linux-stable/include/linux/platform_device.h
Linus Torvalds 500a434fc5 Driver core changes for 5.19-rc1
Here is the set of driver core changes for 5.19-rc1.
 
 Note, I'm not really happy with this pull request as-is, see below for
 details, but overall this is all good for everything but a small set of
 systems, which we have a fix for already.
 
 Lots of tiny driver core changes and cleanups happened this cycle,
 but the two major things were:
 
 	- firmware_loader reorganization and additions including the
 	  ability to have XZ compressed firmware images and the ability
 	  for userspace to initiate the firmware load when it needs to,
 	  instead of being always initiated by the kernel. FPGA devices
 	  specifically want this ability to have their firmware changed
 	  over the lifetime of the system boot, and this allows them to
 	  work without having to come up with yet-another-custom-uapi
 	  interface for loading firmware for them.
 	- physical location support added to sysfs so that devices that
 	  know this information, can tell userspace where they are
 	  located in a common way.  Some ACPI devices already support
 	  this today, and more bus types should support this in the
 	  future.
 
 Smaller changes included:
 	- driver_override api cleanups and fixes
 	- error path cleanups and fixes
 	- get_abi script fixes
 	- deferred probe timeout changes.
 
 It's that last change that I'm the most worried about.  It has been
 reported to cause boot problems for a number of systems, and I have a
 tested patch series that resolves this issue.  But I didn't get it
 merged into my tree before 5.18-final came out, so it has not gotten any
 linux-next testing.
 
 I'll send the fixup patches (there are 2) as a follow-on series to this
 pull request if you want to take them directly, _OR_ I can just revert
 the probe timeout changes and they can wait for the next -rc1 merge
 cycle.  Given that the fixes are tested, and pretty simple, I'm leaning
 toward that choice.  Sorry this all came at the end of the merge window,
 I should have resolved this all 2 weeks ago, that's my fault as it was
 in the middle of some travel for me.
 
 All have been tested in linux-next for weeks, with no reported issues
 other than the above-mentioned boot time outs.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 
 iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCYpnv/A8cZ3JlZ0Brcm9h
 aC5jb20ACgkQMUfUDdst+yk/fACgvmenbo5HipqyHnOmTQlT50xQ9EYAn2eTq6ai
 GkjLXBGNWOPBa5cU52qf
 =yEi/
 -----END PGP SIGNATURE-----

Merge tag 'driver-core-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull driver core updates from Greg KH:
 "Here is the set of driver core changes for 5.19-rc1.

  Lots of tiny driver core changes and cleanups happened this cycle, but
  the two major things are:

   - firmware_loader reorganization and additions including the ability
     to have XZ compressed firmware images and the ability for userspace
     to initiate the firmware load when it needs to, instead of being
     always initiated by the kernel. FPGA devices specifically want this
     ability to have their firmware changed over the lifetime of the
     system boot, and this allows them to work without having to come up
     with yet-another-custom-uapi interface for loading firmware for
     them.

   - physical location support added to sysfs so that devices that know
     this information, can tell userspace where they are located in a
     common way. Some ACPI devices already support this today, and more
     bus types should support this in the future.

  Smaller changes include:

   - driver_override api cleanups and fixes

   - error path cleanups and fixes

   - get_abi script fixes

   - deferred probe timeout changes.

  It's that last change that I'm the most worried about. It has been
  reported to cause boot problems for a number of systems, and I have a
  tested patch series that resolves this issue. But I didn't get it
  merged into my tree before 5.18-final came out, so it has not gotten
  any linux-next testing.

  I'll send the fixup patches (there are 2) as a follow-on series to this
  pull request.

