linux-stable/net/ipv4/netfilter/nf_nat_core.c
Pablo Neira Ayuso e6a7d3c04f netfilter: ctnetlink: remove bogus module dependency between ctnetlink and nf_nat
This patch removes the module dependency between ctnetlink and
nf_nat by means of an indirect call that is initialized when
nf_nat is loaded. Now, nf_conntrack_netlink only requires
nf_conntrack and nfnetlink.

This patch puts nfnetlink_parse_nat_setup_hook into the
nf_conntrack_core to avoid dependencies between ctnetlink,
nf_conntrack_ipv4 and nf_conntrack_ipv6.

This patch also introduces the function ctnetlink_change_nat
that is only invoked from the creation path. Actually, the
nat handling cannot be invoked from the update path since
this is not allowed. By introducing this function, we remove
the useless nat handling in the update path and we avoid
deadlock-prone code.

This patch also adds the required EAGAIN logic for nfnetlink.

Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-14 11:58:31 -07:00

773 lines
21 KiB
C

/* NAT for netfilter; shared with compatibility layer. */
/* (C) 1999-2001 Paul `Rusty' Russell
* (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/timer.h>
#include <linux/skbuff.h>
#include <net/checksum.h>
#include <net/icmp.h>
#include <net/ip.h>
#include <net/tcp.h> /* For tcp_prot in getorigdst */
#include <linux/icmp.h>
#include <linux/udp.h>
#include <linux/jhash.h>
#include <linux/netfilter_ipv4.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_nat.h>
#include <net/netfilter/nf_nat_protocol.h>
#include <net/netfilter/nf_nat_core.h>
#include <net/netfilter/nf_nat_helper.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_l3proto.h>
#include <net/netfilter/nf_conntrack_l4proto.h>
static DEFINE_SPINLOCK(nf_nat_lock);
static struct nf_conntrack_l3proto *l3proto __read_mostly;
/* Calculated at init based on memory size */
static unsigned int nf_nat_htable_size __read_mostly;
#define MAX_IP_NAT_PROTO 256
static const struct nf_nat_protocol *nf_nat_protos[MAX_IP_NAT_PROTO]
__read_mostly;
static inline const struct nf_nat_protocol *
__nf_nat_proto_find(u_int8_t protonum)
{
return rcu_dereference(nf_nat_protos[protonum]);
}
const struct nf_nat_protocol *
nf_nat_proto_find_get(u_int8_t protonum)
{
const struct nf_nat_protocol *p;
rcu_read_lock();
p = __nf_nat_proto_find(protonum);
if (!try_module_get(p->me))
p = &nf_nat_unknown_protocol;
rcu_read_unlock();
return p;
}
EXPORT_SYMBOL_GPL(nf_nat_proto_find_get);
void
nf_nat_proto_put(const struct nf_nat_protocol *p)
{
module_put(p->me);
}
EXPORT_SYMBOL_GPL(nf_nat_proto_put);
/* We keep an extra hash for each conntrack, for fast searching. */
static inline unsigned int
hash_by_src(const struct nf_conntrack_tuple *tuple)
{
unsigned int hash;
/* Original src, to ensure we map it consistently if poss. */
hash = jhash_3words((__force u32)tuple->src.u3.ip,
(__force u32)tuple->src.u.all,
tuple->dst.protonum, 0);
return ((u64)hash * nf_nat_htable_size) >> 32;
}
/* Is this tuple already taken? (not by us) */
int
nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
const struct nf_conn *ignored_conntrack)
{
/* Conntrack tracking doesn't keep track of outgoing tuples; only
incoming ones. NAT means they don't have a fixed mapping,
so we invert the tuple and look for the incoming reply.
