mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
0523c6922e
s/buid/build/ Link: https://lkml.kernel.org/r/20210301123129.18754-1-unixbhaskar@gmail.com Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com> Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1446 lines
38 KiB
C
1446 lines
38 KiB
C
/*
|
|
* Generic binary BCH encoding/decoding library
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 51
|
|
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Copyright © 2011 Parrot S.A.
|
|
*
|
|
* Author: Ivan Djelic <ivan.djelic@parrot.com>
|
|
*
|
|
* Description:
|
|
*
|
|
* This library provides runtime configurable encoding/decoding of binary
|
|
* Bose-Chaudhuri-Hocquenghem (BCH) codes.
|
|
*
|
|
* Call bch_init to get a pointer to a newly allocated bch_control structure for
|
|
* the given m (Galois field order), t (error correction capability) and
|
|
* (optional) primitive polynomial parameters.
|
|
*
|
|
* Call bch_encode to compute and store ecc parity bytes to a given buffer.
|
|
* Call bch_decode to detect and locate errors in received data.
|
|
*
|
|
* On systems supporting hw BCH features, intermediate results may be provided
|
|
* to bch_decode in order to skip certain steps. See bch_decode() documentation
|
|
* for details.
|
|
*
|
|
* Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
|
|
* parameters m and t; thus allowing extra compiler optimizations and providing
|
|
* better (up to 2x) encoding performance. Using this option makes sense when
|
|
* (m,t) are fixed and known in advance, e.g. when using BCH error correction
|
|
* on a particular NAND flash device.
|
|
*
|
|
* Algorithmic details:
|
|
*
|
|
* Encoding is performed by processing 32 input bits in parallel, using 4
|
|
* remainder lookup tables.
|
|
*
|
|
* The final stage of decoding involves the following internal steps:
|
|
* a. Syndrome computation
|
|
* b. Error locator polynomial computation using Berlekamp-Massey algorithm
|
|
* c. Error locator root finding (by far the most expensive step)
|
|
*
|
|
* In this implementation, step c is not performed using the usual Chien search.
|
|
* Instead, an alternative approach described in [1] is used. It consists in
|
|
* factoring the error locator polynomial using the Berlekamp Trace algorithm
|
|
* (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
|
|
* solving techniques [2] are used. The resulting algorithm, called BTZ, yields
|
|
* much better performance than Chien search for usual (m,t) values (typically
|
|
* m >= 13, t < 32, see [1]).
|
|
*
|
|
* [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
|
|
* of characteristic 2, in: Western European Workshop on Research in Cryptology
|
|
* - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
|
|
* [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
|
|
* finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bitops.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/bch.h>
|
|
|
|
#if defined(CONFIG_BCH_CONST_PARAMS)
|
|
#define GF_M(_p) (CONFIG_BCH_CONST_M)
|
|
#define GF_T(_p) (CONFIG_BCH_CONST_T)
|
|
#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
|
|
#define BCH_MAX_M (CONFIG_BCH_CONST_M)
|
|
#define BCH_MAX_T (CONFIG_BCH_CONST_T)
|
|
#else
|
|
#define GF_M(_p) ((_p)->m)
|
|
#define GF_T(_p) ((_p)->t)
|
|
#define GF_N(_p) ((_p)->n)
|
|
#define BCH_MAX_M 15 /* 2KB */
|
|
#define BCH_MAX_T 64 /* 64 bit correction */
|
|
#endif
|
|
|
|
#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
|
|
#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
|
|
|
|
#define BCH_ECC_MAX_WORDS DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
|
|
|
|
#ifndef dbg
|
|
#define dbg(_fmt, args...) do {} while (0)
|
|
#endif
|
|
|
|
/*
|
|
* represent a polynomial over GF(2^m)
|
|
*/
|
|
struct gf_poly {
|
|
unsigned int deg; /* polynomial degree */
|
|
unsigned int c[]; /* polynomial terms */
|
|
};
|
|
|
|
/* given its degree, compute a polynomial size in bytes */
|
|
#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
|
|
|
|
/* polynomial of degree 1 */
|
|
struct gf_poly_deg1 {
|
|
struct gf_poly poly;
|
|
unsigned int c[2];
|
|
};
|
|
|
|
static u8 swap_bits_table[] = {
|
|
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
|
|
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
|
|
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
|
|
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
|
|
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
|
|
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
|
|
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
|
|
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
|
|
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
|
|
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
|
|
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
|
|
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
|
|
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
|
|
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
|
|
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
|
|
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
|
|
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
|
|
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
|
|
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
|
|
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
|
|
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
|
|
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
|
|
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
|
|
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
|
|
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
|
|
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
|
|
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
|
|
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
|
|
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
