linux-stable/arch/powerpc/kernel/udbg_16550.c
Pali Rohár b19448fe84 powerpc: Add support for early debugging via Serial 16550 console
Currently powerpc early debugging contains lot of platform specific
options, but does not support standard UART / serial 16550 console.

Later legacy_serial.c code supports registering UART as early debug console
from device tree but it is not early during booting, but rather later after
machine description code finishes.

So for real early debugging via UART is current code unsuitable.

Add support for new early debugging option CONFIG_PPC_EARLY_DEBUG_16550
which enable Serial 16550 console on address defined by new option
CONFIG_PPC_EARLY_DEBUG_16550_PHYSADDR and by stride by option
CONFIG_PPC_EARLY_DEBUG_16550_STRIDE.

With this change it is possible to debug powerpc machine descriptor code.
For example this early debugging code can print on serial console also
"No suitable machine description found" error which is done before
legacy_serial.c code.

Signed-off-by: Pali Rohár <pali@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220822231501.16827-1-pali@kernel.org
2022-09-28 19:22:09 +10:00

331 lines
7 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* udbg for NS16550 compatible serial ports
*
* Copyright (C) 2001-2005 PPC 64 Team, IBM Corp
*/
#include <linux/types.h>
#include <asm/udbg.h>
#include <asm/io.h>
#include <asm/reg_a2.h>
#include <asm/early_ioremap.h>
extern u8 real_readb(volatile u8 __iomem *addr);
extern void real_writeb(u8 data, volatile u8 __iomem *addr);
extern u8 real_205_readb(volatile u8 __iomem *addr);
extern void real_205_writeb(u8 data, volatile u8 __iomem *addr);
#define UART_RBR 0
#define UART_IER 1
#define UART_FCR 2
#define UART_LCR 3
#define UART_MCR 4
#define UART_LSR 5
#define UART_MSR 6
#define UART_SCR 7
#define UART_THR UART_RBR
#define UART_IIR UART_FCR
#define UART_DLL UART_RBR
#define UART_DLM UART_IER
#define UART_DLAB UART_LCR
#define LSR_DR 0x01 /* Data ready */
#define LSR_OE 0x02 /* Overrun */
#define LSR_PE 0x04 /* Parity error */
#define LSR_FE 0x08 /* Framing error */
#define LSR_BI 0x10 /* Break */
#define LSR_THRE 0x20 /* Xmit holding register empty */
#define LSR_TEMT 0x40 /* Xmitter empty */
#define LSR_ERR 0x80 /* Error */
#define LCR_DLAB 0x80
static u8 (*udbg_uart_in)(unsigned int reg);
static void (*udbg_uart_out)(unsigned int reg, u8 data);
static void udbg_uart_flush(void)
{
if (!udbg_uart_in)
return;
/* wait for idle */
while ((udbg_uart_in(UART_LSR) & LSR_THRE) == 0)
cpu_relax();
}
static void udbg_uart_putc(char c)
{
if (!udbg_uart_out)
return;
if (c == '\n')
udbg_uart_putc('\r');
udbg_uart_flush();
udbg_uart_out(UART_THR, c);
}
static int udbg_uart_getc_poll(void)
{
if (!udbg_uart_in)
return -1;
if (!(udbg_uart_in(UART_LSR) & LSR_DR))
return udbg_uart_in(UART_RBR);
return -1;
}
static int udbg_uart_getc(void)
{
if (!udbg_uart_in)
return -1;
/* wait for char */
while (!(udbg_uart_in(UART_LSR) & LSR_DR))
cpu_relax();
return udbg_uart_in(UART_RBR);
}
static void __init udbg_use_uart(void)
{
udbg_putc = udbg_uart_putc;
udbg_flush = udbg_uart_flush;
udbg_getc = udbg_uart_getc;
udbg_getc_poll = udbg_uart_getc_poll;
}
void __init udbg_uart_setup(unsigned int speed, unsigned int clock)
{
unsigned int dll, base_bauds;
if (!udbg_uart_out)
return;
if (clock == 0)
clock = 1843200;
if (speed == 0)
speed = 9600;
base_bauds = clock / 16;
dll = base_bauds / speed;
udbg_uart_out(UART_LCR, 0x00);
udbg_uart_out(UART_IER, 0xff);
udbg_uart_out(UART_IER, 0x00);
udbg_uart_out(UART_LCR, LCR_DLAB);
udbg_uart_out(UART_DLL, dll & 0xff);
udbg_uart_out(UART_DLM, dll >> 8);
/* 8 data, 1 stop, no parity */
udbg_uart_out(UART_LCR, 0x3);
/* RTS/DTR */
udbg_uart_out(UART_MCR, 0x3);
/* Clear & enable FIFOs */
udbg_uart_out(UART_FCR, 0x7);
}
unsigned int __init udbg_probe_uart_speed(unsigned int clock)
{
unsigned int dll, dlm, divisor, prescaler, speed;
u8 old_lcr;
old_lcr = udbg_uart_in(UART_LCR);
/* select divisor latch registers. */
udbg_uart_out(UART_LCR, old_lcr | LCR_DLAB);
/* now, read the divisor */
