linux-stable/drivers/staging/rtl8192u/r819xU_phy.c
Len Baker 07e7f36da8 staging/rtl8192u: Prefer kcalloc over open coded arithmetic
As noted in the "Deprecated Interfaces, Language Features, Attributes,
and Conventions" documentation [1], size calculations (especially
multiplication) should not be performed in memory allocator (or similar)
function arguments due to the risk of them overflowing. This could lead
to values wrapping around and a smaller allocation being made than the
caller was expecting. Using those allocations could lead to linear
overflows of heap memory and other misbehaviors.

In this case these aren't actually dynamic sizes: both sides of the
multiplication are constant values. However it is best to refactor these
anyway, just to keep the open-coded math idiom out of code.

So, use the purpose specific kcalloc() function instead of the argument
size * count in the kzalloc() function.

[1] https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments

Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Len Baker <len.baker@gmx.com>
Link: https://lore.kernel.org/r/20210824090039.GA7999@titan
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-26 12:14:27 +02:00

1733 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "r8192U.h"
#include "r8192U_hw.h"
#include "r819xU_phy.h"
#include "r819xU_phyreg.h"
#include "r8190_rtl8256.h"
#include "r8192U_dm.h"
#include "r819xU_firmware_img.h"
#include "ieee80211/dot11d.h"
#include <linux/bitops.h>
static u32 RF_CHANNEL_TABLE_ZEBRA[] = {
0,
0x085c, /* 2412 1 */
0x08dc, /* 2417 2 */
0x095c, /* 2422 3 */
0x09dc, /* 2427 4 */
0x0a5c, /* 2432 5 */
0x0adc, /* 2437 6 */
0x0b5c, /* 2442 7 */
0x0bdc, /* 2447 8 */
0x0c5c, /* 2452 9 */
0x0cdc, /* 2457 10 */
0x0d5c, /* 2462 11 */
0x0ddc, /* 2467 12 */
0x0e5c, /* 2472 13 */
0x0f72, /* 2484 */
};
#define rtl819XMACPHY_Array Rtl8192UsbMACPHY_Array
/******************************************************************************
* function: This function checks different RF type to execute legal judgement.
* If RF Path is illegal, we will return false.
* input: net_device *dev
* u32 e_rfpath
* output: none
* return: 0(illegal, false), 1(legal, true)
*****************************************************************************/
u8 rtl8192_phy_CheckIsLegalRFPath(struct net_device *dev, u32 e_rfpath)
{
u8 ret = 1;
struct r8192_priv *priv = ieee80211_priv(dev);
if (priv->rf_type == RF_2T4R) {
ret = 0;
} else if (priv->rf_type == RF_1T2R) {
if (e_rfpath == RF90_PATH_A || e_rfpath == RF90_PATH_B)
ret = 1;
else if (e_rfpath == RF90_PATH_C || e_rfpath == RF90_PATH_D)
ret = 0;
}
return ret;
}
/******************************************************************************
* function: This function sets specific bits to BB register
* input: net_device *dev
* u32 reg_addr //target addr to be modified
* u32 bitmask //taget bit pos to be modified
* u32 data //value to be write
* output: none
* return: none
* notice:
******************************************************************************/
void rtl8192_setBBreg(struct net_device *dev, u32 reg_addr, u32 bitmask,
u32 data)
{
u32 reg, bitshift;
if (bitmask != bMaskDWord) {
read_nic_dword(dev, reg_addr, &reg);
bitshift = ffs(bitmask) - 1;
reg &= ~bitmask;
reg |= data << bitshift;
write_nic_dword(dev, reg_addr, reg);
} else {
write_nic_dword(dev, reg_addr, data);
}
}
/******************************************************************************
* function: This function reads specific bits from BB register
* input: net_device *dev
* u32 reg_addr //target addr to be readback
* u32 bitmask //taget bit pos to be readback
* output: none
* return: u32 data //the readback register value
* notice:
******************************************************************************/
u32 rtl8192_QueryBBReg(struct net_device *dev, u32 reg_addr, u32 bitmask)
{
u32 reg, bitshift;
read_nic_dword(dev, reg_addr, &reg);
bitshift = ffs(bitmask) - 1;
return (reg & bitmask) >> bitshift;
}
static u32 phy_FwRFSerialRead(struct net_device *dev,
enum rf90_radio_path_e e_rfpath,
u32 offset);
static void phy_FwRFSerialWrite(struct net_device *dev,
enum rf90_radio_path_e e_rfpath,
u32 offset,
u32 data);
/******************************************************************************
* function: This function reads register from RF chip
* input: net_device *dev
* rf90_radio_path_e e_rfpath //radio path of A/B/C/D
* u32 offset //target address to be read
* output: none
* return: u32 readback value
* notice: There are three types of serial operations:
* (1) Software serial write.
* (2)Hardware LSSI-Low Speed Serial Interface.
* (3)Hardware HSSI-High speed serial write.
* Driver here need to implement (1) and (2)
* ---need more spec for this information.
******************************************************************************/
static u32 rtl8192_phy_RFSerialRead(struct net_device *dev,
enum rf90_radio_path_e e_rfpath, u32 offset)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u32 ret = 0;
u32 new_offset = 0;
BB_REGISTER_DEFINITION_T *pPhyReg = &priv->PHYRegDef[e_rfpath];
rtl8192_setBBreg(dev, pPhyReg->rfLSSIReadBack, bLSSIReadBackData, 0);
/* Make sure RF register offset is correct */
offset &= 0x3f;
/* Switch page for 8256 RF IC */
if (priv->rf_chip == RF_8256) {
if (offset >= 31) {
priv->RfReg0Value[e_rfpath] |= 0x140;
/* Switch to Reg_Mode2 for Reg 31-45 */
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
priv->RfReg0Value[e_rfpath]<<16);
/* Modify offset */
new_offset = offset - 30;
} else if (offset >= 16) {
priv->RfReg0Value[e_rfpath] |= 0x100;
priv->RfReg0Value[e_rfpath] &= (~0x40);
/* Switch to Reg_Mode1 for Reg16-30 */
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
priv->RfReg0Value[e_rfpath]<<16);
new_offset = offset - 15;
} else {
new_offset = offset;
}
} else {
RT_TRACE((COMP_PHY|COMP_ERR),
"check RF type here, need to be 8256\n");
new_offset = offset;
}
/* Put desired read addr to LSSI control Register */
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadAddress,
new_offset);
/* Issue a posedge trigger */
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x0);
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x1);
/* TODO: we should not delay such a long time. Ask for help from SD3 */
usleep_range(1000, 1000);
ret = rtl8192_QueryBBReg(dev, pPhyReg->rfLSSIReadBack,
bLSSIReadBackData);
/* Switch back to Reg_Mode0 */
if (priv->rf_chip == RF_8256) {
priv->RfReg0Value[e_rfpath] &= 0xebf;
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord,
priv->RfReg0Value[e_rfpath] << 16);
}
return ret;
}
/******************************************************************************
* function: This function writes data to RF register
* input: net_device *dev
* rf90_radio_path_e e_rfpath //radio path of A/B/C/D
* u32 offset //target address to be written
* u32 data //the new register data to be written
* output: none
* return: none
* notice: For RF8256 only.
