from_user(&mig, arg, minsz))
return -EFAULT;
if (flags & VFIO_DEVICE_FEATURE_GET) {
enum vfio_device_mig_state curr_state;
ret = device->mig_ops->migration_get_state(device,
&curr_state);
if (ret)
return ret;
mig.device_state = curr_state;
goto out_copy;
}
/* Handle the VFIO_DEVICE_FEATURE_SET */
filp = device->mig_ops->migration_set_state(device, mig.device_state);
if (IS_ERR(filp) || !filp)
goto out_copy;
return vfio_ioct_mig_return_fd(filp, arg, &mig);
out_copy:
mig.data_fd = -1;
if (copy_to_user(arg, &mig, sizeof(mig)))
return -EFAULT;
if (IS_ERR(filp))
return PTR_ERR(filp);
return 0;
}
static int vfio_ioctl_device_feature_migration(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
struct vfio_device_feature_migration mig = {
.flags = device->migration_flags,
};
int ret;
if (!device->mig_ops)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_GET,
sizeof(mig));
if (ret != 1)
return ret;
if (copy_to_user(arg, &mig, sizeof(mig)))
return -EFAULT;
return 0;
}
/* Ranges should fit into a single kernel page */
#define LOG_MAX_RANGES \
(PAGE_SIZE / sizeof(struct vfio_device_feature_dma_logging_range))
static int
vfio_ioctl_device_feature_logging_start(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
size_t minsz =
offsetofend(struct vfio_device_feature_dma_logging_control,
ranges);
struct vfio_device_feature_dma_logging_range __user *ranges;
struct vfio_device_feature_dma_logging_control control;
struct vfio_device_feature_dma_logging_range range;
struct rb_root_cached root = RB_ROOT_CACHED;
struct interval_tree_node *nodes;
u64 iova_end;
u32 nnodes;
int i, ret;
if (!device->log_ops)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz,
VFIO_DEVICE_FEATURE_SET,
sizeof(control));
if (ret != 1)
return ret;
if (copy_from_user(&control, arg, minsz))
return -EFAULT;
nnodes = control.num_ranges;
if (!nnodes)
return -EINVAL;
if (nnodes > LOG_MAX_RANGES)
return -E2BIG;
ranges = u64_to_user_ptr(control.ranges);
nodes = kmalloc_array(nnodes, sizeof(struct interval_tree_node),
GFP_KERNEL);
if (!nodes)
return -ENOMEM;
for (i = 0; i < nnodes; i++) {
if (copy_from_user(&range, &ranges[i], sizeof(range))) {
ret = -EFAULT;
goto end;
}
if (!IS_ALIGNED(range.iova, control.page_size) ||
!IS_ALIGNED(range.length, control.page_size)) {
ret = -EINVAL;
goto end;
}
if (check_add_overflow(range.iova, range.length, &iova_end) ||
iova_end > ULONG_MAX) {
ret = -EOVERFLOW;
goto end;
}
nodes[i].start = range.iova;
nodes[i].last = range.iova + range.length - 1;
if (interval_tree_iter_first(&root, nodes[i].start,
nodes[i].last)) {
/* Range overlapping */
ret = -EINVAL;
goto end;
}
interval_tree_insert(nodes + i, &root);
}
ret = device->log_ops->log_start(device, &root, nnodes,
&control.page_size);
if (ret)
goto end;
if (copy_to_user(arg, &control, sizeof(control))) {
ret = -EFAULT;
device->log_ops->log_stop(device);
}
end:
kfree(nodes);
return ret;
}
static int
vfio_ioctl_device_feature_logging_stop(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
int ret;
if (!device->log_ops)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz,
VFIO_DEVICE_FEATURE_SET, 0);
if (ret != 1)
return ret;
return device->log_ops->log_stop(device);
}
static int vfio_device_log_read_and_clear(struct iova_bitmap *iter,
unsigned long iova, size_t length,
void *opaque)
{
struct vfio_device *device = opaque;
return device->log_ops->log_read_and_clear(device, iova, length, iter);
}
static int
vfio_ioctl_device_feature_logging_report(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
size_t minsz =
offsetofend(struct vfio_device_feature_dma_logging_report,
bitmap);
struct vfio_device_feature_dma_logging_report report;
struct iova_bitmap *iter;
u64 iova_end;
int ret;
if (!device->log_ops)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz,
VFIO_DEVICE_FEATURE_GET,
sizeof(report));
if (ret != 1)
return ret;