dll = udbg_uart_in(UART_DLL);
dlm = udbg_uart_in(UART_DLM);
divisor = dlm << 8 | dll;
/* check prescaling */
if (udbg_uart_in(UART_MCR) & 0x80)
prescaler = 4;
else
prescaler = 1;
/* restore the LCR */
udbg_uart_out(UART_LCR, old_lcr);
/* calculate speed */
speed = (clock / prescaler) / (divisor * 16);
/* sanity check */
if (speed > (clock / 16))
speed = 9600;
return speed;
}
static union {
unsigned char __iomem *mmio_base;
unsigned long pio_base;
} udbg_uart;
static unsigned int udbg_uart_stride = 1;
static u8 udbg_uart_in_pio(unsigned int reg)
{
return inb(udbg_uart.pio_base + (reg * udbg_uart_stride));
}
static void udbg_uart_out_pio(unsigned int reg, u8 data)
{
outb(data, udbg_uart.pio_base + (reg * udbg_uart_stride));
}
void __init udbg_uart_init_pio(unsigned long port, unsigned int stride)
{
if (!port)
return;
udbg_uart.pio_base = port;
udbg_uart_stride = stride;
udbg_uart_in = udbg_uart_in_pio;
udbg_uart_out = udbg_uart_out_pio;
udbg_use_uart();
}
static u8 udbg_uart_in_mmio(unsigned int reg)
{
return in_8(udbg_uart.mmio_base + (reg * udbg_uart_stride));
}
static void udbg_uart_out_mmio(unsigned int reg, u8 data)
{
out_8(udbg_uart.mmio_base + (reg * udbg_uart_stride), data);
}
void __init udbg_uart_init_mmio(void __iomem *addr, unsigned int stride)
{
if (!addr)
return;
udbg_uart.mmio_base = addr;
udbg_uart_stride = stride;
udbg_uart_in = udbg_uart_in_mmio;
udbg_uart_out = udbg_uart_out_mmio;
udbg_use_uart();
}
#ifdef CONFIG_PPC_MAPLE
#define UDBG_UART_MAPLE_ADDR ((void __iomem *)0xf40003f8)
static u8 udbg_uart_in_maple(unsigned int reg)
{
return real_readb(UDBG_UART_MAPLE_ADDR + reg);
}
static void udbg_uart_out_maple(unsigned int reg, u8 val)
{
real_writeb(val, UDBG_UART_MAPLE_ADDR + reg);
}
void __init udbg_init_maple_realmode(void)
{
udbg_uart_in = udbg_uart_in_maple;
udbg_uart_out = udbg_uart_out_maple;
udbg_use_uart();
}
#endif /* CONFIG_PPC_MAPLE */
#ifdef CONFIG_PPC_PASEMI
#define UDBG_UART_PAS_ADDR ((void __iomem *)0xfcff03f8UL)
static u8 udbg_uart_in_pas(unsigned int reg)
{
return real_205_readb(UDBG_UART_PAS_ADDR + reg);
}
static void udbg_uart_out_pas(unsigned int reg, u8 val)
{
real_205_writeb(val, UDBG_UART_PAS_ADDR + reg);
}
void __init udbg_init_pas_realmode(void)
{
udbg_uart_in = udbg_uart_in_pas;
udbg_uart_out = udbg_uart_out_pas;
udbg_use_uart();
}
#endif /* CONFIG_PPC_PASEMI */
#ifdef CONFIG_PPC_EARLY_DEBUG_44x
#include <platforms/44x/44x.h>
static u8 udbg_uart_in_44x_as1(unsigned int reg)
{
return as1_readb((void __iomem *)PPC44x_EARLY_DEBUG_VIRTADDR + reg);
}
static void udbg_uart_out_44x_as1(unsigned int reg, u8 val)
{
as1_writeb(val, (void __iomem *)PPC44x_EARLY_DEBUG_VIRTADDR + reg);
}
void __init udbg_init_44x_as1(void)
{
udbg_uart_in = udbg_uart_in_44x_as1;
udbg_uart_out = udbg_uart_out_44x_as1;
udbg_use_uart();
}
#endif /* CONFIG_PPC_EARLY_DEBUG_44x */
#ifdef CONFIG_PPC_EARLY_DEBUG_40x
static u8 udbg_uart_in_40x(unsigned int reg)
{
return real_readb((void __iomem *)CONFIG_PPC_EARLY_DEBUG_40x_PHYSADDR
+ reg);
}
static void udbg_uart_out_40x(unsigned int reg, u8 val)
{
real_writeb(val, (void __iomem *)CONFIG_PPC_EARLY_DEBUG_40x_PHYSADDR
+ reg);
}
void __init udbg_init_40x_realmode(void)
{
udbg_uart_in = udbg_uart_in_40x;
udbg_uart_out = udbg_uart_out_40x;
udbg_use_uart();
}
#endif /* CONFIG_PPC_EARLY_DEBUG_40x */
#ifdef CONFIG_PPC_EARLY_DEBUG_16550
static void __iomem *udbg_uart_early_addr;
void __init udbg_init_debug_16550(void)
{
udbg_uart_early_addr = early_ioremap(CONFIG_PPC_EARLY_DEBUG_16550_PHYSADDR, 0x1000);
udbg_uart_init_mmio(udbg_uart_early_addr, CONFIG_PPC_EARLY_DEBUG_16550_STRIDE);
}
static int __init udbg_init_debug_16550_ioremap(void)
{
void __iomem *addr;
if (!udbg_uart_early_addr)
return 0;
addr = ioremap(CONFIG_PPC_EARLY_DEBUG_16550_PHYSADDR, 0x1000);
if (WARN_ON(!addr))
return -ENOMEM;
udbg_uart_init_mmio(addr, CONFIG_PPC_EARLY_DEBUG_16550_STRIDE);
early_iounmap(udbg_uart_early_addr, 0x1000);
udbg_uart_early_addr = NULL;
return 0;
}
early_initcall(udbg_init_debug_16550_ioremap);
#endif /* CONFIG_PPC_EARLY_DEBUG_16550 */