linux-stable/drivers/gpu/drm/amd/amdkfd/kfd_svm.c

4156 lines
114 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2020-2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/types.h>
#include <linux/sched/task.h>
#include <linux/dynamic_debug.h>
#include <drm/ttm/ttm_tt.h>
#include <drm/drm_exec.h>
#include "amdgpu_sync.h"
#include "amdgpu_object.h"
#include "amdgpu_vm.h"
#include "amdgpu_hmm.h"
#include "amdgpu.h"
#include "amdgpu_xgmi.h"
#include "kfd_priv.h"
#include "kfd_svm.h"
#include "kfd_migrate.h"
#include "kfd_smi_events.h"
#ifdef dev_fmt
#undef dev_fmt
#endif
#define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
#define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
/* Long enough to ensure no retry fault comes after svm range is restored and
* page table is updated.
*/
#define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
#define dynamic_svm_range_dump(svms) \
_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
#else
#define dynamic_svm_range_dump(svms) \
do { if (0) svm_range_debug_dump(svms); } while (0)
#endif
/* Giant svm range split into smaller ranges based on this, it is decided using
* minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
* power of 2MB.
*/
static uint64_t max_svm_range_pages;
struct criu_svm_metadata {
struct list_head list;
struct kfd_criu_svm_range_priv_data data;
};
static void svm_range_evict_svm_bo_worker(struct work_struct *work);
static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
const struct mmu_notifier_range *range,
unsigned long cur_seq);
static int
svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
uint64_t *bo_s, uint64_t *bo_l);
static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
.invalidate = svm_range_cpu_invalidate_pagetables,
};
/**
* svm_range_unlink - unlink svm_range from lists and interval tree
* @prange: svm range structure to be removed
*
* Remove the svm_range from the svms and svm_bo lists and the svms
* interval tree.
*
* Context: The caller must hold svms->lock
*/
static void svm_range_unlink(struct svm_range *prange)
{
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
prange, prange->start, prange->last);
if (prange->svm_bo) {
spin_lock(&prange->svm_bo->list_lock);
list_del(&prange->svm_bo_list);
spin_unlock(&prange->svm_bo->list_lock);
}
list_del(&prange->list);
if (prange->it_node.start != 0 && prange->it_node.last != 0)
interval_tree_remove(&prange->it_node, &prange->svms->objects);
}
static void
svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
{
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
prange, prange->start, prange->last);
mmu_interval_notifier_insert_locked(&prange->notifier, mm,
prange->start << PAGE_SHIFT,
prange->npages << PAGE_SHIFT,
&svm_range_mn_ops);
}
/**
* svm_range_add_to_svms - add svm range to svms
* @prange: svm range structure to be added
*
* Add the svm range to svms interval tree and link list
*
* Context: The caller must hold svms->lock
*/
static void svm_range_add_to_svms(struct svm_range *prange)
{
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
prange, prange->start, prange->last);
list_move_tail(&prange->list, &prange->svms->list);
prange->it_node.start = prange->start;
prange->it_node.last = prange->last;
interval_tree_insert(&prange->it_node, &prange->svms->objects);
}
static void svm_range_remove_notifier(struct svm_range *prange)
{
pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
prange->svms, prange,
prange->notifier.interval_tree.start >> PAGE_SHIFT,
prange->notifier.interval_tree.last >> PAGE_SHIFT);
if (prange->notifier.interval_tree.start != 0 &&
prange->notifier.interval_tree.last != 0)
mmu_interval_notifier_remove(&prange->notifier);
}
static bool
svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
{
return dma_addr && !dma_mapping_error(dev, dma_addr) &&
!(dma_addr & SVM_RANGE_VRAM_DOMAIN);
}
static int
svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
unsigned long offset, unsigned long npages,
unsigned long *hmm_pfns, uint32_t gpuidx)
{
enum dma_data_direction dir = DMA_BIDIRECTIONAL;
dma_addr_t *addr = prange->dma_addr[gpuidx];
struct device *dev = adev->dev;
struct page *page;
int i, r;
if (!addr) {
addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
if (!addr)
return -ENOMEM;
prange->dma_addr[gpuidx] = addr;
}
addr += offset;
for (i = 0; i < npages; i++) {
if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
page = hmm_pfn_to_page(hmm_pfns[i]);
if (is_zone_device_page(page)) {
struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
bo_adev->vm_manager.vram_base_offset -
bo_adev->kfd.pgmap.range.start;
addr[i] |= SVM_RANGE_VRAM_DOMAIN;
pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
continue;
}
addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
r = dma_mapping_error(dev, addr[i]);
if (r) {
dev_err(dev, "failed %d dma_map_page\n", r);
return r;
}
pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
addr[i] >> PAGE_SHIFT, page_to_pfn(page));
}
return 0;
}
static int
svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
unsigned long offset, unsigned long npages,
unsigned long *hmm_pfns)
{
struct kfd_process *p;
uint32_t gpuidx;
int r;
p = container_of(prange->svms, struct kfd_process, svms);
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
struct kfd_process_device *pdd;
pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
if (!pdd) {
pr_debug("failed to find device idx %d\n", gpuidx);
return -EINVAL;
}
r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
hmm_pfns, gpuidx);
if (r)
break;
}
return r;
}
void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
unsigned long offset, unsigned long npages)
{
enum dma_data_direction dir = DMA_BIDIRECTIONAL;
int i;
if (!dma_addr)
return;
for (i = offset; i < offset + npages; i++) {
if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
continue;
pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
dma_addr[i] = 0;
}
}
void svm_range_dma_unmap(struct svm_range *prange)
{
struct kfd_process_device *pdd;
dma_addr_t *dma_addr;
struct device *dev;
struct kfd_process *p;
uint32_t gpuidx;
p = container_of(prange->svms, struct kfd_process, svms);
for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
dma_addr = prange->dma_addr[gpuidx];
if (!dma_addr)
continue;
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
if (!pdd) {
pr_debug("failed to find device idx %d\n", gpuidx);
continue;
}
dev = &pdd->dev->adev->pdev->dev;
svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
}
}
static void svm_range_free(struct svm_range *prange, bool do_unmap)
{
uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
uint32_t gpuidx;
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
prange->start, prange->last);
svm_range_vram_node_free(prange);
if (do_unmap)
svm_range_dma_unmap(prange);
if (do_unmap && !p->xnack_enabled) {
pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
}
/* free dma_addr array for each gpu */
for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
if (prange->dma_addr[gpuidx]) {
kvfree(prange->dma_addr[gpuidx]);
prange->dma_addr[gpuidx] = NULL;
}
}
mutex_destroy(&prange->lock);
mutex_destroy(&prange->migrate_mutex);
kfree(prange);
}
static void
svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
uint8_t *granularity, uint32_t *flags)
{
*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
*granularity = 9;
*flags =
KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
}
static struct
svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
uint64_t last, bool update_mem_usage)
{
uint64_t size = last - start + 1;
struct svm_range *prange;
struct kfd_process *p;
prange = kzalloc(sizeof(*prange), GFP_KERNEL);
if (!prange)
return NULL;
p = container_of(svms, struct kfd_process, svms);
if (!p->xnack_enabled && update_mem_usage &&
amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
pr_info("SVM mapping failed, exceeds resident system memory limit\n");
kfree(prange);
return NULL;
}
prange->npages = size;
prange->svms = svms;
prange->start = start;
prange->last = last;
INIT_LIST_HEAD(&prange->list);
INIT_LIST_HEAD(&prange->update_list);
INIT_LIST_HEAD(&prange->svm_bo_list);
INIT_LIST_HEAD(&prange->deferred_list);
INIT_LIST_HEAD(&prange->child_list);
atomic_set(&prange->invalid, 0);
prange->validate_timestamp = 0;
prange->vram_pages = 0;
mutex_init(&prange->migrate_mutex);
mutex_init(&prange->lock);
if (p->xnack_enabled)
bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
MAX_GPU_INSTANCE);
svm_range_set_default_attributes(&prange->preferred_loc,
&prange->prefetch_loc,
&prange->granularity, &prange->flags);
pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
return prange;
}
static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
{
if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
return false;
return true;
}
static void svm_range_bo_release(struct kref *kref)
{
struct svm_range_bo *svm_bo;
svm_bo = container_of(kref, struct svm_range_bo, kref);
pr_debug("svm_bo 0x%p\n", svm_bo);
spin_lock(&svm_bo->list_lock);
while (!list_empty(&svm_bo->range_list)) {
struct svm_range *prange =
list_first_entry(&svm_bo->range_list,
struct svm_range, svm_bo_list);
/* list_del_init tells a concurrent svm_range_vram_node_new when
* it's safe to reuse the svm_bo pointer and svm_bo_list head.
*/
list_del_init(&prange->svm_bo_list);
spin_unlock(&svm_bo->list_lock);
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
prange->start, prange->last);
mutex_lock(&prange->lock);
prange->svm_bo = NULL;
/* prange should not hold vram page now */
WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
mutex_unlock(&prange->lock);
spin_lock(&svm_bo->list_lock);
}
spin_unlock(&svm_bo->list_lock);
if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
/* We're not in the eviction worker. Signal the fence. */
dma_fence_signal(&svm_bo->eviction_fence->base);
dma_fence_put(&svm_bo->eviction_fence->base);
amdgpu_bo_unref(&svm_bo->bo);
kfree(svm_bo);
}
static void svm_range_bo_wq_release(struct work_struct *work)
{
struct svm_range_bo *svm_bo;
svm_bo = container_of(work, struct svm_range_bo, release_work);
svm_range_bo_release(&svm_bo->kref);
}
static void svm_range_bo_release_async(struct kref *kref)
{
struct svm_range_bo *svm_bo;
svm_bo = container_of(kref, struct svm_range_bo, kref);
pr_debug("svm_bo 0x%p\n", svm_bo);
INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
schedule_work(&svm_bo->release_work);
}
void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
{
kref_put(&svm_bo->kref, svm_range_bo_release_async);
}
static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
{
if (svm_bo)
kref_put(&svm_bo->kref, svm_range_bo_release);
}
static bool
svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
{
mutex_lock(&prange->lock);
if (!prange->svm_bo) {
mutex_unlock(&prange->lock);
return false;
}
if (prange->ttm_res) {
/* We still have a reference, all is well */
mutex_unlock(&prange->lock);
return true;
}
if (svm_bo_ref_unless_zero(prange->svm_bo)) {
/*
* Migrate from GPU to GPU, remove range from source svm_bo->node
* range list, and return false to allocate svm_bo from destination
* node.
*/
if (prange->svm_bo->node != node) {
mutex_unlock(&prange->lock);
spin_lock(&prange->svm_bo->list_lock);
list_del_init(&prange->svm_bo_list);
spin_unlock(&prange->svm_bo->list_lock);
svm_range_bo_unref(prange->svm_bo);
return false;
}
if (READ_ONCE(prange->svm_bo->evicting)) {
struct dma_fence *f;
struct svm_range_bo *svm_bo;
/* The BO is getting evicted,
* we need to get a new one
*/
mutex_unlock(&prange->lock);
svm_bo = prange->svm_bo;
f = dma_fence_get(&svm_bo->eviction_fence->base);
svm_range_bo_unref(prange->svm_bo);
/* wait for the fence to avoid long spin-loop
* at list_empty_careful
*/
dma_fence_wait(f, false);
dma_fence_put(f);
} else {
/* The BO was still around and we got
* a new reference to it
*/
mutex_unlock(&prange->lock);
pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
prange->svms, prange->start, prange->last);
prange->ttm_res = prange->svm_bo->bo->tbo.resource;
return true;
}
} else {
mutex_unlock(&prange->lock);
}
/* We need a new svm_bo. Spin-loop to wait for concurrent
* svm_range_bo_release to finish removing this range from
* its range list and set prange->svm_bo to null. After this,
* it is safe to reuse the svm_bo pointer and svm_bo_list head.