We could keep a separate hash if this proves too slow. */
struct nf_conntrack_tuple reply;
nf_ct_invert_tuplepr(&reply, tuple);
return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
}
EXPORT_SYMBOL(nf_nat_used_tuple);
/* If we source map this tuple so reply looks like reply_tuple, will
* that meet the constraints of range. */
static int
in_range(const struct nf_conntrack_tuple *tuple,
const struct nf_nat_range *range)
{
const struct nf_nat_protocol *proto;
int ret = 0;
/* If we are supposed to map IPs, then we must be in the
range specified, otherwise let this drag us onto a new src IP. */
if (range->flags & IP_NAT_RANGE_MAP_IPS) {
if (ntohl(tuple->src.u3.ip) < ntohl(range->min_ip) ||
ntohl(tuple->src.u3.ip) > ntohl(range->max_ip))
return 0;
}
rcu_read_lock();
proto = __nf_nat_proto_find(tuple->dst.protonum);
if (!(range->flags & IP_NAT_RANGE_PROTO_SPECIFIED) ||
proto->in_range(tuple, IP_NAT_MANIP_SRC,
&range->min, &range->max))
ret = 1;
rcu_read_unlock();
return ret;
}
static inline int
same_src(const struct nf_conn *ct,
const struct nf_conntrack_tuple *tuple)
{
const struct nf_conntrack_tuple *t;
t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
return (t->dst.protonum == tuple->dst.protonum &&
t->src.u3.ip == tuple->src.u3.ip &&
t->src.u.all == tuple->src.u.all);
}
/* Only called for SRC manip */
static int
find_appropriate_src(struct net *net,
const struct nf_conntrack_tuple *tuple,
struct nf_conntrack_tuple *result,
const struct nf_nat_range *range)
{
unsigned int h = hash_by_src(tuple);
const struct nf_conn_nat *nat;
const struct nf_conn *ct;
const struct hlist_node *n;
rcu_read_lock();
hlist_for_each_entry_rcu(nat, n, &net->ipv4.nat_bysource[h], bysource) {
ct = nat->ct;
if (same_src(ct, tuple)) {
/* Copy source part from reply tuple. */
nf_ct_invert_tuplepr(result,
&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
result->dst = tuple->dst;
if (in_range(result, range)) {
rcu_read_unlock();
return 1;
}
}
}
rcu_read_unlock();
return 0;
}
/* For [FUTURE] fragmentation handling, we want the least-used
src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
1-65535, we don't do pro-rata allocation based on ports; we choose
the ip with the lowest src-ip/dst-ip/proto usage.
*/
static void
find_best_ips_proto(struct nf_conntrack_tuple *tuple,
const struct nf_nat_range *range,
const struct nf_conn *ct,
enum nf_nat_manip_type maniptype)
{
__be32 *var_ipp;
/* Host order */
u_int32_t minip, maxip, j;
/* No IP mapping? Do nothing. */
if (!(range->flags & IP_NAT_RANGE_MAP_IPS))
return;
if (maniptype == IP_NAT_MANIP_SRC)
var_ipp = &tuple->src.u3.ip;
else
var_ipp = &tuple->dst.u3.ip;
/* Fast path: only one choice. */
if (range->min_ip == range->max_ip) {
*var_ipp = range->min_ip;
return;
}
/* Hashing source and destination IPs gives a fairly even
* spread in practice (if there are a small number of IPs
* involved, there usually aren't that many connections
* anyway). The consistency means that servers see the same
* client coming from the same IP (some Internet Banking sites
* like this), even across reboots. */
minip = ntohl(range->min_ip);
maxip = ntohl(range->max_ip);
j = jhash_2words((__force u32)tuple->src.u3.ip,
(__force u32)tuple->dst.u3.ip, 0);
j = ((u64)j * (maxip - minip + 1)) >> 32;
*var_ipp = htonl(minip + j);
}
/* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
* we change the source to map into the range. For NF_INET_PRE_ROUTING
* and NF_INET_LOCAL_OUT, we change the destination to map into the
* range. It might not be possible to get a unique tuple, but we try.
* At worst (or if we race), we will end up with a final duplicate in
* __ip_conntrack_confirm and drop the packet. */
static void
get_unique_tuple(struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_tuple *orig_tuple,
const struct nf_nat_range *range,
struct nf_conn *ct,
enum nf_nat_manip_type maniptype)
{
struct net *net = nf_ct_net(ct);
const struct nf_nat_protocol *proto;
/* 1) If this srcip/proto/src-proto-part is currently mapped,
and that same mapping gives a unique tuple within the given
range, use that.
This is only required for source (ie. NAT/masq) mappings.