|
|
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
|
|
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
|
|
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
|
|
};
|
|
|
|
static u8 swap_bits(struct bch_control *bch, u8 in)
|
|
{
|
|
if (!bch->swap_bits)
|
|
return in;
|
|
|
|
return swap_bits_table[in];
|
|
}
|
|
|
|
/*
|
|
* same as bch_encode(), but process input data one byte at a time
|
|
*/
|
|
static void bch_encode_unaligned(struct bch_control *bch,
|
|
const unsigned char *data, unsigned int len,
|
|
uint32_t *ecc)
|
|
{
|
|
int i;
|
|
const uint32_t *p;
|
|
const int l = BCH_ECC_WORDS(bch)-1;
|
|
|
|
while (len--) {
|
|
u8 tmp = swap_bits(bch, *data++);
|
|
|
|
p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff);
|
|
|
|
for (i = 0; i < l; i++)
|
|
ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
|
|
|
|
ecc[l] = (ecc[l] << 8)^(*p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* convert ecc bytes to aligned, zero-padded 32-bit ecc words
|
|
*/
|
|
static void load_ecc8(struct bch_control *bch, uint32_t *dst,
|
|
const uint8_t *src)
|
|
{
|
|
uint8_t pad[4] = {0, 0, 0, 0};
|
|
unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
|
|
|
|
for (i = 0; i < nwords; i++, src += 4)
|
|
dst[i] = ((u32)swap_bits(bch, src[0]) << 24) |
|
|
((u32)swap_bits(bch, src[1]) << 16) |
|
|
((u32)swap_bits(bch, src[2]) << 8) |
|
|
swap_bits(bch, src[3]);
|
|
|
|
memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
|
|
dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) |
|
|
((u32)swap_bits(bch, pad[1]) << 16) |
|
|
((u32)swap_bits(bch, pad[2]) << 8) |
|
|
swap_bits(bch, pad[3]);
|
|
}
|
|
|
|
/*
|
|
* convert 32-bit ecc words to ecc bytes
|
|
*/
|
|
static void store_ecc8(struct bch_control *bch, uint8_t *dst,
|
|
const uint32_t *src)
|
|
{
|
|
uint8_t pad[4];
|
|
unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
|
|
|
|
for (i = 0; i < nwords; i++) {
|
|
*dst++ = swap_bits(bch, src[i] >> 24);
|
|
*dst++ = swap_bits(bch, src[i] >> 16);
|
|
*dst++ = swap_bits(bch, src[i] >> 8);
|
|
*dst++ = swap_bits(bch, src[i]);
|
|
}
|
|
pad[0] = swap_bits(bch, src[nwords] >> 24);
|
|
pad[1] = swap_bits(bch, src[nwords] >> 16);
|
|
pad[2] = swap_bits(bch, src[nwords] >> 8);
|
|
pad[3] = swap_bits(bch, src[nwords]);
|
|
memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
|
|
}
|
|
|
|
/**
|
|
* bch_encode - calculate BCH ecc parity of data
|
|
* @bch: BCH control structure
|
|
* @data: data to encode
|
|
* @len: data length in bytes
|
|
* @ecc: ecc parity data, must be initialized by caller
|
|
*
|
|
* The @ecc parity array is used both as input and output parameter, in order to
|
|
* allow incremental computations. It should be of the size indicated by member
|
|
* @ecc_bytes of @bch, and should be initialized to 0 before the first call.
|
|
*
|
|
* The exact number of computed ecc parity bits is given by member @ecc_bits of
|
|
* @bch; it may be less than m*t for large values of t.
|
|
*/
|
|
void bch_encode(struct bch_control *bch, const uint8_t *data,
|
|
unsigned int len, uint8_t *ecc)
|
|
{
|
|
const unsigned int l = BCH_ECC_WORDS(bch)-1;
|
|
unsigned int i, mlen;
|
|
unsigned long m;
|
|
uint32_t w, r[BCH_ECC_MAX_WORDS];
|
|
const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
|
|
const uint32_t * const tab0 = bch->mod8_tab;
|
|
const uint32_t * const tab1 = tab0 + 256*(l+1);
|
|
const uint32_t * const tab2 = tab1 + 256*(l+1);
|
|
const uint32_t * const tab3 = tab2 + 256*(l+1);
|
|
const uint32_t *pdata, *p0, *p1, *p2, *p3;
|
|
|
|
if (WARN_ON(r_bytes > sizeof(r)))
|
|
return;
|
|
|
|
if (ecc) {
|
|
/* load ecc parity bytes into internal 32-bit buffer */
|
|
load_ecc8(bch, bch->ecc_buf, ecc);
|
|
} else {
|
|
memset(bch->ecc_buf, 0, r_bytes);
|
|
}
|
|
|
|
/* process first unaligned data bytes */
|
|
m = ((unsigned long)data) & 3;
|
|
if (m) {
|
|
mlen = (len < (4-m)) ? len : 4-m;
|
|
bch_encode_unaligned(bch, data, mlen, bch->ecc_buf);
|
|
data += mlen;
|
|
len -= mlen;
|
|
}
|
|
|
|
/* process 32-bit aligned data words */
|
|
pdata = (uint32_t *)data;
|
|
mlen = len/4;
|
|
data += 4*mlen;
|
|
len -= 4*mlen;
|
|
memcpy(r, bch->ecc_buf, r_bytes);
|
|
|
|
/*
|
|
* split each 32-bit word into 4 polynomials of weight 8 as follows:
|
|
*
|
|
* 31 ...24 23 ...16 15 ... 8 7 ... 0
|
|
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
|
|
* tttttttt mod g = r0 (precomputed)
|
|
* zzzzzzzz 00000000 mod g = r1 (precomputed)
|
|
* yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
|
|
* xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
|
|
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
|
|
*/
|
|
while (mlen--) {
|
|
/* input data is read in big-endian format */
|
|
w = cpu_to_be32(*pdata++);
|
|
if (bch->swap_bits)
|
|
w = (u32)swap_bits(bch, w) |
|
|
((u32)swap_bits(bch, w >> 8) << 8) |
|
|
((u32)swap_bits(bch, w >> 16) << 16) |
|
|
((u32)swap_bits(bch, w >> 24) << 24);
|
|
w ^= r[0];
|
|
p0 = tab0 + (l+1)*((w >> 0) & 0xff);
|
|
p1 = tab1 + (l+1)*((w >> 8) & 0xff);
|
|
p2 = tab2 + (l+1)*((w >> 16) & 0xff);
|
|
p3 = tab3 + (l+1)*((w >> 24) & 0xff);
|
|
|
|
for (i = 0; i < l; i++)
|
|
r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
|
|
|
|
r[l] = p0[l]^p1[l]^p2[l]^p3[l];
|
|
}
|
|
memcpy(bch->ecc_buf, r, r_bytes);
|
|
|
|
/* process last unaligned bytes */
|
|
if (len)
|
|
bch_encode_unaligned(bch, data, len, bch->ecc_buf);
|
|
|
|
/* store ecc parity bytes into original parity buffer */
|
|
if (ecc)
|
|
store_ecc8(bch, ecc, bch->ecc_buf);
|
|
}
|
|
EXPORT_SYMBOL_GPL(bch_encode);
|
|
|
|
static inline int modulo(struct bch_control *bch, unsigned int v)
|
|
{
|
|
const unsigned int n = GF_N(bch);
|
|
while (v >= n) {
|
|
v -= n;
|
|
v = (v & n) + (v >> GF_M(bch));
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* shorter and faster modulo function, only works when v < 2N.