*/
while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
cond_resched();
return false;
}
static struct svm_range_bo *svm_range_bo_new(void)
{
struct svm_range_bo *svm_bo;
svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
if (!svm_bo)
return NULL;
kref_init(&svm_bo->kref);
INIT_LIST_HEAD(&svm_bo->range_list);
spin_lock_init(&svm_bo->list_lock);
return svm_bo;
}
int
svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
bool clear)
{
struct amdgpu_bo_param bp;
struct svm_range_bo *svm_bo;
struct amdgpu_bo_user *ubo;
struct amdgpu_bo *bo;
struct kfd_process *p;
struct mm_struct *mm;
int r;
p = container_of(prange->svms, struct kfd_process, svms);
pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
prange->start, prange->last);
if (svm_range_validate_svm_bo(node, prange))
return 0;
svm_bo = svm_range_bo_new();
if (!svm_bo) {
pr_debug("failed to alloc svm bo\n");
return -ENOMEM;
}
mm = get_task_mm(p->lead_thread);
if (!mm) {
pr_debug("failed to get mm\n");
kfree(svm_bo);
return -ESRCH;
}
svm_bo->node = node;
svm_bo->eviction_fence =
amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
mm,
svm_bo);
mmput(mm);
INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
svm_bo->evicting = 0;
memset(&bp, 0, sizeof(bp));
bp.size = prange->npages * PAGE_SIZE;
bp.byte_align = PAGE_SIZE;
bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
bp.type = ttm_bo_type_device;
bp.resv = NULL;
if (node->xcp)
bp.xcp_id_plus1 = node->xcp->id + 1;
r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
if (r) {
pr_debug("failed %d to create bo\n", r);
goto create_bo_failed;
}
bo = &ubo->bo;
pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
bo->tbo.resource->start << PAGE_SHIFT, bp.size,
bp.xcp_id_plus1 - 1);
r = amdgpu_bo_reserve(bo, true);
if (r) {
pr_debug("failed %d to reserve bo\n", r);
goto reserve_bo_failed;
}
if (clear) {
r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
if (r) {
pr_debug("failed %d to sync bo\n", r);
amdgpu_bo_unreserve(bo);
goto reserve_bo_failed;
}
}
r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
if (r) {
pr_debug("failed %d to reserve bo\n", r);
amdgpu_bo_unreserve(bo);
goto reserve_bo_failed;
}
amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
amdgpu_bo_unreserve(bo);
svm_bo->bo = bo;
prange->svm_bo = svm_bo;
prange->ttm_res = bo->tbo.resource;
prange->offset = 0;
spin_lock(&svm_bo->list_lock);
list_add(&prange->svm_bo_list, &svm_bo->range_list);
spin_unlock(&svm_bo->list_lock);
return 0;
reserve_bo_failed:
amdgpu_bo_unref(&bo);
create_bo_failed:
dma_fence_put(&svm_bo->eviction_fence->base);
kfree(svm_bo);
prange->ttm_res = NULL;
return r;
}
void svm_range_vram_node_free(struct svm_range *prange)
{
/* serialize prange->svm_bo unref */
mutex_lock(&prange->lock);
/* prange->svm_bo has not been unref */
if (prange->ttm_res) {
prange->ttm_res = NULL;
mutex_unlock(&prange->lock);
svm_range_bo_unref(prange->svm_bo);
} else
mutex_unlock(&prange->lock);
}
struct kfd_node *
svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
{
struct kfd_process *p;
struct kfd_process_device *pdd;
p = container_of(prange->svms, struct kfd_process, svms);
pdd = kfd_process_device_data_by_id(p, gpu_id);
if (!pdd) {
pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
return NULL;
}
return pdd->dev;
}
struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
{
struct kfd_process *p;
p = container_of(prange->svms, struct kfd_process, svms);
return kfd_get_process_device_data(node, p);
}
static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
{
struct ttm_operation_ctx ctx = { false, false };
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
}
static int
svm_range_check_attr(struct kfd_process *p,
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
{
uint32_t i;
for (i = 0; i < nattr; i++) {
uint32_t val = attrs[i].value;
int gpuidx = MAX_GPU_INSTANCE;
switch (attrs[i].type) {
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
break;
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
break;
case KFD_IOCTL_SVM_ATTR_ACCESS:
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
break;
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
break;
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
break;
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
break;
default:
pr_debug("unknown attr type 0x%x\n", attrs[i].type);
return -EINVAL;
}
if (gpuidx < 0) {
pr_debug("no GPU 0x%x found\n", val);
return -EINVAL;
} else if (gpuidx < MAX_GPU_INSTANCE &&
!test_bit(gpuidx, p->svms.bitmap_supported)) {
pr_debug("GPU 0x%x not supported\n", val);
return -EINVAL;
}
}
return 0;
}
static void
svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
bool *update_mapping)
{
uint32_t i;
int gpuidx;
for (i = 0; i < nattr; i++) {
switch (attrs[i].type) {
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
prange->preferred_loc = attrs[i].value;
break;
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
prange->prefetch_loc = attrs[i].value;
break;
case KFD_IOCTL_SVM_ATTR_ACCESS:
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
if (!p->xnack_enabled)
*update_mapping = true;
gpuidx = kfd_process_gpuidx_from_gpuid(p,
attrs[i].value);
if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
bitmap_clear(prange->bitmap_access, gpuidx, 1);
bitmap_clear(prange->bitmap_aip, gpuidx, 1);
} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
bitmap_set(prange->bitmap_access, gpuidx, 1);
bitmap_clear(prange->bitmap_aip, gpuidx, 1);
} else {
bitmap_clear(prange->bitmap_access, gpuidx, 1);
bitmap_set(prange->bitmap_aip, gpuidx, 1);
}
break;
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
*update_mapping = true;
prange->flags |= attrs[i].value;
break;
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
*update_mapping = true;
prange->flags &= ~attrs[i].value;
break;
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
break;
default:
WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
}
}
}
static bool
svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
{
uint32_t i;
int gpuidx;
for (i = 0; i < nattr; i++) {
switch (attrs[i].type) {
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
if (prange->preferred_loc != attrs[i].value)
return false;
break;
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
/* Prefetch should always trigger a migration even
* if the value of the attribute didn't change.
*/
return false;
case KFD_IOCTL_SVM_ATTR_ACCESS:
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
gpuidx = kfd_process_gpuidx_from_gpuid(p,
attrs[i].value);
if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
if (test_bit(gpuidx, prange->bitmap_access) ||
test_bit(gpuidx, prange->bitmap_aip))
return false;
} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
if (!test_bit(gpuidx, prange->bitmap_access))
return false;
} else {
if (!test_bit(gpuidx, prange->bitmap_aip))
return false;
}
break;
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
if ((prange->flags & attrs[i].value) != attrs[i].value)
return false;
break;
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
if ((prange->flags & attrs[i].value) != 0)
return false;
break;
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
if (prange->granularity != attrs[i].value)
return false;
break;
default:
WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
}
}
return true;
}
/**
* svm_range_debug_dump - print all range information from svms
* @svms: svm range list header
*
* debug output svm range start, end, prefetch location from svms
* interval tree and link list
*
* Context: The caller must hold svms->lock
*/
static void svm_range_debug_dump(struct svm_range_list *svms)
{
struct interval_tree_node *node;
struct svm_range *prange;
pr_debug("dump svms 0x%p list\n", svms);
pr_debug("range\tstart\tpage\tend\t\tlocation\n");
list_for_each_entry(prange, &svms->list, list) {
pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
prange, prange->start, prange->npages,
prange->start + prange->npages - 1,
prange->actual_loc);
}
pr_debug("dump svms 0x%p interval tree\n", svms);
pr_debug("range\tstart\tpage\tend\t\tlocation\n");
node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
while (node) {
prange = container_of(node, struct svm_range, it_node);
pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
prange, prange->start, prange->npages,
prange->start + prange->npages - 1,
prange->actual_loc);
node = interval_tree_iter_next(node, 0, ~0ULL);
}
}
static void *
svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
uint64_t offset, uint64_t *vram_pages)
{
unsigned char *src = (unsigned char *)psrc + offset;
unsigned char *dst;
uint64_t i;
dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
if (!dst)
return NULL;
if (!vram_pages) {
memcpy(dst, src, num_elements * size);
return (void *)dst;
}
*vram_pages = 0;
for (i = 0; i < num_elements; i++) {
dma_addr_t *temp;
temp = (dma_addr_t *)dst + i;
*temp = *((dma_addr_t *)src + i);
if (*temp&SVM_RANGE_VRAM_DOMAIN)
(*vram_pages)++;
}
return (void *)dst;
}
static int
svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
{
int i;
for (i = 0; i < MAX_GPU_INSTANCE; i++) {
if (!src->dma_addr[i])
continue;
dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
if (!dst->dma_addr[i])
return -ENOMEM;
}
return 0;
}
static int
svm_range_split_array(void *ppnew, void *ppold, size_t size,
uint64_t old_start, uint64_t old_n,
uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
{
unsigned char *new, *old, *pold;
uint64_t d;
if (!ppold)
return 0;
pold = *(unsigned char **)ppold;
if (!pold)
return 0;
d = (new_start - old_start) * size;
/* get dma addr array for new range and calculte its vram page number */
new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
if (!new)
return -ENOMEM;
d = (new_start == old_start) ? new_n * size : 0;
old = svm_range_copy_array(pold, size, old_n, d, NULL);
if (!old) {
kvfree(new);
return -ENOMEM;
}
kvfree(pold);
*(void **)ppold = old;
*(void **)ppnew = new;
return 0;
}
static int
svm_range_split_pages(struct svm_range *new, struct svm_range *old,
uint64_t start, uint64_t last)
{
uint64_t npages = last - start + 1;
int i, r;
for (i = 0; i < MAX_GPU_INSTANCE; i++) {
r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
sizeof(*old->dma_addr[i]), old->start,
npages, new->start, new->npages,
old->actual_loc ? &new->vram_pages : NULL);
if (r)
return r;
}
if (old->actual_loc)
old->vram_pages -= new->vram_pages;
return 0;
}
static int
svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
uint64_t start, uint64_t last)
{
uint64_t npages = last - start + 1;
pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
new->svms, new, new->start, start, last);
if (new->start == old->start) {
new->offset = old->offset;
old->offset += new->npages;
} else {
new->offset = old->offset + npages;
}
new->svm_bo = svm_range_bo_ref(old->svm_bo);
new->ttm_res = old->ttm_res;
spin_lock(&new->svm_bo->list_lock);
list_add(&new->svm_bo_list, &new->svm_bo->range_list);
spin_unlock(&new->svm_bo->list_lock);
return 0;
}
/**
* svm_range_split_adjust - split range and adjust
*
* @new: new range
* @old: the old range
* @start: the old range adjust to start address in pages
* @last: the old range adjust to last address in pages
*
* Copy system memory dma_addr or vram ttm_res in old range to new
* range from new_start up to size new->npages, the remaining old range is from
* start to last
*
* Return:
* 0 - OK, -ENOMEM - out of memory
*/
static int
svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
uint64_t start, uint64_t last)
{
int r;
pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
new->svms, new->start, old->start, old->last, start, last);
if (new->start < old->start ||
new->last > old->last) {
WARN_ONCE(1, "invalid new range start or last\n");
return -EINVAL;
}
r = svm_range_split_pages(new, old, start, last);
if (r)
return r;
if (old->actual_loc && old->ttm_res) {
r = svm_range_split_nodes(new, old, start, last);
if (r)
return r;
}
old->npages = last - start + 1;
old->start = start;
old->last = last;
new->flags = old->flags;
new->preferred_loc = old->preferred_loc;
new->prefetch_loc = old->prefetch_loc;
new->actual_loc = old->actual_loc;
new->granularity = old->granularity;
new->mapped_to_gpu = old->mapped_to_gpu;
bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
return 0;
}
/**
* svm_range_split - split a range in 2 ranges
*
* @prange: the svm range to split
* @start: the remaining range start address in pages
* @last: the remaining range last address in pages
* @new: the result new range generated
*
* Two cases only:
* case 1: if start == prange->start
* prange ==> prange[start, last]
* new range [last + 1, prange->last]
*
* case 2: if last == prange->last
* prange ==> prange[start, last]
* new range [prange->start, start - 1]
*
* Return:
* 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
*/
static int
svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
struct svm_range **new)
{
uint64_t old_start = prange->start;
uint64_t old_last = prange->last;
struct svm_range_list *svms;
int r = 0;
pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
old_start, old_last, start, last);
if (old_start != start && old_last != last)
return -EINVAL;
if (start < old_start || last > old_last)
return -EINVAL;
svms = prange->svms;
if (old_start == start)
*new = svm_range_new(svms, last + 1, old_last, false);
else
*new = svm_range_new(svms, old_start, start - 1, false);
if (!*new)
return -ENOMEM;
r = svm_range_split_adjust(*new, prange, start, last);
if (r) {
pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
r, old_start, old_last, start, last);
svm_range_free(*new, false);
*new = NULL;
}
return r;
}
static int
svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
struct list_head *insert_list, struct list_head *remap_list)
{
struct svm_range *tail = NULL;
int r = svm_range_split(prange, prange->start, new_last, &tail);
if (!r) {
list_add(&tail->list, insert_list);
if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
list_add(&tail->update_list, remap_list);
}
return r;
}
static int
svm_range_split_head(struct svm_range *prange, uint64_t new_start,
struct list_head *insert_list, struct list_head *remap_list)
{
struct svm_range *head = NULL;
int r = svm_range_split(prange, new_start, prange->last, &head);
if (!r) {
list_add(&head->list, insert_list);
if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
list_add(&head->update_list, remap_list);
}
return r;
}
static void
svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
struct svm_range *pchild, enum svm_work_list_ops op)
{
pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
pchild, pchild->start, pchild->last, prange, op);
pchild->work_item.mm = mm;
pchild->work_item.op = op;
list_add_tail(&pchild->child_list, &prange->child_list);
}
static bool
svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
{
return (node_a->adev == node_b->adev ||
amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
}
static uint64_t
svm_range_get_pte_flags(struct kfd_node *node,
struct svm_range *prange, int domain)
{
struct kfd_node *bo_node;
uint32_t flags = prange->flags;
uint32_t mapping_flags = 0;
uint64_t pte_flags;
bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
unsigned int mtype_local;
if (domain == SVM_RANGE_VRAM_DOMAIN)
bo_node = prange->svm_bo->node;
switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
case IP_VERSION(9, 4, 1):
if (domain == SVM_RANGE_VRAM_DOMAIN) {
if (bo_node == node) {
mapping_flags |= coherent ?
AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
} else {
mapping_flags |= coherent ?
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
if (svm_nodes_in_same_hive(node, bo_node))
snoop = true;
}
} else {
mapping_flags |= coherent ?
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
}
break;
case IP_VERSION(9, 4, 2):
if (domain == SVM_RANGE_VRAM_DOMAIN) {
if (bo_node == node) {
mapping_flags |= coherent ?
AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
if (node->adev->gmc.xgmi.connected_to_cpu)
snoop = true;
} else {
mapping_flags |= coherent ?
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
if (svm_nodes_in_same_hive(node, bo_node))
snoop = true;
}
} else {
mapping_flags |= coherent ?
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
}
break;
case IP_VERSION(9, 4, 3):
if (ext_coherent)
mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
else
mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
snoop = true;
if (uncached) {
mapping_flags |= AMDGPU_VM_MTYPE_UC;
} else if (domain == SVM_RANGE_VRAM_DOMAIN) {
/* local HBM region close to partition */
if (bo_node->adev == node->adev &&
(!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
mapping_flags |= mtype_local;
/* local HBM region far from partition or remote XGMI GPU
* with regular system scope coherence
*/
else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
mapping_flags |= AMDGPU_VM_MTYPE_NC;
/* PCIe P2P or extended system scope coherence */
else
mapping_flags |= AMDGPU_VM_MTYPE_UC;
/* system memory accessed by the APU */
} else if (node->adev->flags & AMD_IS_APU) {
/* On NUMA systems, locality is determined per-page
* in amdgpu_gmc_override_vm_pte_flags
*/
if (num_possible_nodes() <= 1)
mapping_flags |= mtype_local;
else
mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
/* system memory accessed by the dGPU */
} else {
mapping_flags |= AMDGPU_VM_MTYPE_UC;
}
break;
default:
mapping_flags |= coherent ?
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
}
mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
pte_flags = AMDGPU_PTE_VALID;
pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
return pte_flags;
}
static int
svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
uint64_t start, uint64_t last,
struct dma_fence **fence)
{
uint64_t init_pte_value = 0;
pr_debug("[0x%llx 0x%llx]\n", start, last);
return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
last, init_pte_value, 0, 0, NULL, NULL,
fence);
}
static int
svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
unsigned long last, uint32_t trigger)
{
DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
struct kfd_process_device *pdd;
struct dma_fence *fence = NULL;
struct kfd_process *p;
uint32_t gpuidx;
int r = 0;
if (!prange->mapped_to_gpu) {
pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
prange, prange->start, prange->last);
return 0;
}
if (prange->start == start && prange->last == last) {
pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
prange->mapped_to_gpu = false;
}
bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
MAX_GPU_INSTANCE);
p = container_of(prange->svms, struct kfd_process, svms);
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
if (!pdd) {
pr_debug("failed to find device idx %d\n", gpuidx);
return -EINVAL;
}
kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
start, last, trigger);
r = svm_range_unmap_from_gpu(pdd->dev->adev,
drm_priv_to_vm(pdd->drm_priv),
start, last, &fence);
if (r)
break;
if (fence) {
r = dma_fence_wait(fence, false);
dma_fence_put(fence);
fence = NULL;
if (r)
break;
}
kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
}
return r;
}
static int
svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
unsigned long offset, unsigned long npages, bool readonly,
dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
struct dma_fence **fence, bool flush_tlb)
{
struct amdgpu_device *adev = pdd->dev->adev;
struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
uint64_t pte_flags;
unsigned long last_start;
int last_domain;
int r = 0;
int64_t i, j;
last_start = prange->start + offset;
pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
last_start, last_start + npages - 1, readonly);
for (i = offset; i < offset + npages; i++) {
last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
/* Collect all pages in the same address range and memory domain
* that can be mapped with a single call to update mapping.
*/
if (i < offset + npages - 1 &&
last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
continue;
pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
last_start, prange->start + i, last_domain ? "GPU" : "CPU");
pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
if (readonly)
pte_flags &= ~AMDGPU_PTE_WRITEABLE;
pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
prange->svms, last_start, prange->start + i,
(last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
pte_flags);
/* For dGPU mode, we use same vm_manager to allocate VRAM for
* different memory partition based on fpfn/lpfn, we should use
* same vm_manager.vram_base_offset regardless memory partition.
*/
r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
NULL, last_start, prange->start + i,
pte_flags,
(last_start - prange->start) << PAGE_SHIFT,
bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
NULL, dma_addr, &vm->last_update);
for (j = last_start - prange->start; j <= i; j++)
dma_addr[j] |= last_domain;
if (r) {
pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
goto out;
}
last_start = prange->start + i + 1;
}
r = amdgpu_vm_update_pdes(adev, vm, false);
if (r) {
pr_debug("failed %d to update directories 0x%lx\n", r,
prange->start);
goto out;
}
if (fence)
*fence = dma_fence_get(vm->last_update);
out:
return r;
}
static int
svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
unsigned long npages, bool readonly,
unsigned long *bitmap, bool wait, bool flush_tlb)
{
struct kfd_process_device *pdd;
struct amdgpu_device *bo_adev = NULL;
struct kfd_process *p;
struct dma_fence *fence = NULL;
uint32_t gpuidx;
int r = 0;
if (prange->svm_bo && prange->ttm_res)
bo_adev = prange->svm_bo->node->adev;
p = container_of(prange->svms, struct kfd_process, svms);
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
if (!pdd) {
pr_debug("failed to find device idx %d\n", gpuidx);
return -EINVAL;
}
pdd = kfd_bind_process_to_device(pdd->dev, p);
if (IS_ERR(pdd))
return -EINVAL;
if (bo_adev && pdd->dev->adev != bo_adev &&
!amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
pr_debug("cannot map to device idx %d\n", gpuidx);
continue;
}
r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
prange->dma_addr[gpuidx],
bo_adev, wait ? &fence : NULL,
flush_tlb);
if (r)
break;
if (fence) {
r = dma_fence_wait(fence, false);
dma_fence_put(fence);
fence = NULL;
if (r) {
pr_debug("failed %d to dma fence wait\n", r);
break;
}
}
kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
}
return r;
}
struct svm_validate_context {
struct kfd_process *process;
struct svm_range *prange;
bool intr;
DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
struct drm_exec exec;
};
static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
{
struct kfd_process_device *pdd;
struct amdgpu_vm *vm;
uint32_t gpuidx;
int r;
drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
drm_exec_until_all_locked(&ctx->exec) {
for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
if (!pdd) {
pr_debug("failed to find device idx %d\n", gpuidx);
r = -EINVAL;
goto unreserve_out;
}
vm = drm_priv_to_vm(pdd->drm_priv);
r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
drm_exec_retry_on_contention(&ctx->exec);
if (unlikely(r)) {
pr_debug("failed %d to reserve bo\n", r);
goto unreserve_out;
}
}
}
for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
if (!pdd) {
pr_debug("failed to find device idx %d\n", gpuidx);
r = -EINVAL;
goto unreserve_out;
}
r = amdgpu_vm_validate(pdd->dev->adev,
drm_priv_to_vm(pdd->drm_priv), NULL,
svm_range_bo_validate, NULL);
if (r) {
pr_debug("failed %d validate pt bos\n", r);
goto unreserve_out;
}
}
return 0;
unreserve_out:
drm_exec_fini(&ctx->exec);
return r;
}
static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
{
drm_exec_fini(&ctx->exec);
}
static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
{
struct kfd_process_device *pdd;
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
if (!pdd)
return NULL;
return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
}
/*
* Validation+GPU mapping with concurrent invalidation (MMU notifiers)
*
* To prevent concurrent destruction or change of range attributes, the
* svm_read_lock must be held. The caller must not hold the svm_write_lock
* because that would block concurrent evictions and lead to deadlocks. To
* serialize concurrent migrations or validations of the same range, the
* prange->migrate_mutex must be held.
*
* For VRAM ranges, the SVM BO must be allocated and valid (protected by its
* eviction fence.
*
* The following sequence ensures race-free validation and GPU mapping:
*
* 1. Reserve page table (and SVM BO if range is in VRAM)
* 2. hmm_range_fault to get page addresses (if system memory)
* 3. DMA-map pages (if system memory)
* 4-a. Take notifier lock
* 4-b. Check that pages still valid (mmu_interval_read_retry)
* 4-c. Check that the range was not split or otherwise invalidated
* 4-d. Update GPU page table
* 4.e. Release notifier lock
* 5. Release page table (and SVM BO) reservation
*/
static int svm_range_validate_and_map(struct mm_struct *mm,
unsigned long map_start, unsigned long map_last,
struct svm_range *prange, int32_t gpuidx,
bool intr, bool wait, bool flush_tlb)
{
struct svm_validate_context *ctx;
unsigned long start, end, addr;
struct kfd_process *p;
void *owner;
int32_t idx;
int r = 0;
ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->process = container_of(prange->svms, struct kfd_process, svms);
ctx->prange = prange;
ctx->intr = intr;
if (gpuidx < MAX_GPU_INSTANCE) {
bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
bitmap_set(ctx->bitmap, gpuidx, 1);
} else if (ctx->process->xnack_enabled) {
bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
/* If prefetch range to GPU, or GPU retry fault migrate range to
* GPU, which has ACCESS attribute to the range, create mapping
* on that GPU.
*/
if (prange->actual_loc) {
gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
prange->actual_loc);
if (gpuidx < 0) {
WARN_ONCE(1, "failed get device by id 0x%x\n",
prange->actual_loc);
r = -EINVAL;
goto free_ctx;
}
if (test_bit(gpuidx, prange->bitmap_access))
bitmap_set(ctx->bitmap, gpuidx, 1);
}
/*
* If prange is already mapped or with always mapped flag,
* update mapping on GPUs with ACCESS attribute
*/
if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
if (prange->mapped_to_gpu ||
prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
}
} else {
bitmap_or(ctx->bitmap, prange->bitmap_access,
prange->bitmap_aip, MAX_GPU_INSTANCE);
}
if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
r = 0;
goto free_ctx;
}
if (prange->actual_loc && !prange->ttm_res) {
/* This should never happen. actual_loc gets set by
* svm_migrate_ram_to_vram after allocating a BO.