* ===========================================================================
* Reg Mode RegCTL[1] RegCTL[0] Note
* (Reg00[12]) (Reg00[10])
* ===========================================================================
* Reg_Mode0 0 x Reg 0 ~ 15(0x0 ~ 0xf)
* ---------------------------------------------------------------------------
* Reg_Mode1 1 0 Reg 16 ~ 30(0x1 ~ 0xf)
* ---------------------------------------------------------------------------
* Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf)
* ---------------------------------------------------------------------------
*****************************************************************************/
static void rtl8192_phy_RFSerialWrite(struct net_device *dev,
enum rf90_radio_path_e e_rfpath,
u32 offset,
u32 data)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u32 DataAndAddr = 0, new_offset = 0;
BB_REGISTER_DEFINITION_T *pPhyReg = &priv->PHYRegDef[e_rfpath];
offset &= 0x3f;
if (priv->rf_chip == RF_8256) {
if (offset >= 31) {
priv->RfReg0Value[e_rfpath] |= 0x140;
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
priv->RfReg0Value[e_rfpath] << 16);
new_offset = offset - 30;
} else if (offset >= 16) {
priv->RfReg0Value[e_rfpath] |= 0x100;
priv->RfReg0Value[e_rfpath] &= (~0x40);
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
priv->RfReg0Value[e_rfpath]<<16);
new_offset = offset - 15;
} else {
new_offset = offset;
}
} else {
RT_TRACE((COMP_PHY|COMP_ERR),
"check RF type here, need to be 8256\n");
new_offset = offset;
}
/* Put write addr in [5:0] and write data in [31:16] */
DataAndAddr = (data<<16) | (new_offset&0x3f);
/* Write operation */
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
if (offset == 0x0)
priv->RfReg0Value[e_rfpath] = data;
/* Switch back to Reg_Mode0 */
if (priv->rf_chip == RF_8256) {
if (offset != 0) {
priv->RfReg0Value[e_rfpath] &= 0xebf;
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
priv->RfReg0Value[e_rfpath] << 16);
}
}
}
/******************************************************************************
* function: This function set specific bits to RF register
* input: net_device dev
* rf90_radio_path_e e_rfpath //radio path of A/B/C/D
* u32 reg_addr //target addr to be modified
* u32 bitmask //taget bit pos to be modified
* u32 data //value to be written
* output: none
* return: none
* notice:
*****************************************************************************/
void rtl8192_phy_SetRFReg(struct net_device *dev,
enum rf90_radio_path_e e_rfpath,
u32 reg_addr, u32 bitmask, u32 data)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u32 reg, bitshift;
if (!rtl8192_phy_CheckIsLegalRFPath(dev, e_rfpath))
return;
if (priv->Rf_Mode == RF_OP_By_FW) {
if (bitmask != bMask12Bits) {
/* RF data is 12 bits only */
reg = phy_FwRFSerialRead(dev, e_rfpath, reg_addr);
bitshift = ffs(bitmask) - 1;
reg &= ~bitmask;
reg |= data << bitshift;
phy_FwRFSerialWrite(dev, e_rfpath, reg_addr, reg);
} else {
phy_FwRFSerialWrite(dev, e_rfpath, reg_addr, data);
}
udelay(200);
} else {
if (bitmask != bMask12Bits) {
/* RF data is 12 bits only */
reg = rtl8192_phy_RFSerialRead(dev, e_rfpath, reg_addr);
bitshift = ffs(bitmask) - 1;
reg &= ~bitmask;
reg |= data << bitshift;
rtl8192_phy_RFSerialWrite(dev, e_rfpath, reg_addr, reg);
} else {
rtl8192_phy_RFSerialWrite(dev, e_rfpath, reg_addr, data);
}
}
}
/******************************************************************************
* function: This function reads specific bits from RF register
* input: net_device *dev
* u32 reg_addr //target addr to be readback
* u32 bitmask //taget bit pos to be readback
* output: none
* return: u32 data //the readback register value
* notice:
*****************************************************************************/
u32 rtl8192_phy_QueryRFReg(struct net_device *dev,
enum rf90_radio_path_e e_rfpath,
u32 reg_addr, u32 bitmask)
{
u32 reg, bitshift;
struct r8192_priv *priv = ieee80211_priv(dev);
if (!rtl8192_phy_CheckIsLegalRFPath(dev, e_rfpath))
return 0;
if (priv->Rf_Mode == RF_OP_By_FW) {
reg = phy_FwRFSerialRead(dev, e_rfpath, reg_addr);
udelay(200);
} else {
reg = rtl8192_phy_RFSerialRead(dev, e_rfpath, reg_addr);
}
bitshift = ffs(bitmask) - 1;
reg = (reg & bitmask) >> bitshift;
return reg;
}
/******************************************************************************
* function: We support firmware to execute RF-R/W.
* input: net_device *dev
* rf90_radio_path_e e_rfpath
* u32 offset
* output: none
* return: u32
* notice:
****************************************************************************/
static u32 phy_FwRFSerialRead(struct net_device *dev,
enum rf90_radio_path_e e_rfpath,
u32 offset)
{
u32 reg = 0;
u32 data = 0;
u8 time = 0;
u32 tmp;
/* Firmware RF Write control.
* We can not execute the scheme in the initial step.
* Otherwise, RF-R/W will waste much time.
* This is only for site survey.
*/
/* 1. Read operation need not insert data. bit 0-11 */
/* 2. Write RF register address. bit 12-19 */
data |= ((offset&0xFF)<<12);
/* 3. Write RF path. bit 20-21 */
data |= ((e_rfpath&0x3)<<20);
/* 4. Set RF read indicator. bit 22=0 */
/* 5. Trigger Fw to operate the command. bit 31 */
data |= 0x80000000;
/* 6. We can not execute read operation if bit 31 is 1. */
read_nic_dword(dev, QPNR, &tmp);
while (tmp & 0x80000000) {
/* If FW can not finish RF-R/W for more than ?? times.
* We must reset FW.
*/
if (time++ < 100) {
udelay(10);
read_nic_dword(dev, QPNR, &tmp);
} else {
break;
}
}
/* 7. Execute read operation. */
write_nic_dword(dev, QPNR, data);
/* 8. Check if firmware send back RF content. */
read_nic_dword(dev, QPNR, &tmp);
while (tmp & 0x80000000) {
/* If FW can not finish RF-R/W for more than ?? times.
* We must reset FW.
*/
if (time++ < 100) {
udelay(10);
read_nic_dword(dev, QPNR, &tmp);
} else {
return 0;
}
}
read_nic_dword(dev, RF_DATA, &reg);
return reg;
}
/******************************************************************************
* function: We support firmware to execute RF-R/W.
* input: net_device *dev
* rf90_radio_path_e e_rfpath
* u32 offset
* u32 data
* output: none
* return: none
* notice:
****************************************************************************/
static void phy_FwRFSerialWrite(struct net_device *dev,
enum rf90_radio_path_e e_rfpath,
u32 offset, u32 data)
{
u8 time = 0;
u32 tmp;
/* Firmware RF Write control.
* We can not execute the scheme in the initial step.
* Otherwise, RF-R/W will waste much time.
* This is only for site survey.