|
|
*/
|
|
static inline int mod_s(struct bch_control *bch, unsigned int v)
|
|
{
|
|
const unsigned int n = GF_N(bch);
|
|
return (v < n) ? v : v-n;
|
|
}
|
|
|
|
static inline int deg(unsigned int poly)
|
|
{
|
|
/* polynomial degree is the most-significant bit index */
|
|
return fls(poly)-1;
|
|
}
|
|
|
|
static inline int parity(unsigned int x)
|
|
{
|
|
/*
|
|
* public domain code snippet, lifted from
|
|
* http://www-graphics.stanford.edu/~seander/bithacks.html
|
|
*/
|
|
x ^= x >> 1;
|
|
x ^= x >> 2;
|
|
x = (x & 0x11111111U) * 0x11111111U;
|
|
return (x >> 28) & 1;
|
|
}
|
|
|
|
/* Galois field basic operations: multiply, divide, inverse, etc. */
|
|
|
|
static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
|
|
unsigned int b)
|
|
{
|
|
return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
|
|
bch->a_log_tab[b])] : 0;
|
|
}
|
|
|
|
static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
|
|
{
|
|
return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
|
|
}
|
|
|
|
static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
|
|
unsigned int b)
|
|
{
|
|
return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
|
|
GF_N(bch)-bch->a_log_tab[b])] : 0;
|
|
}
|
|
|
|
static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
|
|
{
|
|
return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
|
|
}
|
|
|
|
static inline unsigned int a_pow(struct bch_control *bch, int i)
|
|
{
|
|
return bch->a_pow_tab[modulo(bch, i)];
|
|
}
|
|
|
|
static inline int a_log(struct bch_control *bch, unsigned int x)
|
|
{
|
|
return bch->a_log_tab[x];
|
|
}
|
|
|
|
static inline int a_ilog(struct bch_control *bch, unsigned int x)
|
|
{
|
|
return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
|
|
}
|
|
|
|
/*
|
|
* compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
|
|
*/
|
|
static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
|
|
unsigned int *syn)
|
|
{
|
|
int i, j, s;
|
|
unsigned int m;
|
|
uint32_t poly;
|
|
const int t = GF_T(bch);
|
|
|
|
s = bch->ecc_bits;
|
|
|
|
/* make sure extra bits in last ecc word are cleared */
|
|
m = ((unsigned int)s) & 31;
|
|
if (m)
|
|
ecc[s/32] &= ~((1u << (32-m))-1);
|
|
memset(syn, 0, 2*t*sizeof(*syn));
|
|
|
|
/* compute v(a^j) for j=1 .. 2t-1 */
|
|
do {
|
|
poly = *ecc++;
|
|
s -= 32;
|
|
while (poly) {
|
|
i = deg(poly);
|
|
for (j = 0; j < 2*t; j += 2)
|
|
syn[j] ^= a_pow(bch, (j+1)*(i+s));
|
|
|
|
poly ^= (1 << i);
|
|
}
|
|
} while (s > 0);
|
|
|
|
/* v(a^(2j)) = v(a^j)^2 */
|
|
for (j = 0; j < t; j++)
|
|
syn[2*j+1] = gf_sqr(bch, syn[j]);
|
|
}
|
|
|
|
static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
|
|
{
|
|
memcpy(dst, src, GF_POLY_SZ(src->deg));
|
|
}
|
|
|
|
static int compute_error_locator_polynomial(struct bch_control *bch,
|
|
const unsigned int *syn)
|
|
{
|
|
const unsigned int t = GF_T(bch);
|
|
const unsigned int n = GF_N(bch);
|
|
unsigned int i, j, tmp, l, pd = 1, d = syn[0];
|
|
struct gf_poly *elp = bch->elp;
|
|
struct gf_poly *pelp = bch->poly_2t[0];
|
|
struct gf_poly *elp_copy = bch->poly_2t[1];
|
|
int k, pp = -1;
|
|
|
|
memset(pelp, 0, GF_POLY_SZ(2*t));
|
|
memset(elp, 0, GF_POLY_SZ(2*t));
|
|
|
|
pelp->deg = 0;
|
|
pelp->c[0] = 1;
|
|
elp->deg = 0;
|
|
elp->c[0] = 1;
|
|
|
|
/* use simplified binary Berlekamp-Massey algorithm */
|
|
for (i = 0; (i < t) && (elp->deg <= t); i++) {
|
|
if (d) {
|
|
k = 2*i-pp;
|
|
gf_poly_copy(elp_copy, elp);
|
|
/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
|
|
tmp = a_log(bch, d)+n-a_log(bch, pd);
|
|
for (j = 0; j <= pelp->deg; j++) {
|
|
if (pelp->c[j]) {
|
|
l = a_log(bch, pelp->c[j]);
|
|
elp->c[j+k] ^= a_pow(bch, tmp+l);
|
|
}
|
|
}
|
|
/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
|
|
tmp = pelp->deg+k;
|
|
if (tmp > elp->deg) {
|
|
elp->deg = tmp;
|
|
gf_poly_copy(pelp, elp_copy);
|
|
pd = d;
|
|
pp = 2*i;
|
|
}
|
|
}
|
|
/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
|
|
if (i < t-1) {
|
|
d = syn[2*i+2];
|
|
for (j = 1; j <= elp->deg; j++)
|
|
d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
|
|
}
|
|
}
|
|
dbg("elp=%s\n", gf_poly_str(elp));
|
|
return (elp->deg > t) ? -1 : (int)elp->deg;
|
|
}
|
|
|
|
/*
|
|
* solve a m x m linear system in GF(2) with an expected number of solutions,
|
|
* and return the number of found solutions
|
|
*/
|
|
static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
|
|
unsigned int *sol, int nsol)
|
|
{
|
|
const int m = GF_M(bch);
|
|
unsigned int tmp, mask;
|
|
int rem, c, r, p, k, param[BCH_MAX_M];
|
|
|
|
k = 0;
|
|
mask = 1 << m;
|
|
|
|
/* Gaussian elimination */
|
|
for (c = 0; c < m; c++) {
|
|
rem = 0;
|
|
p = c-k;
|
|
/* find suitable row for elimination */
|
|
for (r = p; r < m; r++) {
|
|
if (rows[r] & mask) {
|
|
if (r != p) {
|
|
tmp = rows[r];
|
|
rows[r] = rows[p];
|
|
rows[p] = tmp;
|
|
}
|
|
rem = r+1;
|
|
break;
|
|
}
|
|
}
|
|
if (rem) {
|
|
/* perform elimination on remaining rows */
|
|
tmp = rows[p];
|
|
for (r = rem; r < m; r++) {
|
|
if (rows[r] & mask)
|
|
rows[r] ^= tmp;
|
|
}
|
|
} else {
|
|
/* elimination not needed, store defective row index */
|
|
param[k++] = c;
|
|
}
|
|
mask >>= 1;
|
|
}
|
|
/* rewrite system, inserting fake parameter rows */
|
|
if (k > 0) {
|
|
p = k;
|
|
for (r = m-1; r >= 0; r--) {
|
|
if ((r > m-1-k) && rows[r])
|
|
/* system has no solution */
|
|
return 0;
|
|
|
|
rows[r] = (p && (r == param[p-1])) ?