*/
WARN_ONCE(1, "VRAM BO missing during validation\n");
r = -EINVAL;
goto free_ctx;
}
r = svm_range_reserve_bos(ctx, intr);
if (r)
goto free_ctx;
p = container_of(prange->svms, struct kfd_process, svms);
owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
MAX_GPU_INSTANCE));
for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
if (kfd_svm_page_owner(p, idx) != owner) {
owner = NULL;
break;
}
}
start = map_start << PAGE_SHIFT;
end = (map_last + 1) << PAGE_SHIFT;
for (addr = start; !r && addr < end; ) {
struct hmm_range *hmm_range;
unsigned long map_start_vma;
unsigned long map_last_vma;
struct vm_area_struct *vma;
unsigned long next = 0;
unsigned long offset;
unsigned long npages;
bool readonly;
vma = vma_lookup(mm, addr);
if (vma) {
readonly = !(vma->vm_flags & VM_WRITE);
next = min(vma->vm_end, end);
npages = (next - addr) >> PAGE_SHIFT;
WRITE_ONCE(p->svms.faulting_task, current);
r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
readonly, owner, NULL,
&hmm_range);
WRITE_ONCE(p->svms.faulting_task, NULL);
if (r) {
pr_debug("failed %d to get svm range pages\n", r);
if (r == -EBUSY)
r = -EAGAIN;
}
} else {
r = -EFAULT;
}
if (!r) {
offset = (addr >> PAGE_SHIFT) - prange->start;
r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
hmm_range->hmm_pfns);
if (r)
pr_debug("failed %d to dma map range\n", r);
}
svm_range_lock(prange);
if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
pr_debug("hmm update the range, need validate again\n");
r = -EAGAIN;
}
if (!r && !list_empty(&prange->child_list)) {
pr_debug("range split by unmap in parallel, validate again\n");
r = -EAGAIN;
}
if (!r) {
map_start_vma = max(map_start, prange->start + offset);
map_last_vma = min(map_last, prange->start + offset + npages - 1);
if (map_start_vma <= map_last_vma) {
offset = map_start_vma - prange->start;
npages = map_last_vma - map_start_vma + 1;
r = svm_range_map_to_gpus(prange, offset, npages, readonly,
ctx->bitmap, wait, flush_tlb);
}
}
if (!r && next == end)
prange->mapped_to_gpu = true;
svm_range_unlock(prange);
addr = next;
}
svm_range_unreserve_bos(ctx);
if (!r)
prange->validate_timestamp = ktime_get_boottime();
free_ctx:
kfree(ctx);
return r;
}
/**
* svm_range_list_lock_and_flush_work - flush pending deferred work
*
* @svms: the svm range list
* @mm: the mm structure
*
* Context: Returns with mmap write lock held, pending deferred work flushed
*
*/
void
svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
struct mm_struct *mm)
{
retry_flush_work:
flush_work(&svms->deferred_list_work);
mmap_write_lock(mm);
if (list_empty(&svms->deferred_range_list))
return;
mmap_write_unlock(mm);
pr_debug("retry flush\n");
goto retry_flush_work;
}
static void svm_range_restore_work(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct amdkfd_process_info *process_info;
struct svm_range_list *svms;
struct svm_range *prange;
struct kfd_process *p;
struct mm_struct *mm;
int evicted_ranges;
int invalid;
int r;
svms = container_of(dwork, struct svm_range_list, restore_work);
evicted_ranges = atomic_read(&svms->evicted_ranges);
if (!evicted_ranges)
return;
pr_debug("restore svm ranges\n");
p = container_of(svms, struct kfd_process, svms);
process_info = p->kgd_process_info;
/* Keep mm reference when svm_range_validate_and_map ranges */
mm = get_task_mm(p->lead_thread);
if (!mm) {
pr_debug("svms 0x%p process mm gone\n", svms);
return;
}
mutex_lock(&process_info->lock);
svm_range_list_lock_and_flush_work(svms, mm);
mutex_lock(&svms->lock);
evicted_ranges = atomic_read(&svms->evicted_ranges);
list_for_each_entry(prange, &svms->list, list) {
invalid = atomic_read(&prange->invalid);
if (!invalid)
continue;
pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
prange->svms, prange, prange->start, prange->last,
invalid);
/*
* If range is migrating, wait for migration is done.
*/
mutex_lock(&prange->migrate_mutex);
r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
MAX_GPU_INSTANCE, false, true, false);
if (r)
pr_debug("failed %d to map 0x%lx to gpus\n", r,
prange->start);
mutex_unlock(&prange->migrate_mutex);
if (r)
goto out_reschedule;
if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
goto out_reschedule;
}
if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
evicted_ranges)
goto out_reschedule;
evicted_ranges = 0;
r = kgd2kfd_resume_mm(mm);
if (r) {
/* No recovery from this failure. Probably the CP is
* hanging. No point trying again.
*/
pr_debug("failed %d to resume KFD\n", r);
}
pr_debug("restore svm ranges successfully\n");
out_reschedule:
mutex_unlock(&svms->lock);
mmap_write_unlock(mm);
mutex_unlock(&process_info->lock);
/* If validation failed, reschedule another attempt */
if (evicted_ranges) {
pr_debug("reschedule to restore svm range\n");
queue_delayed_work(system_freezable_wq, &svms->restore_work,
msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
kfd_smi_event_queue_restore_rescheduled(mm);
}
mmput(mm);
}
/**
* svm_range_evict - evict svm range
* @prange: svm range structure
* @mm: current process mm_struct
* @start: starting process queue number
* @last: last process queue number
* @event: mmu notifier event when range is evicted or migrated
*
* Stop all queues of the process to ensure GPU doesn't access the memory, then
* return to let CPU evict the buffer and proceed CPU pagetable update.
*
* Don't need use lock to sync cpu pagetable invalidation with GPU execution.
* If invalidation happens while restore work is running, restore work will
* restart to ensure to get the latest CPU pages mapping to GPU, then start
* the queues.
*/
static int
svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
unsigned long start, unsigned long last,
enum mmu_notifier_event event)
{
struct svm_range_list *svms = prange->svms;
struct svm_range *pchild;
struct kfd_process *p;
int r = 0;
p = container_of(svms, struct kfd_process, svms);
pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
svms, prange->start, prange->last, start, last);
if (!p->xnack_enabled ||
(prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
int evicted_ranges;
bool mapped = prange->mapped_to_gpu;
list_for_each_entry(pchild, &prange->child_list, child_list) {
if (!pchild->mapped_to_gpu)
continue;
mapped = true;
mutex_lock_nested(&pchild->lock, 1);
if (pchild->start <= last && pchild->last >= start) {
pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
pchild->start, pchild->last);
atomic_inc(&pchild->invalid);
}
mutex_unlock(&pchild->lock);
}
if (!mapped)
return r;
if (prange->start <= last && prange->last >= start)
atomic_inc(&prange->invalid);
evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
if (evicted_ranges != 1)
return r;
pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
prange->svms, prange->start, prange->last);
/* First eviction, stop the queues */
r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
if (r)
pr_debug("failed to quiesce KFD\n");
pr_debug("schedule to restore svm %p ranges\n", svms);
queue_delayed_work(system_freezable_wq, &svms->restore_work,
msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
} else {
unsigned long s, l;
uint32_t trigger;
if (event == MMU_NOTIFY_MIGRATE)
trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
else
trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
prange->svms, start, last);
list_for_each_entry(pchild, &prange->child_list, child_list) {
mutex_lock_nested(&pchild->lock, 1);
s = max(start, pchild->start);
l = min(last, pchild->last);
if (l >= s)
svm_range_unmap_from_gpus(pchild, s, l, trigger);
mutex_unlock(&pchild->lock);
}
s = max(start, prange->start);
l = min(last, prange->last);
if (l >= s)
svm_range_unmap_from_gpus(prange, s, l, trigger);
}
return r;
}
static struct svm_range *svm_range_clone(struct svm_range *old)
{
struct svm_range *new;
new = svm_range_new(old->svms, old->start, old->last, false);
if (!new)
return NULL;
if (svm_range_copy_dma_addrs(new, old)) {
svm_range_free(new, false);
return NULL;
}
if (old->svm_bo) {
new->ttm_res = old->ttm_res;
new->offset = old->offset;
new->svm_bo = svm_range_bo_ref(old->svm_bo);
spin_lock(&new->svm_bo->list_lock);
list_add(&new->svm_bo_list, &new->svm_bo->range_list);
spin_unlock(&new->svm_bo->list_lock);
}
new->flags = old->flags;
new->preferred_loc = old->preferred_loc;
new->prefetch_loc = old->prefetch_loc;
new->actual_loc = old->actual_loc;
new->granularity = old->granularity;
new->mapped_to_gpu = old->mapped_to_gpu;
new->vram_pages = old->vram_pages;
bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
return new;
}
void svm_range_set_max_pages(struct amdgpu_device *adev)
{
uint64_t max_pages;
uint64_t pages, _pages;
uint64_t min_pages = 0;
int i, id;
for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
if (adev->kfd.dev->nodes[i]->xcp)
id = adev->kfd.dev->nodes[i]->xcp->id;
else
id = -1;
pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
pages = clamp(pages, 1ULL << 9, 1ULL << 18);
pages = rounddown_pow_of_two(pages);
min_pages = min_not_zero(min_pages, pages);
}
do {
max_pages = READ_ONCE(max_svm_range_pages);
_pages = min_not_zero(max_pages, min_pages);
} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
}
static int
svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
uint64_t max_pages, struct list_head *insert_list,
struct list_head *update_list)
{
struct svm_range *prange;
uint64_t l;
pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
max_pages, start, last);
while (last >= start) {
l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
prange = svm_range_new(svms, start, l, true);
if (!prange)
return -ENOMEM;
list_add(&prange->list, insert_list);
list_add(&prange->update_list, update_list);
start = l + 1;
}
return 0;
}
/**
* svm_range_add - add svm range and handle overlap
* @p: the range add to this process svms
* @start: page size aligned
* @size: page size aligned
* @nattr: number of attributes
* @attrs: array of attributes
* @update_list: output, the ranges need validate and update GPU mapping
* @insert_list: output, the ranges need insert to svms
* @remove_list: output, the ranges are replaced and need remove from svms
* @remap_list: output, remap unaligned svm ranges
*
* Check if the virtual address range has overlap with any existing ranges,
* split partly overlapping ranges and add new ranges in the gaps. All changes
* should be applied to the range_list and interval tree transactionally. If
* any range split or allocation fails, the entire update fails. Therefore any
* existing overlapping svm_ranges are cloned and the original svm_ranges left
* unchanged.
*
* If the transaction succeeds, the caller can update and insert clones and
* new ranges, then free the originals.
*
* Otherwise the caller can free the clones and new ranges, while the old
* svm_ranges remain unchanged.