if (copy_from_user(&report, arg, minsz))
return -EFAULT;
if (report.page_size < SZ_4K || !is_power_of_2(report.page_size))
return -EINVAL;
if (check_add_overflow(report.iova, report.length, &iova_end) ||
iova_end > ULONG_MAX)
return -EOVERFLOW;
iter = iova_bitmap_alloc(report.iova, report.length,
report.page_size,
u64_to_user_ptr(report.bitmap));
if (IS_ERR(iter))
return PTR_ERR(iter);
ret = iova_bitmap_for_each(iter, device,
vfio_device_log_read_and_clear);
iova_bitmap_free(iter);
return ret;
}
static int vfio_ioctl_device_feature(struct vfio_device *device,
struct vfio_device_feature __user *arg)
{
size_t minsz = offsetofend(struct vfio_device_feature, flags);
struct vfio_device_feature feature;
if (copy_from_user(&feature, arg, minsz))
return -EFAULT;
if (feature.argsz < minsz)
return -EINVAL;
/* Check unknown flags */
if (feature.flags &
~(VFIO_DEVICE_FEATURE_MASK | VFIO_DEVICE_FEATURE_SET |
VFIO_DEVICE_FEATURE_GET | VFIO_DEVICE_FEATURE_PROBE))
return -EINVAL;
/* GET & SET are mutually exclusive except with PROBE */
if (!(feature.flags & VFIO_DEVICE_FEATURE_PROBE) &&
(feature.flags & VFIO_DEVICE_FEATURE_SET) &&
(feature.flags & VFIO_DEVICE_FEATURE_GET))
return -EINVAL;
switch (feature.flags & VFIO_DEVICE_FEATURE_MASK) {
case VFIO_DEVICE_FEATURE_MIGRATION:
return vfio_ioctl_device_feature_migration(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE:
return vfio_ioctl_device_feature_mig_device_state(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_DMA_LOGGING_START:
return vfio_ioctl_device_feature_logging_start(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP:
return vfio_ioctl_device_feature_logging_stop(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT:
return vfio_ioctl_device_feature_logging_report(
device, feature.flags, arg->data,
feature.argsz - minsz);
default:
if (unlikely(!device->ops->device_feature))
return -EINVAL;
return device->ops->device_feature(device, feature.flags,
arg->data,
feature.argsz - minsz);
}
}
static long vfio_device_fops_unl_ioctl(struct file *filep,
unsigned int cmd, unsigned long arg)
{
struct vfio_device *device = filep->private_data;
int ret;
ret = vfio_device_pm_runtime_get(device);
if (ret)
return ret;
switch (cmd) {
case VFIO_DEVICE_FEATURE:
ret = vfio_ioctl_device_feature(device, (void __user *)arg);
break;
default:
if (unlikely(!device->ops->ioctl))
ret = -EINVAL;
else
ret = device->ops->ioctl(device, cmd, arg);
break;
}
vfio_device_pm_runtime_put(device);
return ret;
}
static ssize_t vfio_device_fops_read(struct file *filep, char __user *buf,
size_t count, loff_t *ppos)
{
struct vfio_device *device = filep->private_data;
if (unlikely(!device->ops->read))
return -EINVAL;
return device->ops->read(device, buf, count, ppos);
}
static ssize_t vfio_device_fops_write(struct file *filep,
const char __user *buf,
size_t count, loff_t *ppos)
{
struct vfio_device *device = filep->private_data;
if (unlikely(!device->ops->write))
return -EINVAL;
return device->ops->write(device, buf, count, ppos);
}
static int vfio_device_fops_mmap(struct file *filep, struct vm_area_struct *vma)
{
struct vfio_device *device = filep->private_data;
if (unlikely(!device->ops->mmap))
return -EINVAL;
return device->ops->mmap(device, vma);
}
static const struct file_operations vfio_device_fops = {
.owner = THIS_MODULE,
.release = vfio_device_fops_release,
.read = vfio_device_fops_read,
.write = vfio_device_fops_write,
.unlocked_ioctl = vfio_device_fops_unl_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.mmap = vfio_device_fops_mmap,
};
/**
* vfio_file_iommu_group - Return the struct iommu_group for the vfio group file
* @file: VFIO group file
*
* The returned iommu_group is valid as long as a ref is held on the file. This
* returns a reference on the group. This function is deprecated, only the SPAPR
* path in kvm should call it.