So far, we don't do local source mappings, so multiple
manips not an issue. */
if (maniptype == IP_NAT_MANIP_SRC &&
!(range->flags & IP_NAT_RANGE_PROTO_RANDOM)) {
if (find_appropriate_src(net, orig_tuple, tuple, range)) {
pr_debug("get_unique_tuple: Found current src map\n");
if (!nf_nat_used_tuple(tuple, ct))
return;
}
}
/* 2) Select the least-used IP/proto combination in the given
range. */
*tuple = *orig_tuple;
find_best_ips_proto(tuple, range, ct, maniptype);
/* 3) The per-protocol part of the manip is made to map into
the range to make a unique tuple. */
rcu_read_lock();
proto = __nf_nat_proto_find(orig_tuple->dst.protonum);
/* Change protocol info to have some randomization */
if (range->flags & IP_NAT_RANGE_PROTO_RANDOM) {
proto->unique_tuple(tuple, range, maniptype, ct);
goto out;
}
/* Only bother mapping if it's not already in range and unique */
if ((!(range->flags & IP_NAT_RANGE_PROTO_SPECIFIED) ||
proto->in_range(tuple, maniptype, &range->min, &range->max)) &&
!nf_nat_used_tuple(tuple, ct))
goto out;
/* Last change: get protocol to try to obtain unique tuple. */
proto->unique_tuple(tuple, range, maniptype, ct);
out:
rcu_read_unlock();
}
unsigned int
nf_nat_setup_info(struct nf_conn *ct,
const struct nf_nat_range *range,
enum nf_nat_manip_type maniptype)
{
struct net *net = nf_ct_net(ct);
struct nf_conntrack_tuple curr_tuple, new_tuple;
struct nf_conn_nat *nat;
int have_to_hash = !(ct->status & IPS_NAT_DONE_MASK);
/* nat helper or nfctnetlink also setup binding */
nat = nfct_nat(ct);
if (!nat) {
nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
if (nat == NULL) {
pr_debug("failed to add NAT extension\n");
return NF_ACCEPT;
}
}
NF_CT_ASSERT(maniptype == IP_NAT_MANIP_SRC ||
maniptype == IP_NAT_MANIP_DST);
BUG_ON(nf_nat_initialized(ct, maniptype));
/* What we've got will look like inverse of reply. Normally
this is what is in the conntrack, except for prior
manipulations (future optimization: if num_manips == 0,
orig_tp =
conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple) */
nf_ct_invert_tuplepr(&curr_tuple,
&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
struct nf_conntrack_tuple reply;
/* Alter conntrack table so will recognize replies. */
nf_ct_invert_tuplepr(&reply, &new_tuple);
nf_conntrack_alter_reply(ct, &reply);
/* Non-atomic: we own this at the moment. */
if (maniptype == IP_NAT_MANIP_SRC)
ct->status |= IPS_SRC_NAT;
else
ct->status |= IPS_DST_NAT;
}
/* Place in source hash if this is the first time. */
if (have_to_hash) {
unsigned int srchash;
srchash = hash_by_src(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
spin_lock_bh(&nf_nat_lock);
/* nf_conntrack_alter_reply might re-allocate exntension aera */
nat = nfct_nat(ct);
nat->ct = ct;
hlist_add_head_rcu(&nat->bysource,
&net->ipv4.nat_bysource[srchash]);
spin_unlock_bh(&nf_nat_lock);
}
/* It's done. */
if (maniptype == IP_NAT_MANIP_DST)
set_bit(IPS_DST_NAT_DONE_BIT, &ct->status);
else
set_bit(IPS_SRC_NAT_DONE_BIT, &ct->status);
return NF_ACCEPT;
}
EXPORT_SYMBOL(nf_nat_setup_info);
/* Returns true if succeeded. */
static bool
manip_pkt(u_int16_t proto,
struct sk_buff *skb,
unsigned int iphdroff,
const struct nf_conntrack_tuple *target,
enum nf_nat_manip_type maniptype)
{
struct iphdr *iph;
const struct nf_nat_protocol *p;
if (!skb_make_writable(skb, iphdroff + sizeof(*iph)))
return false;
iph = (void *)skb->data + iphdroff;
/* Manipulate protcol part. */
/* rcu_read_lock()ed by nf_hook_slow */
p = __nf_nat_proto_find(proto);
if (!p->manip_pkt(skb, iphdroff, target, maniptype))
return false;
iph = (void *)skb->data + iphdroff;
if (maniptype == IP_NAT_MANIP_SRC) {
csum_replace4(&iph->check, iph->saddr, target->src.u3.ip);
iph->saddr = target->src.u3.ip;
} else {
csum_replace4(&iph->check, iph->daddr, target->dst.u3.ip);
iph->daddr = target->dst.u3.ip;
}
return true;
}
/* Do packet manipulations according to nf_nat_setup_info. */
unsigned int nf_nat_packet(struct nf_conn *ct,
enum ip_conntrack_info ctinfo,
unsigned int hooknum,
struct sk_buff *skb)
{
enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
unsigned long statusbit;
enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
if (mtype == IP_NAT_MANIP_SRC)
statusbit = IPS_SRC_NAT;
else