*/
/* 1. Set driver write bit and 12 bit data. bit 0-11 */
/* 2. Write RF register address. bit 12-19 */
data |= ((offset&0xFF)<<12);
/* 3. Write RF path. bit 20-21 */
data |= ((e_rfpath&0x3)<<20);
/* 4. Set RF write indicator. bit 22=1 */
data |= 0x400000;
/* 5. Trigger Fw to operate the command. bit 31=1 */
data |= 0x80000000;
/* 6. Write operation. We can not write if bit 31 is 1. */
read_nic_dword(dev, QPNR, &tmp);
while (tmp & 0x80000000) {
/* If FW can not finish RF-R/W for more than ?? times.
* We must reset FW.
*/
if (time++ < 100) {
udelay(10);
read_nic_dword(dev, QPNR, &tmp);
} else {
break;
}
}
/* 7. No matter check bit. We always force the write.
* Because FW will not accept the command.
*/
write_nic_dword(dev, QPNR, data);
/* According to test, we must delay 20us to wait firmware
* to finish RF write operation.
*/
/* We support delay in firmware side now. */
}
/******************************************************************************
* function: This function reads BB parameters from header file we generate,
* and do register read/write
* input: net_device *dev
* output: none
* return: none
* notice: BB parameters may change all the time, so please make
* sure it has been synced with the newest.
*****************************************************************************/
void rtl8192_phy_configmac(struct net_device *dev)
{
u32 dwArrayLen = 0, i;
u32 *pdwArray = NULL;
struct r8192_priv *priv = ieee80211_priv(dev);
if (priv->btxpowerdata_readfromEEPORM) {
RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array_PG\n");
dwArrayLen = MACPHY_Array_PGLength;
pdwArray = Rtl8192UsbMACPHY_Array_PG;
} else {
RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array\n");
dwArrayLen = MACPHY_ArrayLength;
pdwArray = rtl819XMACPHY_Array;
}
for (i = 0; i < dwArrayLen; i = i+3) {
if (pdwArray[i] == 0x318)
pdwArray[i+2] = 0x00000800;
RT_TRACE(COMP_DBG,
"Rtl8190MACPHY_Array[0]=%x Rtl8190MACPHY_Array[1]=%x Rtl8190MACPHY_Array[2]=%x\n",
pdwArray[i], pdwArray[i+1], pdwArray[i+2]);
rtl8192_setBBreg(dev, pdwArray[i], pdwArray[i+1],
pdwArray[i+2]);
}
}
/******************************************************************************
* function: This function does dirty work
* input: net_device *dev
* u8 ConfigType
* output: none
* return: none
* notice: BB parameters may change all the time, so please make
* sure it has been synced with the newest.
*****************************************************************************/
static void rtl8192_phyConfigBB(struct net_device *dev,
enum baseband_config_type ConfigType)
{
u32 i;
if (ConfigType == BASEBAND_CONFIG_PHY_REG) {
for (i = 0; i < PHY_REG_1T2RArrayLength; i += 2) {
rtl8192_setBBreg(dev, Rtl8192UsbPHY_REG_1T2RArray[i],
bMaskDWord,
Rtl8192UsbPHY_REG_1T2RArray[i+1]);
RT_TRACE(COMP_DBG,
"i: %x, Rtl819xUsbPHY_REGArray[0]=%x Rtl819xUsbPHY_REGArray[1]=%x\n",
i, Rtl8192UsbPHY_REG_1T2RArray[i],
Rtl8192UsbPHY_REG_1T2RArray[i+1]);
}
} else if (ConfigType == BASEBAND_CONFIG_AGC_TAB) {
for (i = 0; i < AGCTAB_ArrayLength; i += 2) {
rtl8192_setBBreg(dev, Rtl8192UsbAGCTAB_Array[i],
bMaskDWord, Rtl8192UsbAGCTAB_Array[i+1]);
RT_TRACE(COMP_DBG,
"i: %x, Rtl8192UsbAGCTAB_Array[0]=%x Rtl8192UsbAGCTAB_Array[1]=%x\n",
i, Rtl8192UsbAGCTAB_Array[i],
Rtl8192UsbAGCTAB_Array[i+1]);
}
}
}
/******************************************************************************
* function: This function initializes Register definition offset for
* Radio Path A/B/C/D
* input: net_device *dev
* output: none
* return: none
* notice: Initialization value here is constant and it should never
* be changed
*****************************************************************************/
static void rtl8192_InitBBRFRegDef(struct net_device *dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
/* RF Interface Software Control */
/* 16 LSBs if read 32-bit from 0x870 */
priv->PHYRegDef[RF90_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW;
/* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
priv->PHYRegDef[RF90_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW;
/* 16 LSBs if read 32-bit from 0x874 */
priv->PHYRegDef[RF90_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;
/* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */
priv->PHYRegDef[RF90_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;
/* RF Interface Readback Value */
/* 16 LSBs if read 32-bit from 0x8E0 */
priv->PHYRegDef[RF90_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB;
/* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
priv->PHYRegDef[RF90_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;
/* 16 LSBs if read 32-bit from 0x8E4 */
priv->PHYRegDef[RF90_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;
/* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */
priv->PHYRegDef[RF90_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;
/* RF Interface Output (and Enable) */
/* 16 LSBs if read 32-bit from 0x860 */
priv->PHYRegDef[RF90_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE;
/* 16 LSBs if read 32-bit from 0x864 */
priv->PHYRegDef[RF90_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE;
/* 16 LSBs if read 32-bit from 0x868 */
priv->PHYRegDef[RF90_PATH_C].rfintfo = rFPGA0_XC_RFInterfaceOE;
/* 16 LSBs if read 32-bit from 0x86C */
priv->PHYRegDef[RF90_PATH_D].rfintfo = rFPGA0_XD_RFInterfaceOE;
/* RF Interface (Output and) Enable */
/* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
priv->PHYRegDef[RF90_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE;
/* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
priv->PHYRegDef[RF90_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE;
/* 16 MSBs if read 32-bit from 0x86A (16-bit for 0x86A) */
priv->PHYRegDef[RF90_PATH_C].rfintfe = rFPGA0_XC_RFInterfaceOE;
/* 16 MSBs if read 32-bit from 0x86C (16-bit for 0x86E) */
priv->PHYRegDef[RF90_PATH_D].rfintfe = rFPGA0_XD_RFInterfaceOE;
/* Addr of LSSI. Write RF register by driver */
priv->PHYRegDef[RF90_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter;
priv->PHYRegDef[RF90_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
priv->PHYRegDef[RF90_PATH_C].rf3wireOffset = rFPGA0_XC_LSSIParameter;
priv->PHYRegDef[RF90_PATH_D].rf3wireOffset = rFPGA0_XD_LSSIParameter;
/* RF parameter */
/* BB Band Select */
priv->PHYRegDef[RF90_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter;
priv->PHYRegDef[RF90_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter;
priv->PHYRegDef[RF90_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter;
priv->PHYRegDef[RF90_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter;
/* Tx AGC Gain Stage (same for all path. Should we remove this?) */
priv->PHYRegDef[RF90_PATH_A].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_B].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_C].rfTxGainStage = rFPGA0_TxGainStage;
priv->PHYRegDef[RF90_PATH_D].rfTxGainStage = rFPGA0_TxGainStage;
/* Tranceiver A~D HSSI Parameter-1 */
/* wire control parameter1 */