*/
struct iommu_group *vfio_file_iommu_group(struct file *file)
{
struct vfio_group *group = file->private_data;
struct iommu_group *iommu_group = NULL;
if (!IS_ENABLED(CONFIG_SPAPR_TCE_IOMMU))
return NULL;
if (!vfio_file_is_group(file))
return NULL;
mutex_lock(&group->group_lock);
if (group->iommu_group) {
iommu_group = group->iommu_group;
iommu_group_ref_get(iommu_group);
}
mutex_unlock(&group->group_lock);
return iommu_group;
}
EXPORT_SYMBOL_GPL(vfio_file_iommu_group);
/**
* vfio_file_is_group - True if the file is usable with VFIO aPIS
* @file: VFIO group file
*/
bool vfio_file_is_group(struct file *file)
{
return file->f_op == &vfio_group_fops;
}
EXPORT_SYMBOL_GPL(vfio_file_is_group);
/**
* vfio_file_enforced_coherent - True if the DMA associated with the VFIO file
* is always CPU cache coherent
* @file: VFIO group file
*
* Enforced coherency means that the IOMMU ignores things like the PCIe no-snoop
* bit in DMA transactions. A return of false indicates that the user has
* rights to access additional instructions such as wbinvd on x86.
*/
bool vfio_file_enforced_coherent(struct file *file)
{
struct vfio_group *group = file->private_data;
bool ret;
if (!vfio_file_is_group(file))
return true;
mutex_lock(&group->group_lock);
if (group->container) {
ret = vfio_container_ioctl_check_extension(group->container,
VFIO_DMA_CC_IOMMU);
} else {
/*
* Since the coherency state is determined only once a container
* is attached the user must do so before they can prove they
* have permission.
*/
ret = true;
}
mutex_unlock(&group->group_lock);
return ret;
}
EXPORT_SYMBOL_GPL(vfio_file_enforced_coherent);
/**
* vfio_file_set_kvm - Link a kvm with VFIO drivers
* @file: VFIO group file
* @kvm: KVM to link
*
* When a VFIO device is first opened the KVM will be available in
* device->kvm if one was associated with the group.
*/
void vfio_file_set_kvm(struct file *file, struct kvm *kvm)
{
struct vfio_group *group = file->private_data;
if (!vfio_file_is_group(file))
return;
mutex_lock(&group->group_lock);
group->kvm = kvm;
mutex_unlock(&group->group_lock);
}
EXPORT_SYMBOL_GPL(vfio_file_set_kvm);
/**
* vfio_file_has_dev - True if the VFIO file is a handle for device
* @file: VFIO file to check
* @device: Device that must be part of the file
*
* Returns true if given file has permission to manipulate the given device.
*/
bool vfio_file_has_dev(struct file *file, struct vfio_device *device)
{
struct vfio_group *group = file->private_data;
if (!vfio_file_is_group(file))
return false;
return group == device->group;
}
EXPORT_SYMBOL_GPL(vfio_file_has_dev);
/*
* Sub-module support
*/
/*
* Helper for managing a buffer of info chain capabilities, allocate or
* reallocate a buffer with additional @size, filling in @id and @version
* of the capability. A pointer to the new capability is returned.
*
* NB. The chain is based at the head of the buffer, so new entries are
* added to the tail, vfio_info_cap_shift() should be called to fixup the
* next offsets prior to copying to the user buffer.