  All have been tested in linux-next for weeks, with no reported issues
  other than the above-mentioned boot time-outs"

* tag 'driver-core-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (55 commits)
  driver core: fix deadlock in __device_attach
  kernfs: Separate kernfs_pr_cont_buf and rename_lock.
  topology: Remove unused cpu_cluster_mask()
  driver core: Extend deferred probe timeout on driver registration
  MAINTAINERS: add Russ Weight as a firmware loader maintainer
  driver: base: fix UAF when driver_attach failed
  test_firmware: fix end of loop test in upload_read_show()
  driver core: location: Add "back" as a possible output for panel
  driver core: location: Free struct acpi_pld_info *pld
  driver core: Add "*" wildcard support to driver_async_probe cmdline param
  driver core: location: Check for allocations failure
  arch_topology: Trace the update thermal pressure
  kernfs: Rename kernfs_put_open_node to kernfs_unlink_open_file.
  export: fix string handling of namespace in EXPORT_SYMBOL_NS
  rpmsg: use local 'dev' variable
  rpmsg: Fix calling device_lock() on non-initialized device
  firmware_loader: describe 'module' parameter of firmware_upload_register()
  firmware_loader: Move definitions from sysfs_upload.h to sysfs.h
  firmware_loader: Fix configs for sysfs split
  selftests: firmware: Add firmware upload selftests
  ...
2022-06-03 11:48:47 -07:00