priv->PHYRegDef[RF90_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_C].rfHSSIPara1 = rFPGA0_XC_HSSIParameter1;
priv->PHYRegDef[RF90_PATH_D].rfHSSIPara1 = rFPGA0_XD_HSSIParameter1;
/* Tranceiver A~D HSSI Parameter-2 */
/* wire control parameter2 */
priv->PHYRegDef[RF90_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_C].rfHSSIPara2 = rFPGA0_XC_HSSIParameter2;
priv->PHYRegDef[RF90_PATH_D].rfHSSIPara2 = rFPGA0_XD_HSSIParameter2;
/* RF Switch Control */
/* TR/Ant switch control */
priv->PHYRegDef[RF90_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl;
priv->PHYRegDef[RF90_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl;
priv->PHYRegDef[RF90_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl;
priv->PHYRegDef[RF90_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl;
/* AGC control 1 */
priv->PHYRegDef[RF90_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1;
priv->PHYRegDef[RF90_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1;
priv->PHYRegDef[RF90_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1;
priv->PHYRegDef[RF90_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1;
/* AGC control 2 */
priv->PHYRegDef[RF90_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2;
priv->PHYRegDef[RF90_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2;
priv->PHYRegDef[RF90_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2;
priv->PHYRegDef[RF90_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2;
/* RX AFE control 1 */
priv->PHYRegDef[RF90_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance;
priv->PHYRegDef[RF90_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance;
priv->PHYRegDef[RF90_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance;
priv->PHYRegDef[RF90_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance;
/* RX AFE control 1 */
priv->PHYRegDef[RF90_PATH_A].rfRxAFE = rOFDM0_XARxAFE;
priv->PHYRegDef[RF90_PATH_B].rfRxAFE = rOFDM0_XBRxAFE;
priv->PHYRegDef[RF90_PATH_C].rfRxAFE = rOFDM0_XCRxAFE;
priv->PHYRegDef[RF90_PATH_D].rfRxAFE = rOFDM0_XDRxAFE;
/* Tx AFE control 1 */
priv->PHYRegDef[RF90_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance;
priv->PHYRegDef[RF90_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance;
priv->PHYRegDef[RF90_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance;
priv->PHYRegDef[RF90_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance;
/* Tx AFE control 2 */
priv->PHYRegDef[RF90_PATH_A].rfTxAFE = rOFDM0_XATxAFE;
priv->PHYRegDef[RF90_PATH_B].rfTxAFE = rOFDM0_XBTxAFE;
priv->PHYRegDef[RF90_PATH_C].rfTxAFE = rOFDM0_XCTxAFE;
priv->PHYRegDef[RF90_PATH_D].rfTxAFE = rOFDM0_XDTxAFE;
/* Tranceiver LSSI Readback */
priv->PHYRegDef[RF90_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;
}
/******************************************************************************
* function: This function is to write register and then readback to make
* sure whether BB and RF is OK
* input: net_device *dev
* hw90_block_e CheckBlock
* rf90_radio_path_e e_rfpath //only used when checkblock is
* //HW90_BLOCK_RF
* output: none
* return: return whether BB and RF is ok (0:OK, 1:Fail)
* notice: This function may be removed in the ASIC
******************************************************************************/
u8 rtl8192_phy_checkBBAndRF(struct net_device *dev, enum hw90_block_e CheckBlock,
enum rf90_radio_path_e e_rfpath)
{
u8 ret = 0;
u32 i, CheckTimes = 4, reg = 0;
u32 WriteAddr[4];
u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f};
/* Initialize register address offset to be checked */
WriteAddr[HW90_BLOCK_MAC] = 0x100;
WriteAddr[HW90_BLOCK_PHY0] = 0x900;
WriteAddr[HW90_BLOCK_PHY1] = 0x800;
WriteAddr[HW90_BLOCK_RF] = 0x3;
RT_TRACE(COMP_PHY, "%s(), CheckBlock: %d\n", __func__, CheckBlock);
for (i = 0; i < CheckTimes; i++) {
/* Write data to register and readback */
switch (CheckBlock) {
case HW90_BLOCK_MAC:
RT_TRACE(COMP_ERR,
"PHY_CheckBBRFOK(): Never Write 0x100 here!\n");
break;
case HW90_BLOCK_PHY0:
case HW90_BLOCK_PHY1:
write_nic_dword(dev, WriteAddr[CheckBlock],
WriteData[i]);
read_nic_dword(dev, WriteAddr[CheckBlock], &reg);
break;
case HW90_BLOCK_RF:
WriteData[i] &= 0xfff;
rtl8192_phy_SetRFReg(dev, e_rfpath,
WriteAddr[HW90_BLOCK_RF],
bMask12Bits, WriteData[i]);
/* TODO: we should not delay for such a long time.
* Ask SD3
*/
usleep_range(1000, 1000);
reg = rtl8192_phy_QueryRFReg(dev, e_rfpath,
WriteAddr[HW90_BLOCK_RF],
bMask12Bits);
usleep_range(1000, 1000);
break;
default:
ret = 1;
break;
}
/* Check whether readback data is correct */
if (reg != WriteData[i]) {
RT_TRACE((COMP_PHY|COMP_ERR),
"error reg: %x, WriteData: %x\n",
reg, WriteData[i]);
ret = 1;
break;
}
}
return ret;
}
/******************************************************************************
* function: This function initializes BB&RF
* input: net_device *dev
* output: none
* return: none
* notice: Initialization value may change all the time, so please make
* sure it has been synced with the newest.
******************************************************************************/
static void rtl8192_BB_Config_ParaFile(struct net_device *dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 reg_u8 = 0, eCheckItem = 0, status = 0;
u32 reg_u32 = 0;
/**************************************
* <1> Initialize BaseBand
*************************************/
/* --set BB Global Reset-- */
read_nic_byte(dev, BB_GLOBAL_RESET, &reg_u8);
write_nic_byte(dev, BB_GLOBAL_RESET, (reg_u8|BB_GLOBAL_RESET_BIT));
mdelay(50);
/* ---set BB reset Active--- */
read_nic_dword(dev, CPU_GEN, &reg_u32);
write_nic_dword(dev, CPU_GEN, (reg_u32&(~CPU_GEN_BB_RST)));
/* ----Ckeck FPGAPHY0 and PHY1 board is OK---- */
/* TODO: this function should be removed on ASIC */
for (eCheckItem = (enum hw90_block_e)HW90_BLOCK_PHY0;
eCheckItem <= HW90_BLOCK_PHY1; eCheckItem++) {
/* don't care RF path */
status = rtl8192_phy_checkBBAndRF(dev, (enum hw90_block_e)eCheckItem,
(enum rf90_radio_path_e)0);
if (status != 0) {
RT_TRACE((COMP_ERR | COMP_PHY),
"phy_rf8256_config(): Check PHY%d Fail!!\n",
eCheckItem-1);
return;
}
}
/* ---- Set CCK and OFDM Block "OFF"---- */
rtl8192_setBBreg(dev, rFPGA0_RFMOD, bCCKEn|bOFDMEn, 0x0);
/* ----BB Register Initilazation---- */
/* ==m==>Set PHY REG From Header<==m== */
rtl8192_phyConfigBB(dev, BASEBAND_CONFIG_PHY_REG);
/* ----Set BB reset de-Active---- */
read_nic_dword(dev, CPU_GEN, &reg_u32);
write_nic_dword(dev, CPU_GEN, (reg_u32|CPU_GEN_BB_RST));
/* ----BB AGC table Initialization---- */
/* ==m==>Set PHY REG From Header<==m== */
rtl8192_phyConfigBB(dev, BASEBAND_CONFIG_AGC_TAB);
/* ----Enable XSTAL ---- */
write_nic_byte_E(dev, 0x5e, 0x00);
if (priv->card_8192_version == VERSION_819XU_A) {
/* Antenna gain offset from B/C/D to A */
reg_u32 = priv->AntennaTxPwDiff[1]<<4 |
priv->AntennaTxPwDiff[0];
rtl8192_setBBreg(dev, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC),
reg_u32);
/* XSTALLCap */
reg_u32 = priv->CrystalCap & 0xf;
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, bXtalCap,
reg_u32);
}
/* Check if the CCK HighPower is turned ON.