*
* Context: Process context, caller must hold svms->lock
*
* Return:
* 0 - OK, otherwise error code
*/
static int
svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
struct list_head *update_list, struct list_head *insert_list,
struct list_head *remove_list, struct list_head *remap_list)
{
unsigned long last = start + size - 1UL;
struct svm_range_list *svms = &p->svms;
struct interval_tree_node *node;
struct svm_range *prange;
struct svm_range *tmp;
struct list_head new_list;
int r = 0;
pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
INIT_LIST_HEAD(update_list);
INIT_LIST_HEAD(insert_list);
INIT_LIST_HEAD(remove_list);
INIT_LIST_HEAD(&new_list);
INIT_LIST_HEAD(remap_list);
node = interval_tree_iter_first(&svms->objects, start, last);
while (node) {
struct interval_tree_node *next;
unsigned long next_start;
pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
node->last);
prange = container_of(node, struct svm_range, it_node);
next = interval_tree_iter_next(node, start, last);
next_start = min(node->last, last) + 1;
if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
prange->mapped_to_gpu) {
/* nothing to do */
} else if (node->start < start || node->last > last) {
/* node intersects the update range and its attributes
* will change. Clone and split it, apply updates only
* to the overlapping part
*/
struct svm_range *old = prange;
prange = svm_range_clone(old);
if (!prange) {
r = -ENOMEM;
goto out;
}
list_add(&old->update_list, remove_list);
list_add(&prange->list, insert_list);
list_add(&prange->update_list, update_list);
if (node->start < start) {
pr_debug("change old range start\n");
r = svm_range_split_head(prange, start,
insert_list, remap_list);
if (r)
goto out;
}
if (node->last > last) {
pr_debug("change old range last\n");
r = svm_range_split_tail(prange, last,
insert_list, remap_list);
if (r)
goto out;
}
} else {
/* The node is contained within start..last,
* just update it
*/
list_add(&prange->update_list, update_list);
}
/* insert a new node if needed */
if (node->start > start) {
r = svm_range_split_new(svms, start, node->start - 1,
READ_ONCE(max_svm_range_pages),
&new_list, update_list);
if (r)
goto out;
}
node = next;
start = next_start;
}
/* add a final range at the end if needed */
if (start <= last)
r = svm_range_split_new(svms, start, last,
READ_ONCE(max_svm_range_pages),
&new_list, update_list);
out:
if (r) {
list_for_each_entry_safe(prange, tmp, insert_list, list)
svm_range_free(prange, false);
list_for_each_entry_safe(prange, tmp, &new_list, list)
svm_range_free(prange, true);
} else {
list_splice(&new_list, insert_list);
}
return r;
}
static void
svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
struct svm_range *prange)
{
unsigned long start;
unsigned long last;
start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
if (prange->start == start && prange->last == last)
return;
pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
prange->svms, prange, start, last, prange->start,
prange->last);
if (start != 0 && last != 0) {
interval_tree_remove(&prange->it_node, &prange->svms->objects);
svm_range_remove_notifier(prange);
}
prange->it_node.start = prange->start;
prange->it_node.last = prange->last;
interval_tree_insert(&prange->it_node, &prange->svms->objects);
svm_range_add_notifier_locked(mm, prange);
}
static void
svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
struct mm_struct *mm)
{
switch (prange->work_item.op) {
case SVM_OP_NULL:
pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
svms, prange, prange->start, prange->last);
break;
case SVM_OP_UNMAP_RANGE:
pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
svms, prange, prange->start, prange->last);
svm_range_unlink(prange);
svm_range_remove_notifier(prange);
svm_range_free(prange, true);
break;
case SVM_OP_UPDATE_RANGE_NOTIFIER:
pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
svms, prange, prange->start, prange->last);
svm_range_update_notifier_and_interval_tree(mm, prange);
break;
case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
svms, prange, prange->start, prange->last);
svm_range_update_notifier_and_interval_tree(mm, prange);
/* TODO: implement deferred validation and mapping */
break;
case SVM_OP_ADD_RANGE:
pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
prange->start, prange->last);
svm_range_add_to_svms(prange);
svm_range_add_notifier_locked(mm, prange);
break;
case SVM_OP_ADD_RANGE_AND_MAP:
pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
prange, prange->start, prange->last);
svm_range_add_to_svms(prange);
svm_range_add_notifier_locked(mm, prange);
/* TODO: implement deferred validation and mapping */
break;
default:
WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
prange->work_item.op);
}
}
static void svm_range_drain_retry_fault(struct svm_range_list *svms)
{
struct kfd_process_device *pdd;
struct kfd_process *p;
int drain;
uint32_t i;
p = container_of(svms, struct kfd_process, svms);
restart:
drain = atomic_read(&svms->drain_pagefaults);
if (!drain)
return;
for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
pdd = p->pdds[i];
if (!pdd)
continue;
pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
pdd->dev->adev->irq.retry_cam_enabled ?
&pdd->dev->adev->irq.ih :
&pdd->dev->adev->irq.ih1);
if (pdd->dev->adev->irq.retry_cam_enabled)
amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
&pdd->dev->adev->irq.ih_soft);
pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
}
if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
goto restart;
}
static void svm_range_deferred_list_work(struct work_struct *work)
{
struct svm_range_list *svms;
struct svm_range *prange;
struct mm_struct *mm;
svms = container_of(work, struct svm_range_list, deferred_list_work);
pr_debug("enter svms 0x%p\n", svms);
spin_lock(&svms->deferred_list_lock);
while (!list_empty(&svms->deferred_range_list)) {
prange = list_first_entry(&svms->deferred_range_list,
struct svm_range, deferred_list);
spin_unlock(&svms->deferred_list_lock);
pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
prange->start, prange->last, prange->work_item.op);
mm = prange->work_item.mm;
retry:
mmap_write_lock(mm);
/* Checking for the need to drain retry faults must be inside
* mmap write lock to serialize with munmap notifiers.
*/
if (unlikely(atomic_read(&svms->drain_pagefaults))) {
mmap_write_unlock(mm);
svm_range_drain_retry_fault(svms);
goto retry;
}
/* Remove from deferred_list must be inside mmap write lock, for
* two race cases:
* 1. unmap_from_cpu may change work_item.op and add the range
* to deferred_list again, cause use after free bug.
* 2. svm_range_list_lock_and_flush_work may hold mmap write
* lock and continue because deferred_list is empty, but
* deferred_list work is actually waiting for mmap lock.
*/
spin_lock(&svms->deferred_list_lock);
list_del_init(&prange->deferred_list);
spin_unlock(&svms->deferred_list_lock);
mutex_lock(&svms->lock);
mutex_lock(&prange->migrate_mutex);
while (!list_empty(&prange->child_list)) {
struct svm_range *pchild;
pchild = list_first_entry(&prange->child_list,
struct svm_range, child_list);
pr_debug("child prange 0x%p op %d\n", pchild,
pchild->work_item.op);
list_del_init(&pchild->child_list);
svm_range_handle_list_op(svms, pchild, mm);
}
mutex_unlock(&prange->migrate_mutex);
svm_range_handle_list_op(svms, prange, mm);
mutex_unlock(&svms->lock);
mmap_write_unlock(mm);
/* Pairs with mmget in svm_range_add_list_work. If dropping the
* last mm refcount, schedule release work to avoid circular locking
*/
mmput_async(mm);
spin_lock(&svms->deferred_list_lock);
}
spin_unlock(&svms->deferred_list_lock);
pr_debug("exit svms 0x%p\n", svms);
}
void
svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
struct mm_struct *mm, enum svm_work_list_ops op)
{
spin_lock(&svms->deferred_list_lock);
/* if prange is on the deferred list */
if (!list_empty(&prange->deferred_list)) {
pr_debug("update exist prange 0x%p work op %d\n", prange, op);
WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
if (op != SVM_OP_NULL &&
prange->work_item.op != SVM_OP_UNMAP_RANGE)
prange->work_item.op = op;
} else {
prange->work_item.op = op;
/* Pairs with mmput in deferred_list_work */
mmget(mm);
prange->work_item.mm = mm;
list_add_tail(&prange->deferred_list,
&prange->svms->deferred_range_list);
pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
prange, prange->start, prange->last, op);
}
spin_unlock(&svms->deferred_list_lock);
}
void schedule_deferred_list_work(struct svm_range_list *svms)
{
spin_lock(&svms->deferred_list_lock);
if (!list_empty(&svms->deferred_range_list))
schedule_work(&svms->deferred_list_work);
spin_unlock(&svms->deferred_list_lock);
}
static void
svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
struct svm_range *prange, unsigned long start,
unsigned long last)
{
struct svm_range *head;
struct svm_range *tail;
if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
prange->start, prange->last);
return;
}
if (start > prange->last || last < prange->start)
return;
head = tail = prange;
if (start > prange->start)
svm_range_split(prange, prange->start, start - 1, &tail);
if (last < tail->last)
svm_range_split(tail, last + 1, tail->last, &head);
if (head != prange && tail != prange) {
svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
} else if (tail != prange) {
svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
} else if (head != prange) {
svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
} else if (parent != prange) {
prange->work_item.op = SVM_OP_UNMAP_RANGE;
}
}
static void
svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
unsigned long start, unsigned long last)
{
uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
struct svm_range_list *svms;
struct svm_range *pchild;
struct kfd_process *p;
unsigned long s, l;
bool unmap_parent;
p = kfd_lookup_process_by_mm(mm);
if (!p)
return;
svms = &p->svms;
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
prange, prange->start, prange->last, start, last);
/* Make sure pending page faults are drained in the deferred worker
* before the range is freed to avoid straggler interrupts on
* unmapped memory causing "phantom faults".
*/
atomic_inc(&svms->drain_pagefaults);
unmap_parent = start <= prange->start && last >= prange->last;
list_for_each_entry(pchild, &prange->child_list, child_list) {
mutex_lock_nested(&pchild->lock, 1);
s = max(start, pchild->start);
l = min(last, pchild->last);
if (l >= s)
svm_range_unmap_from_gpus(pchild, s, l, trigger);
svm_range_unmap_split(mm, prange, pchild, start, last);
mutex_unlock(&pchild->lock);
}
s = max(start, prange->start);
l = min(last, prange->last);
if (l >= s)
svm_range_unmap_from_gpus(prange, s, l, trigger);
svm_range_unmap_split(mm, prange, prange, start, last);
if (unmap_parent)
svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
else
svm_range_add_list_work(svms, prange, mm,
SVM_OP_UPDATE_RANGE_NOTIFIER);
schedule_deferred_list_work(svms);
kfd_unref_process(p);
}
/**
* svm_range_cpu_invalidate_pagetables - interval notifier callback
* @mni: mmu_interval_notifier struct
* @range: mmu_notifier_range struct
* @cur_seq: value to pass to mmu_interval_set_seq()
*
* If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
* is from migration, or CPU page invalidation callback.
*
* For unmap event, unmap range from GPUs, remove prange from svms in a delayed
* work thread, and split prange if only part of prange is unmapped.
*
* For invalidation event, if GPU retry fault is not enabled, evict the queues,
* then schedule svm_range_restore_work to update GPU mapping and resume queues.
* If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
* update GPU mapping to recover.
*
* Context: mmap lock, notifier_invalidate_start lock are held
* for invalidate event, prange lock is held if this is from migration
*/
static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
const struct mmu_notifier_range *range,
unsigned long cur_seq)
{
struct svm_range *prange;
unsigned long start;
unsigned long last;
if (range->event == MMU_NOTIFY_RELEASE)
return true;
if (!mmget_not_zero(mni->mm))
return true;
start = mni->interval_tree.start;
last = mni->interval_tree.last;
start = max(start, range->start) >> PAGE_SHIFT;
last = min(last, range->end - 1) >> PAGE_SHIFT;
pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
start, last, range->start >> PAGE_SHIFT,
(range->end - 1) >> PAGE_SHIFT,
mni->interval_tree.start >> PAGE_SHIFT,
mni->interval_tree.last >> PAGE_SHIFT, range->event);
prange = container_of(mni, struct svm_range, notifier);
svm_range_lock(prange);
mmu_interval_set_seq(mni, cur_seq);
switch (range->event) {
case MMU_NOTIFY_UNMAP:
svm_range_unmap_from_cpu(mni->mm, prange, start, last);
break;
default:
svm_range_evict(prange, mni->mm, start, last, range->event);
break;
}
svm_range_unlock(prange);
mmput(mni->mm);
return true;
}
/**
* svm_range_from_addr - find svm range from fault address
* @svms: svm range list header
* @addr: address to search range interval tree, in pages
* @parent: parent range if range is on child list
*
* Context: The caller must hold svms->lock
*
* Return: the svm_range found or NULL
*/
struct svm_range *
svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
struct svm_range **parent)
{
struct interval_tree_node *node;
struct svm_range *prange;
struct svm_range *pchild;
node = interval_tree_iter_first(&svms->objects, addr, addr);
if (!node)
return NULL;
prange = container_of(node, struct svm_range, it_node);
pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
addr, prange->start, prange->last, node->start, node->last);
if (addr >= prange->start && addr <= prange->last) {
if (parent)
*parent = prange;
return prange;
}
list_for_each_entry(pchild, &prange->child_list, child_list)
if (addr >= pchild->start && addr <= pchild->last) {
pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
addr, pchild->start, pchild->last);
if (parent)
*parent = prange;
return pchild;
}
return NULL;
}
/* svm_range_best_restore_location - decide the best fault restore location
* @prange: svm range structure
* @adev: the GPU on which vm fault happened
*
* This is only called when xnack is on, to decide the best location to restore
* the range mapping after GPU vm fault. Caller uses the best location to do
* migration if actual loc is not best location, then update GPU page table
* mapping to the best location.