|
|
p--, 1u << (m-r) : rows[r-p];
|
|
}
|
|
}
|
|
|
|
if (nsol != (1 << k))
|
|
/* unexpected number of solutions */
|
|
return 0;
|
|
|
|
for (p = 0; p < nsol; p++) {
|
|
/* set parameters for p-th solution */
|
|
for (c = 0; c < k; c++)
|
|
rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
|
|
|
|
/* compute unique solution */
|
|
tmp = 0;
|
|
for (r = m-1; r >= 0; r--) {
|
|
mask = rows[r] & (tmp|1);
|
|
tmp |= parity(mask) << (m-r);
|
|
}
|
|
sol[p] = tmp >> 1;
|
|
}
|
|
return nsol;
|
|
}
|
|
|
|
/*
|
|
* this function builds and solves a linear system for finding roots of a degree
|
|
* 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
|
|
*/
|
|
static int find_affine4_roots(struct bch_control *bch, unsigned int a,
|
|
unsigned int b, unsigned int c,
|
|
unsigned int *roots)
|
|
{
|
|
int i, j, k;
|
|
const int m = GF_M(bch);
|
|
unsigned int mask = 0xff, t, rows[16] = {0,};
|
|
|
|
j = a_log(bch, b);
|
|
k = a_log(bch, a);
|
|
rows[0] = c;
|
|
|
|
/* build linear system to solve X^4+aX^2+bX+c = 0 */
|
|
for (i = 0; i < m; i++) {
|
|
rows[i+1] = bch->a_pow_tab[4*i]^
|
|
(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
|
|
(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
|
|
j++;
|
|
k += 2;
|
|
}
|
|
/*
|
|
* transpose 16x16 matrix before passing it to linear solver
|
|
* warning: this code assumes m < 16
|
|
*/
|
|
for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
|
|
for (k = 0; k < 16; k = (k+j+1) & ~j) {
|
|
t = ((rows[k] >> j)^rows[k+j]) & mask;
|
|
rows[k] ^= (t << j);
|
|
rows[k+j] ^= t;
|
|
}
|
|
}
|
|
return solve_linear_system(bch, rows, roots, 4);
|
|
}
|
|
|
|
/*
|
|
* compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
|
|
*/
|
|
static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
|
|
unsigned int *roots)
|
|
{
|
|
int n = 0;
|
|
|
|
if (poly->c[0])
|
|
/* poly[X] = bX+c with c!=0, root=c/b */
|
|
roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
|
|
bch->a_log_tab[poly->c[1]]);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* compute roots of a degree 2 polynomial over GF(2^m)
|
|
*/
|
|
static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
|
|
unsigned int *roots)
|
|
{
|
|
int n = 0, i, l0, l1, l2;
|
|
unsigned int u, v, r;
|
|
|
|
if (poly->c[0] && poly->c[1]) {
|
|
|
|
l0 = bch->a_log_tab[poly->c[0]];
|
|
l1 = bch->a_log_tab[poly->c[1]];
|
|
l2 = bch->a_log_tab[poly->c[2]];
|
|
|
|
/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
|
|
u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
|
|
/*
|
|
* let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
|
|
* r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
|
|
* u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
|
|
* i.e. r and r+1 are roots iff Tr(u)=0
|
|
*/
|
|
r = 0;
|
|
v = u;
|
|
while (v) {
|
|
i = deg(v);
|
|
r ^= bch->xi_tab[i];
|
|
v ^= (1 << i);
|
|
}
|
|
/* verify root */
|
|
if ((gf_sqr(bch, r)^r) == u) {
|
|
/* reverse z=a/bX transformation and compute log(1/r) */
|
|
roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
|
|
bch->a_log_tab[r]+l2);
|
|
roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
|
|
bch->a_log_tab[r^1]+l2);
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* compute roots of a degree 3 polynomial over GF(2^m)
|
|
*/
|
|
static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
|
|
unsigned int *roots)
|
|
{
|
|
int i, n = 0;
|
|
unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
|
|
|
|
if (poly->c[0]) {
|
|
/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
|
|
e3 = poly->c[3];
|
|
c2 = gf_div(bch, poly->c[0], e3);
|
|
b2 = gf_div(bch, poly->c[1], e3);
|
|
a2 = gf_div(bch, poly->c[2], e3);
|
|
|
|
/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
|
|
c = gf_mul(bch, a2, c2); /* c = a2c2 */
|
|
b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */
|
|
a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */
|
|
|
|
/* find the 4 roots of this affine polynomial */
|
|
if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
|
|
/* remove a2 from final list of roots */
|
|
for (i = 0; i < 4; i++) {
|
|
if (tmp[i] != a2)
|
|
roots[n++] = a_ilog(bch, tmp[i]);
|
|
}
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* compute roots of a degree 4 polynomial over GF(2^m)
|
|
*/
|
|
static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
|
|
unsigned int *roots)
|
|
{
|
|
int i, l, n = 0;
|
|
unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
|
|
|
|
if (poly->c[0] == 0)
|
|
return 0;
|
|
|
|
/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
|
|
e4 = poly->c[4];
|
|
d = gf_div(bch, poly->c[0], e4);
|
|
c = gf_div(bch, poly->c[1], e4);
|
|
b = gf_div(bch, poly->c[2], e4);
|
|
a = gf_div(bch, poly->c[3], e4);
|
|
|
|