* This is used to calculate PWDB.
*/
priv->bCckHighPower = (u8)rtl8192_QueryBBReg(dev,
rFPGA0_XA_HSSIParameter2,
0x200);
}
/******************************************************************************
* function: This function initializes BB&RF
* input: net_device *dev
* output: none
* return: none
* notice: Initialization value may change all the time, so please make
* sure it has been synced with the newest.
*****************************************************************************/
void rtl8192_BBConfig(struct net_device *dev)
{
rtl8192_InitBBRFRegDef(dev);
/* config BB&RF. As hardCode based initialization has not been well
* implemented, so use file first.
* FIXME: should implement it for hardcode?
*/
rtl8192_BB_Config_ParaFile(dev);
}
/******************************************************************************
* function: This function obtains the initialization value of Tx power Level
* offset
* input: net_device *dev
* output: none
* return: none
*****************************************************************************/
void rtl8192_phy_getTxPower(struct net_device *dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 tmp;
read_nic_dword(dev, rTxAGC_Rate18_06,
&priv->MCSTxPowerLevelOriginalOffset[0]);
read_nic_dword(dev, rTxAGC_Rate54_24,
&priv->MCSTxPowerLevelOriginalOffset[1]);
read_nic_dword(dev, rTxAGC_Mcs03_Mcs00,
&priv->MCSTxPowerLevelOriginalOffset[2]);
read_nic_dword(dev, rTxAGC_Mcs07_Mcs04,
&priv->MCSTxPowerLevelOriginalOffset[3]);
read_nic_dword(dev, rTxAGC_Mcs11_Mcs08,
&priv->MCSTxPowerLevelOriginalOffset[4]);
read_nic_dword(dev, rTxAGC_Mcs15_Mcs12,
&priv->MCSTxPowerLevelOriginalOffset[5]);
/* Read rx initial gain */
read_nic_byte(dev, rOFDM0_XAAGCCore1, &priv->DefaultInitialGain[0]);
read_nic_byte(dev, rOFDM0_XBAGCCore1, &priv->DefaultInitialGain[1]);
read_nic_byte(dev, rOFDM0_XCAGCCore1, &priv->DefaultInitialGain[2]);
read_nic_byte(dev, rOFDM0_XDAGCCore1, &priv->DefaultInitialGain[3]);
RT_TRACE(COMP_INIT,
"Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x)\n",
priv->DefaultInitialGain[0], priv->DefaultInitialGain[1],
priv->DefaultInitialGain[2], priv->DefaultInitialGain[3]);
/* Read framesync */
read_nic_byte(dev, rOFDM0_RxDetector3, &priv->framesync);
read_nic_byte(dev, rOFDM0_RxDetector2, &tmp);
priv->framesyncC34 = tmp;
RT_TRACE(COMP_INIT, "Default framesync (0x%x) = 0x%x\n",
rOFDM0_RxDetector3, priv->framesync);
/* Read SIFS (save the value read fome MACPHY_REG.txt) */
read_nic_word(dev, SIFS, &priv->SifsTime);
}
/******************************************************************************
* function: This function sets the initialization value of Tx power Level
* offset
* input: net_device *dev
* u8 channel
* output: none
* return: none
******************************************************************************/
void rtl8192_phy_setTxPower(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 powerlevel = priv->TxPowerLevelCCK[channel-1];
u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1];
switch (priv->rf_chip) {
case RF_8256:
/* need further implement */
phy_set_rf8256_cck_tx_power(dev, powerlevel);
phy_set_rf8256_ofdm_tx_power(dev, powerlevelOFDM24G);
break;
default:
RT_TRACE((COMP_PHY|COMP_ERR),
"error RF chipID(8225 or 8258) in function %s()\n",
__func__);
break;
}
}
/******************************************************************************
* function: This function checks Rf chip to do RF config
* input: net_device *dev
* output: none
* return: only 8256 is supported
******************************************************************************/
void rtl8192_phy_RFConfig(struct net_device *dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
switch (priv->rf_chip) {
case RF_8256:
phy_rf8256_config(dev);
break;
default:
RT_TRACE(COMP_ERR, "error chip id\n");
break;
}
}
/******************************************************************************
* function: This function updates Initial gain
* input: net_device *dev
* output: none
* return: As Windows has not implemented this, wait for complement
******************************************************************************/
void rtl8192_phy_updateInitGain(struct net_device *dev)
{
}
/******************************************************************************
* function: This function read RF parameters from general head file,
* and do RF 3-wire
* input: net_device *dev
* rf90_radio_path_e e_rfpath
* output: none
* return: return code show if RF configuration is successful(0:pass, 1:fail)
* notice: Delay may be required for RF configuration
*****************************************************************************/
u8 rtl8192_phy_ConfigRFWithHeaderFile(struct net_device *dev,
enum rf90_radio_path_e e_rfpath)
{
int i;
switch (e_rfpath) {
case RF90_PATH_A:
for (i = 0; i < RadioA_ArrayLength; i = i+2) {
if (Rtl8192UsbRadioA_Array[i] == 0xfe) {
mdelay(100);
continue;
}
rtl8192_phy_SetRFReg(dev, e_rfpath,
Rtl8192UsbRadioA_Array[i],
bMask12Bits,
Rtl8192UsbRadioA_Array[i+1]);
mdelay(1);
}
break;
case RF90_PATH_B:
for (i = 0; i < RadioB_ArrayLength; i = i+2) {
if (Rtl8192UsbRadioB_Array[i] == 0xfe) {
mdelay(100);
continue;
}
rtl8192_phy_SetRFReg(dev, e_rfpath,
Rtl8192UsbRadioB_Array[i],
bMask12Bits,
Rtl8192UsbRadioB_Array[i+1]);
mdelay(1);
}
break;
case RF90_PATH_C:
for (i = 0; i < RadioC_ArrayLength; i = i+2) {
if (Rtl8192UsbRadioC_Array[i] == 0xfe) {
mdelay(100);
continue;
}
rtl8192_phy_SetRFReg(dev, e_rfpath,
Rtl8192UsbRadioC_Array[i],
bMask12Bits,
Rtl8192UsbRadioC_Array[i+1]);
mdelay(1);
}
break;
case RF90_PATH_D:
for (i = 0; i < RadioD_ArrayLength; i = i+2) {
if (Rtl8192UsbRadioD_Array[i] == 0xfe) {
mdelay(100);
continue;
}
rtl8192_phy_SetRFReg(dev, e_rfpath,
Rtl8192UsbRadioD_Array[i],
bMask12Bits,
Rtl8192UsbRadioD_Array[i+1]);
mdelay(1);
}
break;
default:
break;
