mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 17:08:10 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
188 lines
4 KiB
C
188 lines
4 KiB
C
/*
|
|
* KVM coalesced MMIO
|
|
*
|
|
* Copyright (c) 2008 Bull S.A.S.
|
|
*
|
|
* Author: Laurent Vivier <Laurent.Vivier@bull.net>
|
|
*
|
|
*/
|
|
|
|
#include "iodev.h"
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kvm.h>
|
|
|
|
#include "coalesced_mmio.h"
|
|
|
|
static inline struct kvm_coalesced_mmio_dev *to_mmio(struct kvm_io_device *dev)
|
|
{
|
|
return container_of(dev, struct kvm_coalesced_mmio_dev, dev);
|
|
}
|
|
|
|
static int coalesced_mmio_in_range(struct kvm_coalesced_mmio_dev *dev,
|
|
gpa_t addr, int len)
|
|
{
|
|
struct kvm_coalesced_mmio_zone *zone;
|
|
struct kvm_coalesced_mmio_ring *ring;
|
|
unsigned avail;
|
|
int i;
|
|
|
|
/* Are we able to batch it ? */
|
|
|
|
/* last is the first free entry
|
|
* check if we don't meet the first used entry
|
|
* there is always one unused entry in the buffer
|
|
*/
|
|
ring = dev->kvm->coalesced_mmio_ring;
|
|
avail = (ring->first - ring->last - 1) % KVM_COALESCED_MMIO_MAX;
|
|
if (avail < KVM_MAX_VCPUS) {
|
|
/* full */
|
|
return 0;
|
|
}
|
|
|
|
/* is it in a batchable area ? */
|
|
|
|
for (i = 0; i < dev->nb_zones; i++) {
|
|
zone = &dev->zone[i];
|
|
|
|
/* (addr,len) is fully included in
|
|
* (zone->addr, zone->size)
|
|
*/
|
|
|
|
if (zone->addr <= addr &&
|
|
addr + len <= zone->addr + zone->size)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int coalesced_mmio_write(struct kvm_io_device *this,
|
|
gpa_t addr, int len, const void *val)
|
|
{
|
|
struct kvm_coalesced_mmio_dev *dev = to_mmio(this);
|
|
struct kvm_coalesced_mmio_ring *ring = dev->kvm->coalesced_mmio_ring;
|
|
if (!coalesced_mmio_in_range(dev, addr, len))
|
|
return -EOPNOTSUPP;
|
|
|
|
spin_lock(&dev->lock);
|
|
|
|
/* copy data in first free entry of the ring */
|
|
|
|
ring->coalesced_mmio[ring->last].phys_addr = addr;
|
|
ring->coalesced_mmio[ring->last].len = len;
|
|
memcpy(ring->coalesced_mmio[ring->last].data, val, len);
|
|
smp_wmb();
|
|
ring->last = (ring->last + 1) % KVM_COALESCED_MMIO_MAX;
|
|
spin_unlock(&dev->lock);
|
|
return 0;
|
|
}
|
|
|
|
static void coalesced_mmio_destructor(struct kvm_io_device *this)
|
|
{
|
|
struct kvm_coalesced_mmio_dev *dev = to_mmio(this);
|
|
|
|
kfree(dev);
|
|
}
|
|
|
|
static const struct kvm_io_device_ops coalesced_mmio_ops = {
|
|
.write = coalesced_mmio_write,
|
|
.destructor = coalesced_mmio_destructor,
|
|
};
|
|
|
|
int kvm_coalesced_mmio_init(struct kvm *kvm)
|
|
{
|
|
struct kvm_coalesced_mmio_dev *dev;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
ret = -ENOMEM;
|
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page)
|
|
goto out_err;
|
|
kvm->coalesced_mmio_ring = page_address(page);
|
|
|
|
ret = -ENOMEM;
|
|
dev = kzalloc(sizeof(struct kvm_coalesced_mmio_dev), GFP_KERNEL);
|
|
if (!dev)
|
|
goto out_free_page;
|
|
spin_lock_init(&dev->lock);
|
|
kvm_iodevice_init(&dev->dev, &coalesced_mmio_ops);
|
|
dev->kvm = kvm;
|
|
kvm->coalesced_mmio_dev = dev;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, &dev->dev);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
if (ret < 0)
|
|
goto out_free_dev;
|
|
|
|
return ret;
|
|
|
|
out_free_dev:
|
|
kfree(dev);
|
|
out_free_page:
|
|
__free_page(page);
|
|
out_err:
|
|
return ret;
|
|
}
|
|
|
|
void kvm_coalesced_mmio_free(struct kvm *kvm)
|
|
{
|
|
if (kvm->coalesced_mmio_ring)
|
|
free_page((unsigned long)kvm->coalesced_mmio_ring);
|
|
}
|
|
|
|
int kvm_vm_ioctl_register_coalesced_mmio(struct kvm *kvm,
|
|
struct kvm_coalesced_mmio_zone *zone)
|
|
{
|
|
struct kvm_coalesced_mmio_dev *dev = kvm->coalesced_mmio_dev;
|
|
|
|
if (dev == NULL)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
if (dev->nb_zones >= KVM_COALESCED_MMIO_ZONE_MAX) {
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
dev->zone[dev->nb_zones] = *zone;
|
|
dev->nb_zones++;
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_unregister_coalesced_mmio(struct kvm *kvm,
|
|
struct kvm_coalesced_mmio_zone *zone)
|
|
{
|
|
int i;
|
|
struct kvm_coalesced_mmio_dev *dev = kvm->coalesced_mmio_dev;
|
|
struct kvm_coalesced_mmio_zone *z;
|
|
|
|
if (dev == NULL)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
i = dev->nb_zones;
|
|
while (i) {
|
|
z = &dev->zone[i - 1];
|
|
|
|
/* unregister all zones
|
|
* included in (zone->addr, zone->size)
|
|
*/
|
|
|
|
if (zone->addr <= z->addr &&
|
|
z->addr + z->size <= zone->addr + zone->size) {
|
|
dev->nb_zones--;
|
|
*z = dev->zone[dev->nb_zones];
|
|
}
|
|
i--;
|
|
}
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
return 0;
|
|
}
|