/* use Y=1/X transformation to get an affine polynomial */
|
|
if (a) {
|
|
/* first, eliminate cX by using z=X+e with ae^2+c=0 */
|
|
if (c) {
|
|
/* compute e such that e^2 = c/a */
|
|
f = gf_div(bch, c, a);
|
|
l = a_log(bch, f);
|
|
l += (l & 1) ? GF_N(bch) : 0;
|
|
e = a_pow(bch, l/2);
|
|
/*
|
|
* use transformation z=X+e:
|
|
* z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
|
|
* z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
|
|
* z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
|
|
* z^4 + az^3 + b'z^2 + d'
|
|
*/
|
|
d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
|
|
b = gf_mul(bch, a, e)^b;
|
|
}
|
|
/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
|
|
if (d == 0)
|
|
/* assume all roots have multiplicity 1 */
|
|
return 0;
|
|
|
|
c2 = gf_inv(bch, d);
|
|
b2 = gf_div(bch, a, d);
|
|
a2 = gf_div(bch, b, d);
|
|
} else {
|
|
/* polynomial is already affine */
|
|
c2 = d;
|
|
b2 = c;
|
|
a2 = b;
|
|
}
|
|
/* find the 4 roots of this affine polynomial */
|
|
if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
|
|
for (i = 0; i < 4; i++) {
|
|
/* post-process roots (reverse transformations) */
|
|
f = a ? gf_inv(bch, roots[i]) : roots[i];
|
|
roots[i] = a_ilog(bch, f^e);
|
|
}
|
|
n = 4;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* build monic, log-based representation of a polynomial
|
|
*/
|
|
static void gf_poly_logrep(struct bch_control *bch,
|
|
const struct gf_poly *a, int *rep)
|
|
{
|
|
int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
|
|
|
|
/* represent 0 values with -1; warning, rep[d] is not set to 1 */
|
|
for (i = 0; i < d; i++)
|
|
rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
|
|
}
|
|
|
|
/*
|
|
* compute polynomial Euclidean division remainder in GF(2^m)[X]
|
|
*/
|
|
static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
|
|
const struct gf_poly *b, int *rep)
|
|
{
|
|
int la, p, m;
|
|
unsigned int i, j, *c = a->c;
|
|
const unsigned int d = b->deg;
|
|
|
|
if (a->deg < d)
|
|
return;
|
|
|
|
/* reuse or compute log representation of denominator */
|
|
if (!rep) {
|
|
rep = bch->cache;
|
|
gf_poly_logrep(bch, b, rep);
|
|
}
|
|
|
|
for (j = a->deg; j >= d; j--) {
|
|
if (c[j]) {
|
|
la = a_log(bch, c[j]);
|
|
p = j-d;
|
|
for (i = 0; i < d; i++, p++) {
|
|
m = rep[i];
|
|
if (m >= 0)
|
|
c[p] ^= bch->a_pow_tab[mod_s(bch,
|
|
m+la)];
|
|
}
|
|
}
|
|
}
|
|
a->deg = d-1;
|
|
while (!c[a->deg] && a->deg)
|
|
a->deg--;
|
|
}
|
|
|
|
/*
|
|
* compute polynomial Euclidean division quotient in GF(2^m)[X]
|
|
*/
|
|
static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
|
|
const struct gf_poly *b, struct gf_poly *q)
|
|
{
|
|
if (a->deg >= b->deg) {
|
|
q->deg = a->deg-b->deg;
|
|
/* compute a mod b (modifies a) */
|
|
gf_poly_mod(bch, a, b, NULL);
|
|
/* quotient is stored in upper part of polynomial a */
|
|
memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
|
|
} else {
|
|
q->deg = 0;
|
|
q->c[0] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
|
|
*/
|
|
static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
|
|
struct gf_poly *b)
|
|
{
|
|
struct gf_poly *tmp;
|
|
|
|
dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
|
|
|
|
if (a->deg < b->deg) {
|
|
tmp = b;
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
|
|
while (b->deg > 0) {
|
|
gf_poly_mod(bch, a, b, NULL);
|
|
tmp = b;
|
|
b = a;
|
|
a = tmp;
|
|
}
|
|
|
|
dbg("%s\n", gf_poly_str(a));
|
|
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Given a polynomial f and an integer k, compute Tr(a^kX) mod f
|
|
* This is used in Berlekamp Trace algorithm for splitting polynomials
|
|
*/
|
|
static void compute_trace_bk_mod(struct bch_control *bch, int k,
|
|
const struct gf_poly *f, struct gf_poly *z,
|
|
struct gf_poly *out)
|
|
{
|
|
const int m = GF_M(bch);
|
|
int i, j;
|
|
|
|
/* z contains z^2j mod f */
|
|
z->deg = 1;
|
|
z->c[0] = 0;
|
|
z->c[1] = bch->a_pow_tab[k];
|
|
|
|
out->deg = 0;
|
|
memset(out, 0, GF_POLY_SZ(f->deg));
|
|
|
|
/* compute f log representation only once */
|
|
gf_poly_logrep(bch, f, bch->cache);
|
|
|
|
for (i = 0; i < m; i++) {
|
|
/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
|
|
for (j = z->deg; j >= 0; j--) {
|
|
out->c[j] ^= z->c[j];
|
|
z->c[2*j] = gf_sqr(bch, z->c[j]);
|
|
z->c[2*j+1] = 0;
|
|
}
|
|
if (z->deg > out->deg)
|
|
out->deg = z->deg;
|
|
|
|
if (i < m-1) {
|
|
z->deg *= 2;
|
|
/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
|
|
gf_poly_mod(bch, z, f, bch->cache);
|
|
}
|
|
}
|
|
while (!out->c[out->deg] && out->deg)
|
|
out->deg--;
|
|
|
|
dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
|
|
}
|
|
|
|
/*
|
|
* factor a polynomial using Berlekamp Trace algorithm (BTA)
|
|
*/
|
|
static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