*
* If the preferred loc is accessible by faulting GPU, use preferred loc.
* If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
* If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
* if range actual loc is cpu, best_loc is cpu
* if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
* range actual loc.
* Otherwise, GPU no access, best_loc is -1.
*
* Return:
* -1 means vm fault GPU no access
* 0 for CPU or GPU id
*/
static int32_t
svm_range_best_restore_location(struct svm_range *prange,
struct kfd_node *node,
int32_t *gpuidx)
{
struct kfd_node *bo_node, *preferred_node;
struct kfd_process *p;
uint32_t gpuid;
int r;
p = container_of(prange->svms, struct kfd_process, svms);
r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
if (r < 0) {
pr_debug("failed to get gpuid from kgd\n");
return -1;
}
if (node->adev->gmc.is_app_apu)
return 0;
if (prange->preferred_loc == gpuid ||
prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
return prange->preferred_loc;
} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
return prange->preferred_loc;
/* fall through */
}
if (test_bit(*gpuidx, prange->bitmap_access))
return gpuid;
if (test_bit(*gpuidx, prange->bitmap_aip)) {
if (!prange->actual_loc)
return 0;
bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
if (bo_node && svm_nodes_in_same_hive(node, bo_node))
return prange->actual_loc;
else
return 0;
}
return -1;
}
static int
svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
unsigned long *start, unsigned long *last,
bool *is_heap_stack)
{
struct vm_area_struct *vma;
struct interval_tree_node *node;
struct rb_node *rb_node;
unsigned long start_limit, end_limit;
vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
if (!vma) {
pr_debug("VMA does not exist in address [0x%llx]\n", addr);
return -EFAULT;
}
*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
start_limit = max(vma->vm_start >> PAGE_SHIFT,
(unsigned long)ALIGN_DOWN(addr, 2UL << 8));
end_limit = min(vma->vm_end >> PAGE_SHIFT,
(unsigned long)ALIGN(addr + 1, 2UL << 8));
/* First range that starts after the fault address */
node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
if (node) {
end_limit = min(end_limit, node->start);
/* Last range that ends before the fault address */
rb_node = rb_prev(&node->rb);
} else {
/* Last range must end before addr because
* there was no range after addr
*/
rb_node = rb_last(&p->svms.objects.rb_root);
}
if (rb_node) {
node = container_of(rb_node, struct interval_tree_node, rb);
if (node->last >= addr) {
WARN(1, "Overlap with prev node and page fault addr\n");
return -EFAULT;
}
start_limit = max(start_limit, node->last + 1);
}
*start = start_limit;
*last = end_limit - 1;
pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
*start, *last, *is_heap_stack);
return 0;
}
static int
svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
uint64_t *bo_s, uint64_t *bo_l)
{
struct amdgpu_bo_va_mapping *mapping;
struct interval_tree_node *node;
struct amdgpu_bo *bo = NULL;
unsigned long userptr;
uint32_t i;
int r;
for (i = 0; i < p->n_pdds; i++) {
struct amdgpu_vm *vm;
if (!p->pdds[i]->drm_priv)
continue;
vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
r = amdgpu_bo_reserve(vm->root.bo, false);
if (r)
return r;
/* Check userptr by searching entire vm->va interval tree */
node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
while (node) {
mapping = container_of((struct rb_node *)node,
struct amdgpu_bo_va_mapping, rb);
bo = mapping->bo_va->base.bo;
if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
start << PAGE_SHIFT,
last << PAGE_SHIFT,
&userptr)) {
node = interval_tree_iter_next(node, 0, ~0ULL);
continue;
}
pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
start, last);
if (bo_s && bo_l) {
*bo_s = userptr >> PAGE_SHIFT;
*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
}
amdgpu_bo_unreserve(vm->root.bo);
return -EADDRINUSE;
}
amdgpu_bo_unreserve(vm->root.bo);
}
return 0;
}
static struct
svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
struct kfd_process *p,
struct mm_struct *mm,
int64_t addr)
{
struct svm_range *prange = NULL;
unsigned long start, last;
uint32_t gpuid, gpuidx;
bool is_heap_stack;
uint64_t bo_s = 0;
uint64_t bo_l = 0;
int r;
if (svm_range_get_range_boundaries(p, addr, &start, &last,
&is_heap_stack))
return NULL;
r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
if (r != -EADDRINUSE)
r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
if (r == -EADDRINUSE) {
if (addr >= bo_s && addr <= bo_l)
return NULL;
/* Create one page svm range if 2MB range overlapping */
start = addr;
last = addr;
}
prange = svm_range_new(&p->svms, start, last, true);
if (!prange) {
pr_debug("Failed to create prange in address [0x%llx]\n", addr);
return NULL;
}
if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
pr_debug("failed to get gpuid from kgd\n");
svm_range_free(prange, true);
return NULL;
}
if (is_heap_stack)
prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
svm_range_add_to_svms(prange);
svm_range_add_notifier_locked(mm, prange);
return prange;
}
/* svm_range_skip_recover - decide if prange can be recovered
* @prange: svm range structure
*
* GPU vm retry fault handle skip recover the range for cases:
* 1. prange is on deferred list to be removed after unmap, it is stale fault,
* deferred list work will drain the stale fault before free the prange.
* 2. prange is on deferred list to add interval notifier after split, or
* 3. prange is child range, it is split from parent prange, recover later
* after interval notifier is added.
*
* Return: true to skip recover, false to recover
*/
static bool svm_range_skip_recover(struct svm_range *prange)
{
struct svm_range_list *svms = prange->svms;
spin_lock(&svms->deferred_list_lock);
if (list_empty(&prange->deferred_list) &&
list_empty(&prange->child_list)) {
spin_unlock(&svms->deferred_list_lock);
return false;
}
spin_unlock(&svms->deferred_list_lock);
if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
svms, prange, prange->start, prange->last);
return true;
}
if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
prange->work_item.op == SVM_OP_ADD_RANGE) {
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
svms, prange, prange->start, prange->last);
return true;
}
return false;
}
static void
svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
int32_t gpuidx)
{
struct kfd_process_device *pdd;
/* fault is on different page of same range
* or fault is skipped to recover later
* or fault is on invalid virtual address
*/
if (gpuidx == MAX_GPU_INSTANCE) {
uint32_t gpuid;
int r;
r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
if (r < 0)
return;
}
/* fault is recovered
* or fault cannot recover because GPU no access on the range
*/
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
if (pdd)
WRITE_ONCE(pdd->faults, pdd->faults + 1);
}
static bool
svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
{
unsigned long requested = VM_READ;
if (write_fault)
requested |= VM_WRITE;
pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
vma->vm_flags);
return (vma->vm_flags & requested) == requested;
}
int
svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
uint32_t vmid, uint32_t node_id,
uint64_t addr, bool write_fault)
{
unsigned long start, last, size;
struct mm_struct *mm = NULL;
struct svm_range_list *svms;
struct svm_range *prange;
struct kfd_process *p;
ktime_t timestamp = ktime_get_boottime();
struct kfd_node *node;
int32_t best_loc;
int32_t gpuidx = MAX_GPU_INSTANCE;
bool write_locked = false;
struct vm_area_struct *vma;
bool migration = false;
int r = 0;
if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
pr_debug("device does not support SVM\n");
return -EFAULT;
}
p = kfd_lookup_process_by_pasid(pasid);
if (!p) {
pr_debug("kfd process not founded pasid 0x%x\n", pasid);
return 0;
}
svms = &p->svms;
pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
if (atomic_read(&svms->drain_pagefaults)) {
pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
r = 0;
goto out;
}
if (!p->xnack_enabled) {
pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
r = -EFAULT;
goto out;
}
/* p->lead_thread is available as kfd_process_wq_release flush the work
* before releasing task ref.
*/
mm = get_task_mm(p->lead_thread);
if (!mm) {
pr_debug("svms 0x%p failed to get mm\n", svms);
r = 0;
goto out;
}
node = kfd_node_by_irq_ids(adev, node_id, vmid);
if (!node) {
pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
vmid);
r = -EFAULT;
goto out;
}
mmap_read_lock(mm);
retry_write_locked:
mutex_lock(&svms->lock);
prange = svm_range_from_addr(svms, addr, NULL);
if (!prange) {
pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
svms, addr);
if (!write_locked) {
/* Need the write lock to create new range with MMU notifier.
* Also flush pending deferred work to make sure the interval
* tree is up to date before we add a new range
*/
mutex_unlock(&svms->lock);
mmap_read_unlock(mm);
mmap_write_lock(mm);
write_locked = true;
goto retry_write_locked;
}
prange = svm_range_create_unregistered_range(node, p, mm, addr);
if (!prange) {
pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
svms, addr);
mmap_write_downgrade(mm);
r = -EFAULT;
goto out_unlock_svms;
}
}
if (write_locked)
mmap_write_downgrade(mm);
mutex_lock(&prange->migrate_mutex);
if (svm_range_skip_recover(prange)) {
amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
r = 0;
goto out_unlock_range;
}
/* skip duplicate vm fault on different pages of same range */
if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
svms, prange->start, prange->last);
r = 0;
goto out_unlock_range;
}
/* __do_munmap removed VMA, return success as we are handling stale
* retry fault.
*/
vma = vma_lookup(mm, addr << PAGE_SHIFT);
if (!vma) {
pr_debug("address 0x%llx VMA is removed\n", addr);
r = 0;
goto out_unlock_range;
}
if (!svm_fault_allowed(vma, write_fault)) {
pr_debug("fault addr 0x%llx no %s permission\n", addr,
write_fault ? "write" : "read");
r = -EPERM;
goto out_unlock_range;
}
best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
if (best_loc == -1) {
pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
svms, prange->start, prange->last);
r = -EACCES;
goto out_unlock_range;
}
pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
svms, prange->start, prange->last, best_loc,
prange->actual_loc);
kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
write_fault, timestamp);
/* Align migration range start and size to granularity size */
size = 1UL << prange->granularity;
start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
if (prange->actual_loc != 0 || best_loc != 0) {
migration = true;
if (best_loc) {
r = svm_migrate_to_vram(prange, best_loc, start, last,
mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
if (r) {
pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
r, addr);
/* Fallback to system memory if migration to
* VRAM failed
*/
if (prange->actual_loc && prange->actual_loc != best_loc)
r = svm_migrate_vram_to_ram(prange, mm, start, last,
KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
else
r = 0;
}
} else {
r = svm_migrate_vram_to_ram(prange, mm, start, last,
KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
}
if (r) {
pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
r, svms, start, last);
goto out_unlock_range;
}
}
r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
false, false);
if (r)
pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
r, svms, start, last);
kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
migration);
out_unlock_range:
mutex_unlock(&prange->migrate_mutex);
out_unlock_svms:
mutex_unlock(&svms->lock);
mmap_read_unlock(mm);
svm_range_count_fault(node, p, gpuidx);
mmput(mm);
out:
kfd_unref_process(p);
if (r == -EAGAIN) {
pr_debug("recover vm fault later\n");
amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
r = 0;
}
return r;
}
int
svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
{
struct svm_range *prange, *pchild;
uint64_t reserved_size = 0;
uint64_t size;
int r = 0;
pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
mutex_lock(&p->svms.lock);
list_for_each_entry(prange, &p->svms.list, list) {
svm_range_lock(prange);
list_for_each_entry(pchild, &prange->child_list, child_list) {
size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
if (xnack_enabled) {
amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
} else {
r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
if (r)
goto out_unlock;
reserved_size += size;
}
}
size = (prange->last - prange->start + 1) << PAGE_SHIFT;
if (xnack_enabled) {
amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
} else {
r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
if (r)
goto out_unlock;
reserved_size += size;
}
out_unlock:
svm_range_unlock(prange);
if (r)
break;
}
if (r)
amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
else
/* Change xnack mode must be inside svms lock, to avoid race with
* svm_range_deferred_list_work unreserve memory in parallel.