370 lines
13 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* platform_device.h - generic, centralized driver model
*
* Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org>
*
* See Documentation/driver-api/driver-model/ for more information.
*/
#ifndef _PLATFORM_DEVICE_H_
#define _PLATFORM_DEVICE_H_
#include <linux/device.h>
#define PLATFORM_DEVID_NONE (-1)
#define PLATFORM_DEVID_AUTO (-2)
struct irq_affinity;
struct mfd_cell;
struct property_entry;
struct platform_device_id;
struct platform_device {
const char *name;
int id;
bool id_auto;
struct device dev;
u64 platform_dma_mask;
struct device_dma_parameters dma_parms;
u32 num_resources;
struct resource *resource;
const struct platform_device_id *id_entry;
/*
* Driver name to force a match. Do not set directly, because core
* frees it. Use driver_set_override() to set or clear it.
*/
const char *driver_override;
/* MFD cell pointer */
struct mfd_cell *mfd_cell;
/* arch specific additions */
struct pdev_archdata archdata;
};
#define platform_get_device_id(pdev) ((pdev)->id_entry)
#define dev_is_platform(dev) ((dev)->bus == &platform_bus_type)
#define to_platform_device(x) container_of((x), struct platform_device, dev)
extern int platform_device_register(struct platform_device *);
extern void platform_device_unregister(struct platform_device *);
extern struct bus_type platform_bus_type;
extern struct device platform_bus;
extern struct resource *platform_get_resource(struct platform_device *,
unsigned int, unsigned int);
extern struct resource *platform_get_mem_or_io(struct platform_device *,
unsigned int);
extern struct device *
platform_find_device_by_driver(struct device *start,
const struct device_driver *drv);
extern void __iomem *
devm_platform_get_and_ioremap_resource(struct platform_device *pdev,
unsigned int index, struct resource **res);
extern void __iomem *
devm_platform_ioremap_resource(struct platform_device *pdev,
unsigned int index);
extern void __iomem *
devm_platform_ioremap_resource_byname(struct platform_device *pdev,
const char *name);
extern int platform_get_irq(struct platform_device *, unsigned int);
extern int platform_get_irq_optional(struct platform_device *, unsigned int);
extern int platform_irq_count(struct platform_device *);
extern int devm_platform_get_irqs_affinity(struct platform_device *dev,
struct irq_affinity *affd,
unsigned int minvec,
unsigned int maxvec,
int **irqs);
extern struct resource *platform_get_resource_byname(struct platform_device *,
unsigned int,
const char *);
extern int platform_get_irq_byname(struct platform_device *, const char *);
extern int platform_get_irq_byname_optional(struct platform_device *dev,
const char *name);
extern int platform_add_devices(struct platform_device **, int);
struct platform_device_info {
struct device *parent;
struct fwnode_handle *fwnode;
bool of_node_reused;
const char *name;
int id;
const struct resource *res;
unsigned int num_res;
const void *data;
size_t size_data;
u64 dma_mask;
const struct property_entry *properties;
};
extern struct platform_device *platform_device_register_full(
const struct platform_device_info *pdevinfo);
/**
* platform_device_register_resndata - add a platform-level device with
* resources and platform-specific data
*
* @parent: parent device for the device we're adding
* @name: base name of the device we're adding
* @id: instance id
* @res: set of resources that needs to be allocated for the device
* @num: number of resources
* @data: platform specific data for this platform device
* @size: size of platform specific data
*
* Returns &struct platform_device pointer on success, or ERR_PTR() on error.
*/
static inline struct platform_device *platform_device_register_resndata(
struct device *parent, const char *name, int id,
const struct resource *res, unsigned int num,
const void *data, size_t size) {
struct platform_device_info pdevinfo = {
.parent = parent,
.name = name,
.id = id,
.res = res,
.num_res = num,
.data = data,
.size_data = size,
.dma_mask = 0,
};
return platform_device_register_full(&pdevinfo);
}
/**
* platform_device_register_simple - add a platform-level device and its resources
* @name: base name of the device we're adding
* @id: instance id
* @res: set of resources that needs to be allocated for the device
* @num: number of resources
*
* This function creates a simple platform device that requires minimal
* resource and memory management. Canned release function freeing memory
* allocated for the device allows drivers using such devices to be
* unloaded without waiting for the last reference to the device to be
* dropped.
*
* This interface is primarily intended for use with legacy drivers which
* probe hardware directly. Because such drivers create sysfs device nodes
* themselves, rather than letting system infrastructure handle such device
* enumeration tasks, they don't fully conform to the Linux driver model.
* In particular, when such drivers are built as modules, they can't be
* "hotplugged".
*
* Returns &struct platform_device pointer on success, or ERR_PTR() on error.
*/
static inline struct platform_device *platform_device_register_simple(
const char *name, int id,
const struct resource *res, unsigned int num)
{
return platform_device_register_resndata(NULL, name, id,
res, num, NULL, 0);
}
/**
* platform_device_register_data - add a platform-level device with platform-specific data
* @parent: parent device for the device we're adding
* @name: base name of the device we're adding
* @id: instance id
* @data: platform specific data for this platform device
* @size: size of platform specific data
*
* This function creates a simple platform device that requires minimal
* resource and memory management. Canned release function freeing memory
* allocated for the device allows drivers using such devices to be
* unloaded without waiting for the last reference to the device to be
* dropped.
*
* Returns &struct platform_device pointer on success, or ERR_PTR() on error.
*/
static inline struct platform_device *platform_device_register_data(
struct device *parent, const char *name, int id,
const void *data, size_t size)
{
return platform_device_register_resndata(parent, name, id,