|
|
struct gf_poly **g, struct gf_poly **h)
|
|
{
|
|
struct gf_poly *f2 = bch->poly_2t[0];
|
|
struct gf_poly *q = bch->poly_2t[1];
|
|
struct gf_poly *tk = bch->poly_2t[2];
|
|
struct gf_poly *z = bch->poly_2t[3];
|
|
struct gf_poly *gcd;
|
|
|
|
dbg("factoring %s...\n", gf_poly_str(f));
|
|
|
|
*g = f;
|
|
*h = NULL;
|
|
|
|
/* tk = Tr(a^k.X) mod f */
|
|
compute_trace_bk_mod(bch, k, f, z, tk);
|
|
|
|
if (tk->deg > 0) {
|
|
/* compute g = gcd(f, tk) (destructive operation) */
|
|
gf_poly_copy(f2, f);
|
|
gcd = gf_poly_gcd(bch, f2, tk);
|
|
if (gcd->deg < f->deg) {
|
|
/* compute h=f/gcd(f,tk); this will modify f and q */
|
|
gf_poly_div(bch, f, gcd, q);
|
|
/* store g and h in-place (clobbering f) */
|
|
*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
|
|
gf_poly_copy(*g, gcd);
|
|
gf_poly_copy(*h, q);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* find roots of a polynomial, using BTZ algorithm; see the beginning of this
|
|
* file for details
|
|
*/
|
|
static int find_poly_roots(struct bch_control *bch, unsigned int k,
|
|
struct gf_poly *poly, unsigned int *roots)
|
|
{
|
|
int cnt;
|
|
struct gf_poly *f1, *f2;
|
|
|
|
switch (poly->deg) {
|
|
/* handle low degree polynomials with ad hoc techniques */
|
|
case 1:
|
|
cnt = find_poly_deg1_roots(bch, poly, roots);
|
|
break;
|
|
case 2:
|
|
cnt = find_poly_deg2_roots(bch, poly, roots);
|
|
break;
|
|
case 3:
|
|
cnt = find_poly_deg3_roots(bch, poly, roots);
|
|
break;
|
|
case 4:
|
|
cnt = find_poly_deg4_roots(bch, poly, roots);
|
|
break;
|
|
default:
|
|
/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
|
|
cnt = 0;
|
|
if (poly->deg && (k <= GF_M(bch))) {
|
|
factor_polynomial(bch, k, poly, &f1, &f2);
|
|
if (f1)
|
|
cnt += find_poly_roots(bch, k+1, f1, roots);
|
|
if (f2)
|
|
cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
|
|
}
|
|
break;
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
#if defined(USE_CHIEN_SEARCH)
|
|
/*
|
|
* exhaustive root search (Chien) implementation - not used, included only for
|
|
* reference/comparison tests
|
|
*/
|
|
static int chien_search(struct bch_control *bch, unsigned int len,
|
|
struct gf_poly *p, unsigned int *roots)
|
|
{
|
|
int m;
|
|
unsigned int i, j, syn, syn0, count = 0;
|
|
const unsigned int k = 8*len+bch->ecc_bits;
|
|
|
|
/* use a log-based representation of polynomial */
|
|
gf_poly_logrep(bch, p, bch->cache);
|
|
bch->cache[p->deg] = 0;
|
|
syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
|
|
|
|
for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
|
|
/* compute elp(a^i) */
|
|
for (j = 1, syn = syn0; j <= p->deg; j++) {
|
|
m = bch->cache[j];
|
|
if (m >= 0)
|
|
syn ^= a_pow(bch, m+j*i);
|
|
}
|
|
if (syn == 0) {
|
|
roots[count++] = GF_N(bch)-i;
|
|
if (count == p->deg)
|
|
break;
|
|
}
|
|
}
|
|
return (count == p->deg) ? count : 0;
|
|
}
|
|
#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
|
|
#endif /* USE_CHIEN_SEARCH */
|
|
|
|
/**
|
|
* bch_decode - decode received codeword and find bit error locations
|
|
* @bch: BCH control structure
|
|
* @data: received data, ignored if @calc_ecc is provided
|
|
* @len: data length in bytes, must always be provided
|
|
* @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
|
|
* @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
|
|
* @syn: hw computed syndrome data (if NULL, syndrome is calculated)
|
|
* @errloc: output array of error locations
|
|
*
|
|
* Returns:
|
|
* The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
|
|
* invalid parameters were provided
|
|
*
|
|
* Depending on the available hw BCH support and the need to compute @calc_ecc
|
|
* separately (using bch_encode()), this function should be called with one of
|
|
* the following parameter configurations -
|
|
*
|
|
* by providing @data and @recv_ecc only:
|
|
* bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
|
|
*
|
|
* by providing @recv_ecc and @calc_ecc:
|
|
* bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
|
|
*
|
|
* by providing ecc = recv_ecc XOR calc_ecc:
|
|
* bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
|
|
*
|
|
* by providing syndrome results @syn:
|
|
* bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
|
|
*
|
|
* Once bch_decode() has successfully returned with a positive value, error
|
|
* locations returned in array @errloc should be interpreted as follows -
|
|
*
|
|
* if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
|
|
* data correction)
|
|
*
|
|
* if (errloc[n] < 8*len), then n-th error is located in data and can be
|
|
* corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
|
|
*
|
|
* Note that this function does not perform any data correction by itself, it
|
|
* merely indicates error locations.