}
return 0;
}
/******************************************************************************
* function: This function sets Tx Power of the channel
* input: net_device *dev
* u8 channel
* output: none
* return: none
* notice:
******************************************************************************/
static void rtl8192_SetTxPowerLevel(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 powerlevel = priv->TxPowerLevelCCK[channel-1];
u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1];
switch (priv->rf_chip) {
case RF_8225:
break;
case RF_8256:
phy_set_rf8256_cck_tx_power(dev, powerlevel);
phy_set_rf8256_ofdm_tx_power(dev, powerlevelOFDM24G);
break;
case RF_8258:
break;
default:
RT_TRACE(COMP_ERR, "unknown rf chip ID in %s()\n", __func__);
break;
}
}
/******************************************************************************
* function: This function sets RF state on or off
* input: net_device *dev
* RT_RF_POWER_STATE eRFPowerState //Power State to set
* output: none
* return: none
* notice:
*****************************************************************************/
bool rtl8192_SetRFPowerState(struct net_device *dev,
RT_RF_POWER_STATE eRFPowerState)
{
bool bResult = true;
struct r8192_priv *priv = ieee80211_priv(dev);
if (eRFPowerState == priv->ieee80211->eRFPowerState)
return false;
if (priv->SetRFPowerStateInProgress)
return false;
priv->SetRFPowerStateInProgress = true;
switch (priv->rf_chip) {
case RF_8256:
switch (eRFPowerState) {
case eRfOn:
/* RF-A, RF-B */
/* enable RF-Chip A/B - 0x860[4] */
rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT(4),
0x1);
/* analog to digital on - 0x88c[9:8] */
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300,
0x3);
/* digital to analog on - 0x880[4:3] */
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18,
0x3);
/* rx antenna on - 0xc04[1:0] */
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0x3, 0x3);
/* rx antenna on - 0xd04[1:0] */
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0x3, 0x3);
/* analog to digital part2 on - 0x880[6:5] */
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60,
0x3);
break;
case eRfSleep:
break;
case eRfOff:
/* RF-A, RF-B */
/* disable RF-Chip A/B - 0x860[4] */
rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT(4),
0x0);
/* analog to digital off, for power save */
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00,
0x0); /* 0x88c[11:8] */
/* digital to analog off, for power save - 0x880[4:3] */
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18,
0x0);
/* rx antenna off - 0xc04[3:0] */
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0);
/* rx antenna off - 0xd04[3:0] */
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0);
/* analog to digital part2 off, for power save */
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60,
0x0); /* 0x880[6:5] */
break;
default:
bResult = false;
RT_TRACE(COMP_ERR, "%s(): unknown state to set: 0x%X\n",
__func__, eRFPowerState);
break;
}
break;
default:
RT_TRACE(COMP_ERR, "Not support rf_chip(%x)\n", priv->rf_chip);
break;
}
priv->SetRFPowerStateInProgress = false;
return bResult;
}
/******************************************************************************
* function: This function sets command table variable (struct sw_chnl_cmd).
* input: sw_chnl_cmd *CmdTable //table to be set
* u32 CmdTableIdx //variable index in table to be set
* u32 CmdTableSz //table size
* switch_chan_cmd_id CmdID //command ID to set
* u32 Para1
* u32 Para2
* u32 msDelay
* output:
* return: true if finished, false otherwise
* notice:
******************************************************************************/
static u8 rtl8192_phy_SetSwChnlCmdArray(struct sw_chnl_cmd *CmdTable, u32 CmdTableIdx,
u32 CmdTableSz, enum switch_chan_cmd_id CmdID,
u32 Para1, u32 Para2, u32 msDelay)
{
struct sw_chnl_cmd *pCmd;
if (!CmdTable) {
RT_TRACE(COMP_ERR, "%s(): CmdTable cannot be NULL\n", __func__);
return false;
}
if (CmdTableIdx >= CmdTableSz) {
RT_TRACE(COMP_ERR, "%s(): Access invalid index, please check size of the table, CmdTableIdx:%d, CmdTableSz:%d\n",
__func__, CmdTableIdx, CmdTableSz);
return false;
}
pCmd = CmdTable + CmdTableIdx;
pCmd->cmd_id = CmdID;
pCmd->para_1 = Para1;
pCmd->para_2 = Para2;
pCmd->ms_delay = msDelay;
return true;
}
/******************************************************************************
* function: This function sets channel step by step
* input: net_device *dev
* u8 channel
* u8 *stage //3 stages
* u8 *step
* u32 *delay //whether need to delay
* output: store new stage, step and delay for next step
* (combine with function above)
* return: true if finished, false otherwise
* notice: Wait for simpler function to replace it
*****************************************************************************/
static u8 rtl8192_phy_SwChnlStepByStep(struct net_device *dev, u8 channel,
u8 *stage, u8 *step, u32 *delay)
{
struct r8192_priv *priv = ieee80211_priv(dev);
struct sw_chnl_cmd *pre_cmd;
u32 pre_cmd_cnt = 0;
struct sw_chnl_cmd *post_cmd;
u32 post_cmd_cnt = 0;
struct sw_chnl_cmd *rf_cmd;
u32 rf_cmd_cnt = 0;
struct sw_chnl_cmd *current_cmd = NULL;
u8 e_rfpath;
bool ret;
pre_cmd = kcalloc(MAX_PRECMD_CNT, sizeof(*pre_cmd), GFP_KERNEL);
if (!pre_cmd)
return false;
post_cmd = kcalloc(MAX_POSTCMD_CNT, sizeof(*post_cmd), GFP_KERNEL);
if (!post_cmd) {
kfree(pre_cmd);
return false;
}
rf_cmd = kcalloc(MAX_RFDEPENDCMD_CNT, sizeof(*rf_cmd), GFP_KERNEL);
if (!rf_cmd) {
kfree(pre_cmd);
kfree(post_cmd);
return false;
}
RT_TRACE(COMP_CH, "%s() stage: %d, step: %d, channel: %d\n",
__func__, *stage, *step, channel);
if (!is_legal_channel(priv->ieee80211, channel)) {
RT_TRACE(COMP_ERR, "set to illegal channel: %d\n", channel);
/* return true to tell upper caller function this channel
* setting is finished! Or it will in while loop.
