linux-stable/arch/powerpc/lib/locks.c
Michael Ellerman 78e05b1421 powerpc: Add smp_mb()s to arch_spin_unlock_wait()
Similar to the previous commit which described why we need to add a
barrier to arch_spin_is_locked(), we have a similar problem with
spin_unlock_wait().

We need a barrier on entry to ensure any spinlock we have previously
taken is visibly locked prior to the load of lock->slock.

It's also not clear if spin_unlock_wait() is intended to have ACQUIRE
semantics. For now be conservative and add a barrier on exit to give it
ACQUIRE semantics.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-13 15:13:27 +10:00

85 lines
2.2 KiB
C

/*
* Spin and read/write lock operations.
*
* Copyright (C) 2001-2004 Paul Mackerras <paulus@au.ibm.com>, IBM
* Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
* Copyright (C) 2002 Dave Engebretsen <engebret@us.ibm.com>, IBM
* Rework to support virtual processors
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/export.h>
#include <linux/stringify.h>
#include <linux/smp.h>
/* waiting for a spinlock... */
#if defined(CONFIG_PPC_SPLPAR)
#include <asm/hvcall.h>
#include <asm/smp.h>
void __spin_yield(arch_spinlock_t *lock)
{
unsigned int lock_value, holder_cpu, yield_count;
lock_value = lock->slock;
if (lock_value == 0)
return;
holder_cpu = lock_value & 0xffff;
BUG_ON(holder_cpu >= NR_CPUS);
yield_count = be32_to_cpu(lppaca_of(holder_cpu).yield_count);
if ((yield_count & 1) == 0)
return; /* virtual cpu is currently running */
rmb();
if (lock->slock != lock_value)
return; /* something has changed */
plpar_hcall_norets(H_CONFER,
get_hard_smp_processor_id(holder_cpu), yield_count);
}
/*
* Waiting for a read lock or a write lock on a rwlock...
* This turns out to be the same for read and write locks, since
* we only know the holder if it is write-locked.
*/
void __rw_yield(arch_rwlock_t *rw)
{
int lock_value;
unsigned int holder_cpu, yield_count;
lock_value = rw->lock;
if (lock_value >= 0)
return; /* no write lock at present */
holder_cpu = lock_value & 0xffff;
BUG_ON(holder_cpu >= NR_CPUS);
yield_count = be32_to_cpu(lppaca_of(holder_cpu).yield_count);
if ((yield_count & 1) == 0)
return; /* virtual cpu is currently running */
rmb();
if (rw->lock != lock_value)
return; /* something has changed */
plpar_hcall_norets(H_CONFER,
get_hard_smp_processor_id(holder_cpu), yield_count);
}
#endif
void arch_spin_unlock_wait(arch_spinlock_t *lock)
{
smp_mb();
while (lock->slock) {
HMT_low();
if (SHARED_PROCESSOR)
__spin_yield(lock);
}
HMT_medium();
smp_mb();
}
EXPORT_SYMBOL(arch_spin_unlock_wait);