*/
p->xnack_enabled = xnack_enabled;
mutex_unlock(&p->svms.lock);
return r;
}
void svm_range_list_fini(struct kfd_process *p)
{
struct svm_range *prange;
struct svm_range *next;
pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
cancel_delayed_work_sync(&p->svms.restore_work);
/* Ensure list work is finished before process is destroyed */
flush_work(&p->svms.deferred_list_work);
/*
* Ensure no retry fault comes in afterwards, as page fault handler will
* not find kfd process and take mm lock to recover fault.
*/
atomic_inc(&p->svms.drain_pagefaults);
svm_range_drain_retry_fault(&p->svms);
list_for_each_entry_safe(prange, next, &p->svms.list, list) {
svm_range_unlink(prange);
svm_range_remove_notifier(prange);
svm_range_free(prange, true);
}
mutex_destroy(&p->svms.lock);
pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
}
int svm_range_list_init(struct kfd_process *p)
{
struct svm_range_list *svms = &p->svms;
int i;
svms->objects = RB_ROOT_CACHED;
mutex_init(&svms->lock);
INIT_LIST_HEAD(&svms->list);
atomic_set(&svms->evicted_ranges, 0);
atomic_set(&svms->drain_pagefaults, 0);
INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
INIT_LIST_HEAD(&svms->deferred_range_list);
INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
spin_lock_init(&svms->deferred_list_lock);
for (i = 0; i < p->n_pdds; i++)
if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
bitmap_set(svms->bitmap_supported, i, 1);
return 0;
}
/**
* svm_range_check_vm - check if virtual address range mapped already
* @p: current kfd_process
* @start: range start address, in pages
* @last: range last address, in pages
* @bo_s: mapping start address in pages if address range already mapped
* @bo_l: mapping last address in pages if address range already mapped
*
* The purpose is to avoid virtual address ranges already allocated by
* kfd_ioctl_alloc_memory_of_gpu ioctl.
* It looks for each pdd in the kfd_process.
*
* Context: Process context
*
* Return 0 - OK, if the range is not mapped.
* Otherwise error code:
* -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
* -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
* a signal. Release all buffer reservations and return to user-space.
*/
static int
svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
uint64_t *bo_s, uint64_t *bo_l)
{
struct amdgpu_bo_va_mapping *mapping;
struct interval_tree_node *node;
uint32_t i;
int r;
for (i = 0; i < p->n_pdds; i++) {
struct amdgpu_vm *vm;
if (!p->pdds[i]->drm_priv)
continue;
vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
r = amdgpu_bo_reserve(vm->root.bo, false);
if (r)
return r;
node = interval_tree_iter_first(&vm->va, start, last);
if (node) {
pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
start, last);
mapping = container_of((struct rb_node *)node,
struct amdgpu_bo_va_mapping, rb);
if (bo_s && bo_l) {
*bo_s = mapping->start;
*bo_l = mapping->last;
}
amdgpu_bo_unreserve(vm->root.bo);
return -EADDRINUSE;
}
amdgpu_bo_unreserve(vm->root.bo);
}
return 0;
}
/**
* svm_range_is_valid - check if virtual address range is valid
* @p: current kfd_process
* @start: range start address, in pages
* @size: range size, in pages
*
* Valid virtual address range means it belongs to one or more VMAs
*
* Context: Process context
*
* Return:
* 0 - OK, otherwise error code
*/
static int
svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
{
const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
struct vm_area_struct *vma;
unsigned long end;
unsigned long start_unchg = start;
start <<= PAGE_SHIFT;
end = start + (size << PAGE_SHIFT);
do {
vma = vma_lookup(p->mm, start);
if (!vma || (vma->vm_flags & device_vma))
return -EFAULT;
start = min(end, vma->vm_end);
} while (start < end);
return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
NULL);
}
/**
* svm_range_best_prefetch_location - decide the best prefetch location
* @prange: svm range structure
*
* For xnack off:
* If range map to single GPU, the best prefetch location is prefetch_loc, which
* can be CPU or GPU.
*
* If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
* XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
* the best prefetch location is always CPU, because GPU can not have coherent
* mapping VRAM of other GPUs even with large-BAR PCIe connection.
*
* For xnack on:
* If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
* prefetch_loc, other GPU access will generate vm fault and trigger migration.
*
* If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
* hive, the best prefetch location is prefetch_loc GPU, otherwise the best
* prefetch location is always CPU.
*
* Context: Process context
*
* Return:
* 0 for CPU or GPU id
*/
static uint32_t
svm_range_best_prefetch_location(struct svm_range *prange)
{
DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
uint32_t best_loc = prange->prefetch_loc;
struct kfd_process_device *pdd;
struct kfd_node *bo_node;
struct kfd_process *p;
uint32_t gpuidx;
p = container_of(prange->svms, struct kfd_process, svms);
if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
goto out;
bo_node = svm_range_get_node_by_id(prange, best_loc);
if (!bo_node) {
WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
best_loc = 0;
goto out;
}
if (bo_node->adev->gmc.is_app_apu) {
best_loc = 0;
goto out;
}
if (p->xnack_enabled)
bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
else
bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
MAX_GPU_INSTANCE);
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
if (!pdd) {
pr_debug("failed to get device by idx 0x%x\n", gpuidx);
continue;
}
if (pdd->dev->adev == bo_node->adev)
continue;
if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
best_loc = 0;
break;
}
}
out:
pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
p->xnack_enabled, &p->svms, prange->start, prange->last,
best_loc);
return best_loc;
}
/* svm_range_trigger_migration - start page migration if prefetch loc changed
* @mm: current process mm_struct
* @prange: svm range structure
* @migrated: output, true if migration is triggered
*
* If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
* from ram to vram.
* If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
* from vram to ram.
*
* If GPU vm fault retry is not enabled, migration interact with MMU notifier
* and restore work:
* 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
* stops all queues, schedule restore work
* 2. svm_range_restore_work wait for migration is done by
* a. svm_range_validate_vram takes prange->migrate_mutex
* b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
* 3. restore work update mappings of GPU, resume all queues.
*
* Context: Process context
*
* Return:
* 0 - OK, otherwise - error code of migration
*/
static int
svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
bool *migrated)
{
uint32_t best_loc;
int r = 0;
*migrated = false;
best_loc = svm_range_best_prefetch_location(prange);
/* when best_loc is a gpu node and same as prange->actual_loc
* we still need do migration as prange->actual_loc !=0 does
* not mean all pages in prange are vram. hmm migrate will pick
* up right pages during migration.
*/
if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
(best_loc == 0 && prange->actual_loc == 0))
return 0;
if (!best_loc) {
r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
*migrated = !r;
return r;
}
r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
mm, KFD_MIGRATE_TRIGGER_PREFETCH);
*migrated = !r;
return r;
}
int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
{
/* Dereferencing fence->svm_bo is safe here because the fence hasn't
* signaled yet and we're under the protection of the fence->lock.
* After the fence is signaled in svm_range_bo_release, we cannot get
* here any more.
*
* Reference is dropped in svm_range_evict_svm_bo_worker.
*/
if (svm_bo_ref_unless_zero(fence->svm_bo)) {
WRITE_ONCE(fence->svm_bo->evicting, 1);
schedule_work(&fence->svm_bo->eviction_work);
}
return 0;
}
static void svm_range_evict_svm_bo_worker(struct work_struct *work)
{
struct svm_range_bo *svm_bo;
struct mm_struct *mm;
int r = 0;
svm_bo = container_of(work, struct svm_range_bo, eviction_work);
if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
mm = svm_bo->eviction_fence->mm;
} else {
svm_range_bo_unref(svm_bo);
return;
}
mmap_read_lock(mm);
spin_lock(&svm_bo->list_lock);
while (!list_empty(&svm_bo->range_list) && !r) {
struct svm_range *prange =
list_first_entry(&svm_bo->range_list,
struct svm_range, svm_bo_list);
int retries = 3;
list_del_init(&prange->svm_bo_list);
spin_unlock(&svm_bo->list_lock);
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
prange->start, prange->last);
mutex_lock(&prange->migrate_mutex);
do {
/* migrate all vram pages in this prange to sys ram
* after that prange->actual_loc should be zero
*/
r = svm_migrate_vram_to_ram(prange, mm,
prange->start, prange->last,
KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
} while (!r && prange->actual_loc && --retries);
if (!r && prange->actual_loc)
pr_info_once("Migration failed during eviction");
if (!prange->actual_loc) {
mutex_lock(&prange->lock);
prange->svm_bo = NULL;
mutex_unlock(&prange->lock);
}
mutex_unlock(&prange->migrate_mutex);
spin_lock(&svm_bo->list_lock);
}
spin_unlock(&svm_bo->list_lock);
mmap_read_unlock(mm);
mmput(mm);
dma_fence_signal(&svm_bo->eviction_fence->base);
/* This is the last reference to svm_bo, after svm_range_vram_node_free
* has been called in svm_migrate_vram_to_ram
*/
WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
svm_range_bo_unref(svm_bo);
}
static int
svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
uint64_t start, uint64_t size, uint32_t nattr,
struct kfd_ioctl_svm_attribute *attrs)
{
struct amdkfd_process_info *process_info = p->kgd_process_info;
struct list_head update_list;
struct list_head insert_list;
struct list_head remove_list;
struct list_head remap_list;
struct svm_range_list *svms;
struct svm_range *prange;
struct svm_range *next;
bool update_mapping = false;
bool flush_tlb;
int r, ret = 0;
pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
p->pasid, &p->svms, start, start + size - 1, size);
r = svm_range_check_attr(p, nattr, attrs);
if (r)
return r;
svms = &p->svms;
mutex_lock(&process_info->lock);
svm_range_list_lock_and_flush_work(svms, mm);
r = svm_range_is_valid(p, start, size);
if (r) {
pr_debug("invalid range r=%d\n", r);
mmap_write_unlock(mm);
goto out;
}
mutex_lock(&svms->lock);
/* Add new range and split existing ranges as needed */
r = svm_range_add(p, start, size, nattr, attrs, &update_list,
&insert_list, &remove_list, &remap_list);
if (r) {
mutex_unlock(&svms->lock);
mmap_write_unlock(mm);
goto out;
}
/* Apply changes as a transaction */
list_for_each_entry_safe(prange, next, &insert_list, list) {
svm_range_add_to_svms(prange);
svm_range_add_notifier_locked(mm, prange);
}
list_for_each_entry(prange, &update_list, update_list) {
svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
/* TODO: unmap ranges from GPU that lost access */
}
list_for_each_entry_safe(prange, next, &remove_list, update_list) {
pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
prange->svms, prange, prange->start,
prange->last);
svm_range_unlink(prange);
svm_range_remove_notifier(prange);
svm_range_free(prange, false);
}
mmap_write_downgrade(mm);
/* Trigger migrations and revalidate and map to GPUs as needed. If
* this fails we may be left with partially completed actions. There
* is no clean way of rolling back to the previous state in such a
* case because the rollback wouldn't be guaranteed to work either.