*/
ret = true;
goto out;
}
/* FIXME: need to check whether channel is legal or not here */
/* <1> Fill up pre common command. */
rtl8192_phy_SetSwChnlCmdArray(pre_cmd, pre_cmd_cnt++,
MAX_PRECMD_CNT, CMD_ID_SET_TX_PWR_LEVEL,
0, 0, 0);
rtl8192_phy_SetSwChnlCmdArray(pre_cmd, pre_cmd_cnt++,
MAX_PRECMD_CNT, CMD_ID_END, 0, 0, 0);
/* <2> Fill up post common command. */
rtl8192_phy_SetSwChnlCmdArray(post_cmd, post_cmd_cnt++,
MAX_POSTCMD_CNT, CMD_ID_END, 0, 0, 0);
/* <3> Fill up RF dependent command. */
switch (priv->rf_chip) {
case RF_8225:
if (!(channel >= 1 && channel <= 14)) {
RT_TRACE(COMP_ERR,
"illegal channel for Zebra 8225: %d\n",
channel);
ret = true;
goto out;
}
rtl8192_phy_SetSwChnlCmdArray(rf_cmd, rf_cmd_cnt++,
MAX_RFDEPENDCMD_CNT,
CMD_ID_RF_WRITE_REG,
rZebra1_Channel,
RF_CHANNEL_TABLE_ZEBRA[channel],
10);
rtl8192_phy_SetSwChnlCmdArray(rf_cmd, rf_cmd_cnt++,
MAX_RFDEPENDCMD_CNT,
CMD_ID_END, 0, 0, 0);
break;
case RF_8256:
/* TEST!! This is not the table for 8256!! */
if (!(channel >= 1 && channel <= 14)) {
RT_TRACE(COMP_ERR,
"illegal channel for Zebra 8256: %d\n",
channel);
ret = true;
goto out;
}
rtl8192_phy_SetSwChnlCmdArray(rf_cmd, rf_cmd_cnt++,
MAX_RFDEPENDCMD_CNT,
CMD_ID_RF_WRITE_REG,
rZebra1_Channel, channel, 10);
rtl8192_phy_SetSwChnlCmdArray(rf_cmd, rf_cmd_cnt++,
MAX_RFDEPENDCMD_CNT,
CMD_ID_END, 0, 0, 0);
break;
case RF_8258:
break;
default:
RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip);
ret = true;
goto out;
}
do {
switch (*stage) {
case 0:
current_cmd = &pre_cmd[*step];
break;
case 1:
current_cmd = &rf_cmd[*step];
break;
case 2:
current_cmd = &post_cmd[*step];
break;
}
if (current_cmd->cmd_id == CMD_ID_END) {
if ((*stage) == 2) {
*delay = current_cmd->ms_delay;
ret = true;
goto out;
}
(*stage)++;
(*step) = 0;
continue;
}
switch (current_cmd->cmd_id) {
case CMD_ID_SET_TX_PWR_LEVEL:
if (priv->card_8192_version == VERSION_819XU_A)
/* consider it later! */
rtl8192_SetTxPowerLevel(dev, channel);
break;
case CMD_ID_WRITE_PORT_ULONG:
write_nic_dword(dev, current_cmd->para_1,
current_cmd->para_2);
break;
case CMD_ID_WRITE_PORT_USHORT:
write_nic_word(dev, current_cmd->para_1,
(u16)current_cmd->para_2);
break;
case CMD_ID_WRITE_PORT_UCHAR:
write_nic_byte(dev, current_cmd->para_1,
(u8)current_cmd->para_2);
break;
case CMD_ID_RF_WRITE_REG:
for (e_rfpath = 0; e_rfpath < RF90_PATH_MAX; e_rfpath++) {
rtl8192_phy_SetRFReg(dev,
(enum rf90_radio_path_e)e_rfpath,
current_cmd->para_1,
bZebra1_ChannelNum,
current_cmd->para_2);
}
break;
default:
break;
}
break;
} while (true);
*delay = current_cmd->ms_delay;
(*step)++;
ret = false;
out:
kfree(pre_cmd);
kfree(post_cmd);
kfree(rf_cmd);
return ret;
}
/******************************************************************************
* function: This function does actually set channel work
* input: net_device *dev
* u8 channel
* output: none
* return: none
* notice: We should not call this function directly
*****************************************************************************/
static void rtl8192_phy_FinishSwChnlNow(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u32 delay = 0;
while (!rtl8192_phy_SwChnlStepByStep(dev, channel, &priv->SwChnlStage,
&priv->SwChnlStep, &delay)) {
if (!priv->up)
break;
}
}
/******************************************************************************
* function: Callback routine of the work item for switch channel.
* input: net_device *dev
*
* output: none
* return: none
*****************************************************************************/
void rtl8192_SwChnl_WorkItem(struct net_device *dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
RT_TRACE(COMP_CH, "==> SwChnlCallback819xUsbWorkItem(), chan:%d\n",
priv->chan);
rtl8192_phy_FinishSwChnlNow(dev, priv->chan);
RT_TRACE(COMP_CH, "<== SwChnlCallback819xUsbWorkItem()\n");
}
/******************************************************************************
* function: This function scheduled actual work item to set channel
* input: net_device *dev
* u8 channel //channel to set
* output: none
* return: return code show if workitem is scheduled (1:pass, 0:fail)
* notice: Delay may be required for RF configuration
******************************************************************************/
u8 rtl8192_phy_SwChnl(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = ieee80211_priv(dev);
RT_TRACE(COMP_CH, "%s(), SwChnlInProgress: %d\n", __func__,
priv->SwChnlInProgress);
if (!priv->up)
return false;
if (priv->SwChnlInProgress)
return false;
/* -------------------------------------------- */
switch (priv->ieee80211->mode) {
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_5G:
if (channel <= 14) {
RT_TRACE(COMP_ERR, "WIRELESS_MODE_A but channel<=14\n");
return false;
}
break;
case WIRELESS_MODE_B:
if (channel > 14) {
RT_TRACE(COMP_ERR, "WIRELESS_MODE_B but channel>14\n");
return false;
}
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
if (channel > 14) {
RT_TRACE(COMP_ERR, "WIRELESS_MODE_G but channel>14\n");
return false;
}
break;
}
/* -------------------------------------------- */
priv->SwChnlInProgress = true;
if (channel == 0)
channel = 1;
priv->chan = channel;
priv->SwChnlStage = 0;
priv->SwChnlStep = 0;
if (priv->up)
rtl8192_SwChnl_WorkItem(dev);
priv->SwChnlInProgress = false;
return true;
}
/******************************************************************************
* function: Callback routine of the work item for set bandwidth mode.
* input: net_device *dev
* output: none
* return: none
* notice: I doubt whether SetBWModeInProgress flag is necessary as we can
* test whether current work in the queue or not.//do I?
*****************************************************************************/
void rtl8192_SetBWModeWorkItem(struct net_device *dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 regBwOpMode;
RT_TRACE(COMP_SWBW, "%s() Switch to %s bandwidth\n", __func__,
priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz");
if (priv->rf_chip == RF_PSEUDO_11N) {
priv->SetBWModeInProgress = false;
return;
}
/* <1> Set MAC register */
read_nic_byte(dev, BW_OPMODE, &regBwOpMode);
switch (priv->CurrentChannelBW) {
case HT_CHANNEL_WIDTH_20:
regBwOpMode |= BW_OPMODE_20MHZ;
/* We have not verify whether this register works */
write_nic_byte(dev, BW_OPMODE, regBwOpMode);
break;
case HT_CHANNEL_WIDTH_20_40:
regBwOpMode &= ~BW_OPMODE_20MHZ;
/* We have not verify whether this register works */
write_nic_byte(dev, BW_OPMODE, regBwOpMode);
break;
default:
RT_TRACE(COMP_ERR,
"SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n",
priv->CurrentChannelBW);
break;
}
/* <2> Set PHY related register */
switch (priv->CurrentChannelBW) {
case HT_CHANNEL_WIDTH_20:
rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x0);
rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x0);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1,
0x00100000, 1);
/* Correct the tx power for CCK rate in 20M. */
priv->cck_present_attenuation =
priv->cck_present_attenuation_20Mdefault +
priv->cck_present_attenuation_difference;
if (priv->cck_present_attenuation > 22)
priv->cck_present_attenuation = 22;
if (priv->cck_present_attenuation < 0)
priv->cck_present_attenuation = 0;
RT_TRACE(COMP_INIT,
"20M, pHalData->CCKPresentAttentuation = %d\n",
priv->cck_present_attenuation);
if (priv->chan == 14 && !priv->bcck_in_ch14) {
priv->bcck_in_ch14 = true;
dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else if (priv->chan != 14 && priv->bcck_in_ch14) {
priv->bcck_in_ch14 = false;
dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else {
dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
}
break;
case HT_CHANNEL_WIDTH_20_40:
rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x1);
rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x1);
rtl8192_setBBreg(dev, rCCK0_System, bCCKSideBand,
priv->nCur40MhzPrimeSC >> 1);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 0);
rtl8192_setBBreg(dev, rOFDM1_LSTF, 0xC00,
priv->nCur40MhzPrimeSC);
priv->cck_present_attenuation =
priv->cck_present_attenuation_40Mdefault +
priv->cck_present_attenuation_difference;
if (priv->cck_present_attenuation > 22)
priv->cck_present_attenuation = 22;
if (priv->cck_present_attenuation < 0)
priv->cck_present_attenuation = 0;
RT_TRACE(COMP_INIT,
"40M, pHalData->CCKPresentAttentuation = %d\n",
priv->cck_present_attenuation);
if (priv->chan == 14 && !priv->bcck_in_ch14) {
priv->bcck_in_ch14 = true;
dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else if (priv->chan != 14 && priv->bcck_in_ch14) {
priv->bcck_in_ch14 = false;
dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else {
dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
}
break;
default:
RT_TRACE(COMP_ERR,
"SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n",
priv->CurrentChannelBW);
break;
}
/* Skip over setting of J-mode in BB register here.