|
|
*/
|
|
int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len,
|
|
const uint8_t *recv_ecc, const uint8_t *calc_ecc,
|
|
const unsigned int *syn, unsigned int *errloc)
|
|
{
|
|
const unsigned int ecc_words = BCH_ECC_WORDS(bch);
|
|
unsigned int nbits;
|
|
int i, err, nroots;
|
|
uint32_t sum;
|
|
|
|
/* sanity check: make sure data length can be handled */
|
|
if (8*len > (bch->n-bch->ecc_bits))
|
|
return -EINVAL;
|
|
|
|
/* if caller does not provide syndromes, compute them */
|
|
if (!syn) {
|
|
if (!calc_ecc) {
|
|
/* compute received data ecc into an internal buffer */
|
|
if (!data || !recv_ecc)
|
|
return -EINVAL;
|
|
bch_encode(bch, data, len, NULL);
|
|
} else {
|
|
/* load provided calculated ecc */
|
|
load_ecc8(bch, bch->ecc_buf, calc_ecc);
|
|
}
|
|
/* load received ecc or assume it was XORed in calc_ecc */
|
|
if (recv_ecc) {
|
|
load_ecc8(bch, bch->ecc_buf2, recv_ecc);
|
|
/* XOR received and calculated ecc */
|
|
for (i = 0, sum = 0; i < (int)ecc_words; i++) {
|
|
bch->ecc_buf[i] ^= bch->ecc_buf2[i];
|
|
sum |= bch->ecc_buf[i];
|
|
}
|
|
if (!sum)
|
|
/* no error found */
|
|
return 0;
|
|
}
|
|
compute_syndromes(bch, bch->ecc_buf, bch->syn);
|
|
syn = bch->syn;
|
|
}
|
|
|
|
err = compute_error_locator_polynomial(bch, syn);
|
|
if (err > 0) {
|
|
nroots = find_poly_roots(bch, 1, bch->elp, errloc);
|
|
if (err != nroots)
|
|
err = -1;
|
|
}
|
|
if (err > 0) {
|
|
/* post-process raw error locations for easier correction */
|
|
nbits = (len*8)+bch->ecc_bits;
|
|
for (i = 0; i < err; i++) {
|
|
if (errloc[i] >= nbits) {
|
|
err = -1;
|
|
break;
|
|
}
|
|
errloc[i] = nbits-1-errloc[i];
|
|
if (!bch->swap_bits)
|
|
errloc[i] = (errloc[i] & ~7) |
|
|
(7-(errloc[i] & 7));
|
|
}
|
|
}
|
|
return (err >= 0) ? err : -EBADMSG;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bch_decode);
|
|
|
|
/*
|
|
* generate Galois field lookup tables
|
|
*/
|
|
static int build_gf_tables(struct bch_control *bch, unsigned int poly)
|
|
{
|
|
unsigned int i, x = 1;
|
|
const unsigned int k = 1 << deg(poly);
|
|
|
|
/* primitive polynomial must be of degree m */
|
|
if (k != (1u << GF_M(bch)))
|
|
return -1;
|
|
|
|
for (i = 0; i < GF_N(bch); i++) {
|
|
bch->a_pow_tab[i] = x;
|
|
bch->a_log_tab[x] = i;
|
|
if (i && (x == 1))
|
|
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
|
|
return -1;
|
|
x <<= 1;
|
|
if (x & k)
|
|
x ^= poly;
|
|
}
|
|
bch->a_pow_tab[GF_N(bch)] = 1;
|
|
bch->a_log_tab[0] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* compute generator polynomial remainder tables for fast encoding
|
|
*/
|
|
static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
|
|
{
|
|
int i, j, b, d;
|
|
uint32_t data, hi, lo, *tab;
|
|
const int l = BCH_ECC_WORDS(bch);
|
|
const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
|
|
const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
|
|
|
|
memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
/* p(X)=i is a small polynomial of weight <= 8 */
|
|
for (b = 0; b < 4; b++) {
|
|
/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
|
|
tab = bch->mod8_tab + (b*256+i)*l;
|
|
data = i << (8*b);
|
|
while (data) {
|
|
d = deg(data);
|
|
/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
|
|
data ^= g[0] >> (31-d);
|
|
for (j = 0; j < ecclen; j++) {
|
|
hi = (d < 31) ? g[j] << (d+1) : 0;
|
|
lo = (j+1 < plen) ?
|
|
g[j+1] >> (31-d) : 0;
|
|
tab[j] ^= hi|lo;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* build a base for factoring degree 2 polynomials
|
|
*/
|
|
static int build_deg2_base(struct bch_control *bch)
|
|
{
|
|
const int m = GF_M(bch);
|
|
int i, j, r;
|
|
unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
|
|
|
|
/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
|
|
for (i = 0; i < m; i++) {
|
|
for (j = 0, sum = 0; j < m; j++)
|
|
sum ^= a_pow(bch, i*(1 << j));
|
|
|
|
if (sum) {
|
|
ak = bch->a_pow_tab[i];
|
|
break;
|
|
}
|
|
}
|
|
/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
|
|
remaining = m;
|
|
memset(xi, 0, sizeof(xi));
|
|
|
|
for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
|
|
y = gf_sqr(bch, x)^x;
|
|
for (i = 0; i < 2; i++) {
|
|
r = a_log(bch, y);
|
|
if (y && (r < m) && !xi[r]) {
|
|
bch->xi_tab[r] = x;
|
|
xi[r] = 1;
|
|
remaining--;
|
|
dbg("x%d = %x\n", r, x);
|
|
break;
|
|
}
|
|
y ^= ak;
|
|
}
|
|
}
|
|
/* should not happen but check anyway */
|
|
return remaining ? -1 : 0;
|
|
}
|
|
|
|
static void *bch_alloc(size_t size, int *err)
|
|
{
|
|
void *ptr;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (ptr == NULL)
|
|
*err = 1;
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* compute generator polynomial for given (m,t) parameters.