*/
list_for_each_entry(prange, &update_list, update_list) {
bool migrated;
mutex_lock(&prange->migrate_mutex);
r = svm_range_trigger_migration(mm, prange, &migrated);
if (r)
goto out_unlock_range;
if (migrated && (!p->xnack_enabled ||
(prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
prange->mapped_to_gpu) {
pr_debug("restore_work will update mappings of GPUs\n");
mutex_unlock(&prange->migrate_mutex);
continue;
}
if (!migrated && !update_mapping) {
mutex_unlock(&prange->migrate_mutex);
continue;
}
flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
MAX_GPU_INSTANCE, true, true, flush_tlb);
if (r)
pr_debug("failed %d to map svm range\n", r);
out_unlock_range:
mutex_unlock(&prange->migrate_mutex);
if (r)
ret = r;
}
list_for_each_entry(prange, &remap_list, update_list) {
pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
prange, prange->start, prange->last);
mutex_lock(&prange->migrate_mutex);
r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
if (r)
pr_debug("failed %d on remap svm range\n", r);
mutex_unlock(&prange->migrate_mutex);
if (r)
ret = r;
}
dynamic_svm_range_dump(svms);
mutex_unlock(&svms->lock);
mmap_read_unlock(mm);
out:
mutex_unlock(&process_info->lock);
pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
&p->svms, start, start + size - 1, r);
return ret ? ret : r;
}
static int
svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
uint64_t start, uint64_t size, uint32_t nattr,
struct kfd_ioctl_svm_attribute *attrs)
{
DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
bool get_preferred_loc = false;
bool get_prefetch_loc = false;
bool get_granularity = false;
bool get_accessible = false;
bool get_flags = false;
uint64_t last = start + size - 1UL;
uint8_t granularity = 0xff;
struct interval_tree_node *node;
struct svm_range_list *svms;
struct svm_range *prange;
uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
uint32_t flags_and = 0xffffffff;
uint32_t flags_or = 0;
int gpuidx;
uint32_t i;
int r = 0;
pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
start + size - 1, nattr);
/* Flush pending deferred work to avoid racing with deferred actions from
* previous memory map changes (e.g. munmap). Concurrent memory map changes
* can still race with get_attr because we don't hold the mmap lock. But that
* would be a race condition in the application anyway, and undefined
* behaviour is acceptable in that case.
*/
flush_work(&p->svms.deferred_list_work);
mmap_read_lock(mm);
r = svm_range_is_valid(p, start, size);
mmap_read_unlock(mm);
if (r) {
pr_debug("invalid range r=%d\n", r);
return r;
}
for (i = 0; i < nattr; i++) {
switch (attrs[i].type) {
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
get_preferred_loc = true;
break;
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
get_prefetch_loc = true;
break;
case KFD_IOCTL_SVM_ATTR_ACCESS:
get_accessible = true;
break;
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
get_flags = true;
break;
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
get_granularity = true;
break;
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
fallthrough;
default:
pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
return -EINVAL;
}
}
svms = &p->svms;
mutex_lock(&svms->lock);
node = interval_tree_iter_first(&svms->objects, start, last);
if (!node) {
pr_debug("range attrs not found return default values\n");
svm_range_set_default_attributes(&location, &prefetch_loc,
&granularity, &flags_and);
flags_or = flags_and;
if (p->xnack_enabled)
bitmap_copy(bitmap_access, svms->bitmap_supported,
MAX_GPU_INSTANCE);
else
bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
goto fill_values;
}
bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
while (node) {
struct interval_tree_node *next;
prange = container_of(node, struct svm_range, it_node);
next = interval_tree_iter_next(node, start, last);
if (get_preferred_loc) {
if (prange->preferred_loc ==
KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
(location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
location != prange->preferred_loc)) {
location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
get_preferred_loc = false;
} else {
location = prange->preferred_loc;
}
}
if (get_prefetch_loc) {
if (prange->prefetch_loc ==
KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
(prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
prefetch_loc != prange->prefetch_loc)) {
prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
get_prefetch_loc = false;
} else {
prefetch_loc = prange->prefetch_loc;
}
}
if (get_accessible) {
bitmap_and(bitmap_access, bitmap_access,
prange->bitmap_access, MAX_GPU_INSTANCE);
bitmap_and(bitmap_aip, bitmap_aip,
prange->bitmap_aip, MAX_GPU_INSTANCE);
}
if (get_flags) {
flags_and &= prange->flags;
flags_or |= prange->flags;
}
if (get_granularity && prange->granularity < granularity)
granularity = prange->granularity;
node = next;
}
fill_values:
mutex_unlock(&svms->lock);
for (i = 0; i < nattr; i++) {
switch (attrs[i].type) {
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
attrs[i].value = location;
break;
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
attrs[i].value = prefetch_loc;
break;
case KFD_IOCTL_SVM_ATTR_ACCESS:
gpuidx = kfd_process_gpuidx_from_gpuid(p,
attrs[i].value);
if (gpuidx < 0) {
pr_debug("invalid gpuid %x\n", attrs[i].value);
return -EINVAL;
}
if (test_bit(gpuidx, bitmap_access))
attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
else if (test_bit(gpuidx, bitmap_aip))
attrs[i].type =
KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
else
attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
break;
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
attrs[i].value = flags_and;
break;
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
attrs[i].value = ~flags_or;
break;
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
attrs[i].value = (uint32_t)granularity;
break;
}
}
return 0;
}
int kfd_criu_resume_svm(struct kfd_process *p)
{
struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
int nattr_common = 4, nattr_accessibility = 1;
struct criu_svm_metadata *criu_svm_md = NULL;
struct svm_range_list *svms = &p->svms;
struct criu_svm_metadata *next = NULL;
uint32_t set_flags = 0xffffffff;
int i, j, num_attrs, ret = 0;
uint64_t set_attr_size;
struct mm_struct *mm;
if (list_empty(&svms->criu_svm_metadata_list)) {
pr_debug("No SVM data from CRIU restore stage 2\n");
return ret;
}
mm = get_task_mm(p->lead_thread);
if (!mm) {
pr_err("failed to get mm for the target process\n");
return -ESRCH;
}
num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
i = j = 0;
list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
for (j = 0; j < num_attrs; j++) {
pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
i, j, criu_svm_md->data.attrs[j].type,
i, j, criu_svm_md->data.attrs[j].value);
switch (criu_svm_md->data.attrs[j].type) {
/* During Checkpoint operation, the query for
* KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
* return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
* not used by the range which was checkpointed. Care
* must be taken to not restore with an invalid value
* otherwise the gpuidx value will be invalid and
* set_attr would eventually fail so just replace those
* with another dummy attribute such as
* KFD_IOCTL_SVM_ATTR_SET_FLAGS.
*/
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
if (criu_svm_md->data.attrs[j].value ==
KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
criu_svm_md->data.attrs[j].type =
KFD_IOCTL_SVM_ATTR_SET_FLAGS;
criu_svm_md->data.attrs[j].value = 0;
}
break;
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
set_flags = criu_svm_md->data.attrs[j].value;
break;
default:
break;
}
}
/* CLR_FLAGS is not available via get_attr during checkpoint but
* it needs to be inserted before restoring the ranges so
* allocate extra space for it before calling set_attr
*/
set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
(num_attrs + 1);
set_attr_new = krealloc(set_attr, set_attr_size,
GFP_KERNEL);
if (!set_attr_new) {
ret = -ENOMEM;
goto exit;
}
set_attr = set_attr_new;
memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
sizeof(struct kfd_ioctl_svm_attribute));
set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
set_attr[num_attrs].value = ~set_flags;
ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
criu_svm_md->data.size, num_attrs + 1,
set_attr);
if (ret) {
pr_err("CRIU: failed to set range attributes\n");
goto exit;
}
i++;
}
exit:
kfree(set_attr);
list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
criu_svm_md->data.start_addr);
kfree(criu_svm_md);
}
mmput(mm);
return ret;
}
int kfd_criu_restore_svm(struct kfd_process *p,
uint8_t __user *user_priv_ptr,
uint64_t *priv_data_offset,
uint64_t max_priv_data_size)
{
uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
int nattr_common = 4, nattr_accessibility = 1;
struct criu_svm_metadata *criu_svm_md = NULL;
struct svm_range_list *svms = &p->svms;
uint32_t num_devices;
int ret = 0;
num_devices = p->n_pdds;
/* Handle one SVM range object at a time, also the number of gpus are
* assumed to be same on the restore node, checking must be done while
* evaluating the topology earlier
*/
svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
(nattr_common + nattr_accessibility * num_devices);
svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
svm_attrs_size;
criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
if (!criu_svm_md) {
pr_err("failed to allocate memory to store svm metadata\n");
return -ENOMEM;
}
if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
ret = -EINVAL;
goto exit;
}
ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
svm_priv_data_size);
if (ret) {
ret = -EFAULT;
goto exit;
}
*priv_data_offset += svm_priv_data_size;
list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
return 0;
exit:
kfree(criu_svm_md);
return ret;
}
int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
uint64_t *svm_priv_data_size)
{
uint64_t total_size, accessibility_size, common_attr_size;
int nattr_common = 4, nattr_accessibility = 1;
int num_devices = p->n_pdds;
struct svm_range_list *svms;
struct svm_range *prange;
uint32_t count = 0;
*svm_priv_data_size = 0;
svms = &p->svms;
if (!svms)
return -EINVAL;
mutex_lock(&svms->lock);
list_for_each_entry(prange, &svms->list, list) {
pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
prange, prange->start, prange->npages,
prange->start + prange->npages - 1);
count++;
}
mutex_unlock(&svms->lock);
*num_svm_ranges = count;
/* Only the accessbility attributes need to be queried for all the gpus
* individually, remaining ones are spanned across the entire process
* regardless of the various gpu nodes. Of the remaining attributes,
* KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
*
* KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
* KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
* KFD_IOCTL_SVM_ATTR_SET_FLAGS
* KFD_IOCTL_SVM_ATTR_GRANULARITY
*
* ** ACCESSBILITY ATTRIBUTES **
* (Considered as one, type is altered during query, value is gpuid)
* KFD_IOCTL_SVM_ATTR_ACCESS
* KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
* KFD_IOCTL_SVM_ATTR_NO_ACCESS
*/
if (*num_svm_ranges > 0) {
common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
nattr_common;
accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
nattr_accessibility * num_devices;
total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
common_attr_size + accessibility_size;
*svm_priv_data_size = *num_svm_ranges * total_size;
}
pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
*svm_priv_data_size);
return 0;
}
int kfd_criu_checkpoint_svm(struct kfd_process *p,
uint8_t __user *user_priv_data,
uint64_t *priv_data_offset)
{
struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
struct kfd_ioctl_svm_attribute *query_attr = NULL;
uint64_t svm_priv_data_size, query_attr_size = 0;
int index, nattr_common = 4, ret = 0;
struct svm_range_list *svms;
int num_devices = p->n_pdds;
struct svm_range *prange;
struct mm_struct *mm;
svms = &p->svms;
if (!svms)
return -EINVAL;
mm = get_task_mm(p->lead_thread);
if (!mm) {
pr_err("failed to get mm for the target process\n");
return -ESRCH;
}
query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
(nattr_common + num_devices);
query_attr = kzalloc(query_attr_size, GFP_KERNEL);
if (!query_attr) {
ret = -ENOMEM;
goto exit;
}
query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
for (index = 0; index < num_devices; index++) {
struct kfd_process_device *pdd = p->pdds[index];
query_attr[index + nattr_common].type =
KFD_IOCTL_SVM_ATTR_ACCESS;
query_attr[index + nattr_common].value = pdd->user_gpu_id;
}
svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
if (!svm_priv) {
ret = -ENOMEM;
goto exit_query;
}
index = 0;
list_for_each_entry(prange, &svms->list, list) {
svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
svm_priv->start_addr = prange->start;
svm_priv->size = prange->npages;
memcpy(&svm_priv->attrs, query_attr, query_attr_size);
pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
prange, prange->start, prange->npages,
prange->start + prange->npages - 1,
prange->npages * PAGE_SIZE);
ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
svm_priv->size,
(nattr_common + num_devices),
svm_priv->attrs);
if (ret) {
pr_err("CRIU: failed to obtain range attributes\n");
goto exit_priv;
}
if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
svm_priv_data_size)) {
pr_err("Failed to copy svm priv to user\n");
ret = -EFAULT;
goto exit_priv;
}
*priv_data_offset += svm_priv_data_size;
}
exit_priv:
kfree(svm_priv);
exit_query:
kfree(query_attr);
exit:
mmput(mm);
return ret;
}
int
svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
{
struct mm_struct *mm = current->mm;
int r;
start >>= PAGE_SHIFT;
size >>= PAGE_SHIFT;
switch (op) {
case KFD_IOCTL_SVM_OP_SET_ATTR:
r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
break;
case KFD_IOCTL_SVM_OP_GET_ATTR:
r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
break;
default:
r = EINVAL;
break;
}
return r;
}