NULL, 0, data, size);
}
extern struct platform_device *platform_device_alloc(const char *name, int id);
extern int platform_device_add_resources(struct platform_device *pdev,
const struct resource *res,
unsigned int num);
extern int platform_device_add_data(struct platform_device *pdev,
const void *data, size_t size);
extern int platform_device_add(struct platform_device *pdev);
extern void platform_device_del(struct platform_device *pdev);
extern void platform_device_put(struct platform_device *pdev);
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*resume)(struct platform_device *);
struct device_driver driver;
const struct platform_device_id *id_table;
bool prevent_deferred_probe;
/*
* For most device drivers, no need to care about this flag as long as
* all DMAs are handled through the kernel DMA API. For some special
* ones, for example VFIO drivers, they know how to manage the DMA
* themselves and set this flag so that the IOMMU layer will allow them
* to setup and manage their own I/O address space.
*/
bool driver_managed_dma;
};
#define to_platform_driver(drv) (container_of((drv), struct platform_driver, \
driver))
/*
* use a macro to avoid include chaining to get THIS_MODULE
*/
#define platform_driver_register(drv) \
__platform_driver_register(drv, THIS_MODULE)
extern int __platform_driver_register(struct platform_driver *,
struct module *);
extern void platform_driver_unregister(struct platform_driver *);
/* non-hotpluggable platform devices may use this so that probe() and
* its support may live in __init sections, conserving runtime memory.
*/
#define platform_driver_probe(drv, probe) \
__platform_driver_probe(drv, probe, THIS_MODULE)
extern int __platform_driver_probe(struct platform_driver *driver,
int (*probe)(struct platform_device *), struct module *module);
static inline void *platform_get_drvdata(const struct platform_device *pdev)
{
return dev_get_drvdata(&pdev->dev);
}
static inline void platform_set_drvdata(struct platform_device *pdev,
void *data)
{
dev_set_drvdata(&pdev->dev, data);
}
/* module_platform_driver() - Helper macro for drivers that don't do
* anything special in module init/exit. This eliminates a lot of
* boilerplate. Each module may only use this macro once, and
* calling it replaces module_init() and module_exit()
*/
#define module_platform_driver(__platform_driver) \
module_driver(__platform_driver, platform_driver_register, \
platform_driver_unregister)
/* builtin_platform_driver() - Helper macro for builtin drivers that
* don't do anything special in driver init. This eliminates some
* boilerplate. Each driver may only use this macro once, and
* calling it replaces device_initcall(). Note this is meant to be
* a parallel of module_platform_driver() above, but w/o _exit stuff.
*/
#define builtin_platform_driver(__platform_driver) \
builtin_driver(__platform_driver, platform_driver_register)
/* module_platform_driver_probe() - Helper macro for drivers that don't do
* anything special in module init/exit. This eliminates a lot of
* boilerplate. Each module may only use this macro once, and
* calling it replaces module_init() and module_exit()
*/
#define module_platform_driver_probe(__platform_driver, __platform_probe) \
static int __init __platform_driver##_init(void) \
{ \
return platform_driver_probe(&(__platform_driver), \
__platform_probe); \
} \
module_init(__platform_driver##_init); \
static void __exit __platform_driver##_exit(void) \
{ \
platform_driver_unregister(&(__platform_driver)); \
} \
module_exit(__platform_driver##_exit);
/* builtin_platform_driver_probe() - Helper macro for drivers that don't do
* anything special in device init. This eliminates some boilerplate. Each
* driver may only use this macro once, and using it replaces device_initcall.
* This is meant to be a parallel of module_platform_driver_probe above, but
* without the __exit parts.
*/
#define builtin_platform_driver_probe(__platform_driver, __platform_probe) \
static int __init __platform_driver##_init(void) \
{ \
return platform_driver_probe(&(__platform_driver), \
__platform_probe); \
} \
device_initcall(__platform_driver##_init); \
#define platform_create_bundle(driver, probe, res, n_res, data, size) \
__platform_create_bundle(driver, probe, res, n_res, data, size, THIS_MODULE)
extern struct platform_device *__platform_create_bundle(
struct platform_driver *driver, int (*probe)(struct platform_device *),
struct resource *res, unsigned int n_res,
const void *data, size_t size, struct module *module);
int __platform_register_drivers(struct platform_driver * const *drivers,
unsigned int count, struct module *owner);
void platform_unregister_drivers(struct platform_driver * const *drivers,
unsigned int count);
#define platform_register_drivers(drivers, count) \
__platform_register_drivers(drivers, count, THIS_MODULE)
#ifdef CONFIG_SUSPEND
extern int platform_pm_suspend(struct device *dev);
extern int platform_pm_resume(struct device *dev);
#else
#define platform_pm_suspend NULL
#define platform_pm_resume NULL
#endif
#ifdef CONFIG_HIBERNATE_CALLBACKS
extern int platform_pm_freeze(struct device *dev);
extern int platform_pm_thaw(struct device *dev);
extern int platform_pm_poweroff(struct device *dev);
extern int platform_pm_restore(struct device *dev);
#else
#define platform_pm_freeze NULL
#define platform_pm_thaw NULL
#define platform_pm_poweroff NULL
#define platform_pm_restore NULL
#endif
#ifdef CONFIG_PM_SLEEP
#define USE_PLATFORM_PM_SLEEP_OPS \
.suspend = platform_pm_suspend, \
.resume = platform_pm_resume, \
.freeze = platform_pm_freeze, \
.thaw = platform_pm_thaw, \
.poweroff = platform_pm_poweroff, \
.restore = platform_pm_restore,
#else
#define USE_PLATFORM_PM_SLEEP_OPS
#endif
#ifndef CONFIG_SUPERH
/*
* REVISIT: This stub is needed for all non-SuperH users of early platform
* drivers. It should go away once we introduce the new platform_device-based
* early driver framework.
*/
static inline int is_sh_early_platform_device(struct platform_device *pdev)
{
return 0;
}
#endif /* CONFIG_SUPERH */
/* For now only SuperH uses it */
void early_platform_cleanup(void);
#endif /* _PLATFORM_DEVICE_H_ */