* Default value is "None J mode".
*/
/* <3> Set RF related register */
switch (priv->rf_chip) {
case RF_8225:
break;
case RF_8256:
phy_set_rf8256_bandwidth(dev, priv->CurrentChannelBW);
break;
case RF_8258:
break;
case RF_PSEUDO_11N:
break;
default:
RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip);
break;
}
priv->SetBWModeInProgress = false;
RT_TRACE(COMP_SWBW, "<==SetBWMode819xUsb(), %d\n",
atomic_read(&priv->ieee80211->atm_swbw));
}
/******************************************************************************
* function: This function schedules bandwidth switch work.
* input: struct net_deviceq *dev
* HT_CHANNEL_WIDTH bandwidth //20M or 40M
* HT_EXTCHNL_OFFSET offset //Upper, Lower, or Don't care
* output: none
* return: none
* notice: I doubt whether SetBWModeInProgress flag is necessary as we can
* test whether current work in the queue or not.//do I?
*****************************************************************************/
void rtl8192_SetBWMode(struct net_device *dev,
enum ht_channel_width bandwidth,
enum ht_extension_chan_offset offset)
{
struct r8192_priv *priv = ieee80211_priv(dev);
if (priv->SetBWModeInProgress)
return;
priv->SetBWModeInProgress = true;
priv->CurrentChannelBW = bandwidth;
if (offset == HT_EXTCHNL_OFFSET_LOWER)
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (offset == HT_EXTCHNL_OFFSET_UPPER)
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
rtl8192_SetBWModeWorkItem(dev);
}
void InitialGain819xUsb(struct net_device *dev, u8 Operation)
{
struct r8192_priv *priv = ieee80211_priv(dev);
priv->InitialGainOperateType = Operation;
if (priv->up)
queue_delayed_work(priv->priv_wq, &priv->initialgain_operate_wq, 0);
}
void InitialGainOperateWorkItemCallBack(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct r8192_priv *priv = container_of(dwork, struct r8192_priv,
initialgain_operate_wq);
struct net_device *dev = priv->ieee80211->dev;
#define SCAN_RX_INITIAL_GAIN 0x17
#define POWER_DETECTION_TH 0x08
u32 bitmask;
u8 initial_gain;
u8 Operation;
Operation = priv->InitialGainOperateType;
switch (Operation) {
case IG_Backup:
RT_TRACE(COMP_SCAN, "IG_Backup, backup the initial gain.\n");
initial_gain = SCAN_RX_INITIAL_GAIN;
bitmask = bMaskByte0;
if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM)
/* FW DIG OFF */
rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8);
priv->initgain_backup.xaagccore1 =
(u8)rtl8192_QueryBBReg(dev, rOFDM0_XAAGCCore1, bitmask);
priv->initgain_backup.xbagccore1 =
(u8)rtl8192_QueryBBReg(dev, rOFDM0_XBAGCCore1, bitmask);
priv->initgain_backup.xcagccore1 =
(u8)rtl8192_QueryBBReg(dev, rOFDM0_XCAGCCore1, bitmask);
priv->initgain_backup.xdagccore1 =
(u8)rtl8192_QueryBBReg(dev, rOFDM0_XDAGCCore1, bitmask);
bitmask = bMaskByte2;
priv->initgain_backup.cca =
(u8)rtl8192_QueryBBReg(dev, rCCK0_CCA, bitmask);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc50 is %x\n",
priv->initgain_backup.xaagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc58 is %x\n",
priv->initgain_backup.xbagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc60 is %x\n",
priv->initgain_backup.xcagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc68 is %x\n",
priv->initgain_backup.xdagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xa0a is %x\n",
priv->initgain_backup.cca);
RT_TRACE(COMP_SCAN, "Write scan initial gain = 0x%x\n",
initial_gain);
write_nic_byte(dev, rOFDM0_XAAGCCore1, initial_gain);
write_nic_byte(dev, rOFDM0_XBAGCCore1, initial_gain);
write_nic_byte(dev, rOFDM0_XCAGCCore1, initial_gain);
write_nic_byte(dev, rOFDM0_XDAGCCore1, initial_gain);
RT_TRACE(COMP_SCAN, "Write scan 0xa0a = 0x%x\n",
POWER_DETECTION_TH);
write_nic_byte(dev, 0xa0a, POWER_DETECTION_TH);
break;
case IG_Restore:
RT_TRACE(COMP_SCAN, "IG_Restore, restore the initial gain.\n");
bitmask = 0x7f; /* Bit0 ~ Bit6 */
if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM)
/* FW DIG OFF */
rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8);
rtl8192_setBBreg(dev, rOFDM0_XAAGCCore1, bitmask,
(u32)priv->initgain_backup.xaagccore1);
rtl8192_setBBreg(dev, rOFDM0_XBAGCCore1, bitmask,
(u32)priv->initgain_backup.xbagccore1);
rtl8192_setBBreg(dev, rOFDM0_XCAGCCore1, bitmask,
(u32)priv->initgain_backup.xcagccore1);
rtl8192_setBBreg(dev, rOFDM0_XDAGCCore1, bitmask,
(u32)priv->initgain_backup.xdagccore1);
bitmask = bMaskByte2;
rtl8192_setBBreg(dev, rCCK0_CCA, bitmask,
(u32)priv->initgain_backup.cca);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc50 is %x\n",
priv->initgain_backup.xaagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc58 is %x\n",
priv->initgain_backup.xbagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc60 is %x\n",
priv->initgain_backup.xcagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc68 is %x\n",
priv->initgain_backup.xdagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xa0a is %x\n",
priv->initgain_backup.cca);
rtl8192_phy_setTxPower(dev, priv->ieee80211->current_network.channel);
if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM)
/* FW DIG ON */
rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x1);
break;
default:
RT_TRACE(COMP_SCAN, "Unknown IG Operation.\n");
break;
}
}