|
|
*/
|
|
static uint32_t *compute_generator_polynomial(struct bch_control *bch)
|
|
{
|
|
const unsigned int m = GF_M(bch);
|
|
const unsigned int t = GF_T(bch);
|
|
int n, err = 0;
|
|
unsigned int i, j, nbits, r, word, *roots;
|
|
struct gf_poly *g;
|
|
uint32_t *genpoly;
|
|
|
|
g = bch_alloc(GF_POLY_SZ(m*t), &err);
|
|
roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
|
|
genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
|
|
|
|
if (err) {
|
|
kfree(genpoly);
|
|
genpoly = NULL;
|
|
goto finish;
|
|
}
|
|
|
|
/* enumerate all roots of g(X) */
|
|
memset(roots , 0, (bch->n+1)*sizeof(*roots));
|
|
for (i = 0; i < t; i++) {
|
|
for (j = 0, r = 2*i+1; j < m; j++) {
|
|
roots[r] = 1;
|
|
r = mod_s(bch, 2*r);
|
|
}
|
|
}
|
|
/* build generator polynomial g(X) */
|
|
g->deg = 0;
|
|
g->c[0] = 1;
|
|
for (i = 0; i < GF_N(bch); i++) {
|
|
if (roots[i]) {
|
|
/* multiply g(X) by (X+root) */
|
|
r = bch->a_pow_tab[i];
|
|
g->c[g->deg+1] = 1;
|
|
for (j = g->deg; j > 0; j--)
|
|
g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
|
|
|
|
g->c[0] = gf_mul(bch, g->c[0], r);
|
|
g->deg++;
|
|
}
|
|
}
|
|
/* store left-justified binary representation of g(X) */
|
|
n = g->deg+1;
|
|
i = 0;
|
|
|
|
while (n > 0) {
|
|
nbits = (n > 32) ? 32 : n;
|
|
for (j = 0, word = 0; j < nbits; j++) {
|
|
if (g->c[n-1-j])
|
|
word |= 1u << (31-j);
|
|
}
|
|
genpoly[i++] = word;
|
|
n -= nbits;
|
|
}
|
|
bch->ecc_bits = g->deg;
|
|
|
|
finish:
|
|
kfree(g);
|
|
kfree(roots);
|
|
|
|
return genpoly;
|
|
}
|
|
|
|
/**
|
|
* bch_init - initialize a BCH encoder/decoder
|
|
* @m: Galois field order, should be in the range 5-15
|
|
* @t: maximum error correction capability, in bits
|
|
* @prim_poly: user-provided primitive polynomial (or 0 to use default)
|
|
* @swap_bits: swap bits within data and syndrome bytes
|
|
*
|
|
* Returns:
|
|
* a newly allocated BCH control structure if successful, NULL otherwise
|
|
*
|
|
* This initialization can take some time, as lookup tables are built for fast
|
|
* encoding/decoding; make sure not to call this function from a time critical
|
|
* path. Usually, bch_init() should be called on module/driver init and
|
|
* bch_free() should be called to release memory on exit.
|
|
*
|
|
* You may provide your own primitive polynomial of degree @m in argument
|
|
* @prim_poly, or let bch_init() use its default polynomial.
|
|
*
|
|
* Once bch_init() has successfully returned a pointer to a newly allocated
|
|
* BCH control structure, ecc length in bytes is given by member @ecc_bytes of
|
|
* the structure.
|
|
*/
|
|
struct bch_control *bch_init(int m, int t, unsigned int prim_poly,
|
|
bool swap_bits)
|
|
{
|
|
int err = 0;
|
|
unsigned int i, words;
|
|
uint32_t *genpoly;
|
|
struct bch_control *bch = NULL;
|
|
|
|
const int min_m = 5;
|
|
|
|
/* default primitive polynomials */
|
|
static const unsigned int prim_poly_tab[] = {
|
|
0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
|
|
0x402b, 0x8003,
|
|
};
|
|
|
|
#if defined(CONFIG_BCH_CONST_PARAMS)
|
|
if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
|
|
printk(KERN_ERR "bch encoder/decoder was configured to support "
|
|
"parameters m=%d, t=%d only!\n",
|
|
CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
|
|
goto fail;
|
|
}
|
|
#endif
|
|
if ((m < min_m) || (m > BCH_MAX_M))
|
|
/*
|
|
* values of m greater than 15 are not currently supported;
|
|
* supporting m > 15 would require changing table base type
|
|
* (uint16_t) and a small patch in matrix transposition
|
|
*/
|
|
goto fail;
|
|
|
|
if (t > BCH_MAX_T)
|
|
/*
|
|
* we can support larger than 64 bits if necessary, at the
|
|
* cost of higher stack usage.
|
|
*/
|
|
goto fail;
|
|
|
|
/* sanity checks */
|
|
if ((t < 1) || (m*t >= ((1 << m)-1)))
|
|
/* invalid t value */
|
|
goto fail;
|
|
|
|
/* select a primitive polynomial for generating GF(2^m) */
|
|
if (prim_poly == 0)
|
|
prim_poly = prim_poly_tab[m-min_m];
|
|
|
|
bch = kzalloc(sizeof(*bch), GFP_KERNEL);
|
|
if (bch == NULL)
|
|
goto fail;
|
|
|
|
bch->m = m;
|
|
bch->t = t;
|
|
bch->n = (1 << m)-1;
|
|
words = DIV_ROUND_UP(m*t, 32);
|
|
bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
|
|
bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
|
|
bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
|
|
bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
|
|
bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
|
|
bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
|
|
bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
|
|
bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
|
|
bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
|
|
bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
|
|
bch->swap_bits = swap_bits;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
|
|
bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
|
|
|
|
if (err)
|
|
goto fail;
|
|
|
|
err = build_gf_tables(bch, prim_poly);
|
|
if (err)
|
|
goto fail;
|
|
|
|
/* use generator polynomial for computing encoding tables */
|
|
genpoly = compute_generator_polynomial(bch);
|
|
if (genpoly == NULL)
|
|
goto fail;
|
|
|
|
build_mod8_tables(bch, genpoly);
|
|
kfree(genpoly);
|
|
|
|
err = build_deg2_base(bch);
|
|
if (err)
|
|
goto fail;
|
|
|
|
return bch;
|
|
|
|
fail:
|
|
bch_free(bch);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bch_init);
|
|
|
|
/**
|
|
* bch_free - free the BCH control structure
|
|
* @bch: BCH control structure to release
|
|
*/
|
|
void bch_free(struct bch_control *bch)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (bch) {
|
|
kfree(bch->a_pow_tab);
|
|
kfree(bch->a_log_tab);
|
|
kfree(bch->mod8_tab);
|
|
kfree(bch->ecc_buf);
|
|
kfree(bch->ecc_buf2);
|
|
kfree(bch->xi_tab);
|
|
kfree(bch->syn);
|
|
kfree(bch->cache);
|
|
kfree(bch->elp);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
|
|
kfree(bch->poly_2t[i]);
|
|
|
|
kfree(bch);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(bch_free);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
|
|
MODULE_DESCRIPTION("Binary BCH encoder/decoder");
|