*/
struct vfio_info_cap_header *vfio_info_cap_add(struct vfio_info_cap *caps,
size_t size, u16 id, u16 version)
{
void *buf;
struct vfio_info_cap_header *header, *tmp;
buf = krealloc(caps->buf, caps->size + size, GFP_KERNEL);
if (!buf) {
kfree(caps->buf);
caps->buf = NULL;
caps->size = 0;
return ERR_PTR(-ENOMEM);
}
caps->buf = buf;
header = buf + caps->size;
/* Eventually copied to user buffer, zero */
memset(header, 0, size);
header->id = id;
header->version = version;
/* Add to the end of the capability chain */
for (tmp = buf; tmp->next; tmp = buf + tmp->next)
; /* nothing */
tmp->next = caps->size;
caps->size += size;
return header;
}
EXPORT_SYMBOL_GPL(vfio_info_cap_add);
void vfio_info_cap_shift(struct vfio_info_cap *caps, size_t offset)
{
struct vfio_info_cap_header *tmp;
void *buf = (void *)caps->buf;
for (tmp = buf; tmp->next; tmp = buf + tmp->next - offset)
tmp->next += offset;
}
EXPORT_SYMBOL(vfio_info_cap_shift);
int vfio_info_add_capability(struct vfio_info_cap *caps,
struct vfio_info_cap_header *cap, size_t size)
{
struct vfio_info_cap_header *header;
header = vfio_info_cap_add(caps, size, cap->id, cap->version);
if (IS_ERR(header))
return PTR_ERR(header);
memcpy(header + 1, cap + 1, size - sizeof(*header));
return 0;
}
EXPORT_SYMBOL(vfio_info_add_capability);
int vfio_set_irqs_validate_and_prepare(struct vfio_irq_set *hdr, int num_irqs,
int max_irq_type, size_t *data_size)
{
unsigned long minsz;
size_t size;
minsz = offsetofend(struct vfio_irq_set, count);
if ((hdr->argsz < minsz) || (hdr->index >= max_irq_type) ||
(hdr->count >= (U32_MAX - hdr->start)) ||
(hdr->flags & ~(VFIO_IRQ_SET_DATA_TYPE_MASK |
VFIO_IRQ_SET_ACTION_TYPE_MASK)))
return -EINVAL;
if (data_size)
*data_size = 0;
if (hdr->start >= num_irqs || hdr->start + hdr->count > num_irqs)
return -EINVAL;
switch (hdr->flags & VFIO_IRQ_SET_DATA_TYPE_MASK) {
case VFIO_IRQ_SET_DATA_NONE:
size = 0;
break;
case VFIO_IRQ_SET_DATA_BOOL:
size = sizeof(uint8_t);
break;
case VFIO_IRQ_SET_DATA_EVENTFD:
size = sizeof(int32_t);
break;
default:
return -EINVAL;
}
if (size) {
if (hdr->argsz - minsz < hdr->count * size)
return -EINVAL;
if (!data_size)
return -EINVAL;
*data_size = hdr->count * size;
}
return 0;
}
EXPORT_SYMBOL(vfio_set_irqs_validate_and_prepare);
/*
* Module/class support
*/
static char *vfio_devnode(struct device *dev, umode_t *mode)
{
return kasprintf(GFP_KERNEL, "vfio/%s", dev_name(dev));
}
static int __init vfio_init(void)
{
int ret;
ida_init(&vfio.group_ida);
ida_init(&vfio.device_ida);
mutex_init(&vfio.group_lock);
INIT_LIST_HEAD(&vfio.group_list);
ret = vfio_container_init();
if (ret)
return ret;
/* /dev/vfio/$GROUP */
vfio.class = class_create(THIS_MODULE, "vfio");
if (IS_ERR(vfio.class)) {
ret = PTR_ERR(vfio.class);
goto err_group_class;
}
vfio.class->devnode = vfio_devnode;
/* /sys/class/vfio-dev/vfioX */
vfio.device_class = class_create(THIS_MODULE, "vfio-dev");
if (IS_ERR(vfio.device_class)) {
ret = PTR_ERR(vfio.device_class);
goto err_dev_class;
}
ret = alloc_chrdev_region(&vfio.group_devt, 0, MINORMASK + 1, "vfio");
if (ret)
goto err_alloc_chrdev;
pr_info(DRIVER_DESC " version: " DRIVER_VERSION "\n");
return 0;
err_alloc_chrdev:
class_destroy(vfio.device_class);
vfio.device_class = NULL;
err_dev_class:
class_destroy(vfio.class);
vfio.class = NULL;
err_group_class:
vfio_container_cleanup();
return ret;
}
static void __exit vfio_cleanup(void)
{
WARN_ON(!list_empty(&vfio.group_list));
ida_destroy(&vfio.device_ida);
ida_destroy(&vfio.group_ida);
unregister_chrdev_region(vfio.group_devt, MINORMASK + 1);
class_destroy(vfio.device_class);
vfio.device_class = NULL;
class_destroy(vfio.class);
vfio_container_cleanup();
vfio.class = NULL;
xa_destroy(&vfio_device_set_xa);
}
module_init(vfio_init);
module_exit(vfio_cleanup);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_ALIAS_MISCDEV(VFIO_MINOR);
MODULE_ALIAS("devname:vfio/vfio");
MODULE_SOFTDEP("post: vfio_iommu_type1 vfio_iommu_spapr_tce");