statusbit = IPS_DST_NAT;
/* Invert if this is reply dir. */
if (dir == IP_CT_DIR_REPLY)
statusbit ^= IPS_NAT_MASK;
/* Non-atomic: these bits don't change. */
if (ct->status & statusbit) {
struct nf_conntrack_tuple target;
/* We are aiming to look like inverse of other direction. */
nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
if (!manip_pkt(target.dst.protonum, skb, 0, &target, mtype))
return NF_DROP;
}
return NF_ACCEPT;
}
EXPORT_SYMBOL_GPL(nf_nat_packet);
/* Dir is direction ICMP is coming from (opposite to packet it contains) */
int nf_nat_icmp_reply_translation(struct nf_conn *ct,
enum ip_conntrack_info ctinfo,
unsigned int hooknum,
struct sk_buff *skb)
{
struct {
struct icmphdr icmp;
struct iphdr ip;
} *inside;
const struct nf_conntrack_l4proto *l4proto;
struct nf_conntrack_tuple inner, target;
int hdrlen = ip_hdrlen(skb);
enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
unsigned long statusbit;
enum nf_nat_manip_type manip = HOOK2MANIP(hooknum);
if (!skb_make_writable(skb, hdrlen + sizeof(*inside)))
return 0;
inside = (void *)skb->data + ip_hdrlen(skb);
/* We're actually going to mangle it beyond trivial checksum
adjustment, so make sure the current checksum is correct. */
if (nf_ip_checksum(skb, hooknum, hdrlen, 0))
return 0;
/* Must be RELATED */
NF_CT_ASSERT(skb->nfctinfo == IP_CT_RELATED ||
skb->nfctinfo == IP_CT_RELATED+IP_CT_IS_REPLY);
/* Redirects on non-null nats must be dropped, else they'll
start talking to each other without our translation, and be
confused... --RR */
if (inside->icmp.type == ICMP_REDIRECT) {
/* If NAT isn't finished, assume it and drop. */
if ((ct->status & IPS_NAT_DONE_MASK) != IPS_NAT_DONE_MASK)
return 0;
if (ct->status & IPS_NAT_MASK)
return 0;
}
pr_debug("icmp_reply_translation: translating error %p manip %u "
"dir %s\n", skb, manip,
dir == IP_CT_DIR_ORIGINAL ? "ORIG" : "REPLY");
/* rcu_read_lock()ed by nf_hook_slow */
l4proto = __nf_ct_l4proto_find(PF_INET, inside->ip.protocol);
if (!nf_ct_get_tuple(skb,
ip_hdrlen(skb) + sizeof(struct icmphdr),
(ip_hdrlen(skb) +
sizeof(struct icmphdr) + inside->ip.ihl * 4),
(u_int16_t)AF_INET,
inside->ip.protocol,
&inner, l3proto, l4proto))
return 0;
/* Change inner back to look like incoming packet. We do the
opposite manip on this hook to normal, because it might not
pass all hooks (locally-generated ICMP). Consider incoming
packet: PREROUTING (DST manip), routing produces ICMP, goes
through POSTROUTING (which must correct the DST manip). */
if (!manip_pkt(inside->ip.protocol, skb,
ip_hdrlen(skb) + sizeof(inside->icmp),
&ct->tuplehash[!dir].tuple,
!manip))
return 0;
if (skb->ip_summed != CHECKSUM_PARTIAL) {
/* Reloading "inside" here since manip_pkt inner. */
inside = (void *)skb->data + ip_hdrlen(skb);
inside->icmp.checksum = 0;
inside->icmp.checksum =
csum_fold(skb_checksum(skb, hdrlen,
skb->len - hdrlen, 0));
}
/* Change outer to look the reply to an incoming packet
* (proto 0 means don't invert per-proto part). */
if (manip == IP_NAT_MANIP_SRC)
statusbit = IPS_SRC_NAT;
else
statusbit = IPS_DST_NAT;
/* Invert if this is reply dir. */
if (dir == IP_CT_DIR_REPLY)
statusbit ^= IPS_NAT_MASK;
if (ct->status & statusbit) {
nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
if (!manip_pkt(0, skb, 0, &target, manip))
return 0;
}
return 1;
}
EXPORT_SYMBOL_GPL(nf_nat_icmp_reply_translation);
/* Protocol registration. */
int nf_nat_protocol_register(const struct nf_nat_protocol *proto)
{
int ret = 0;
spin_lock_bh(&nf_nat_lock);
if (nf_nat_protos[proto->protonum] != &nf_nat_unknown_protocol) {
ret = -EBUSY;
goto out;
}
rcu_assign_pointer(nf_nat_protos[proto->protonum], proto);
out:
spin_unlock_bh(&nf_nat_lock);
return ret;
}
EXPORT_SYMBOL(nf_nat_protocol_register);
/* Noone stores the protocol anywhere; simply delete it. */
void nf_nat_protocol_unregister(const struct nf_nat_protocol *proto)
{
spin_lock_bh(&nf_nat_lock);
rcu_assign_pointer(nf_nat_protos[proto->protonum],
&nf_nat_unknown_protocol);
spin_unlock_bh(&nf_nat_lock);
synchronize_rcu();
}
EXPORT_SYMBOL(nf_nat_protocol_unregister);
/* Noone using conntrack by the time this called. */
static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
{
struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
if (nat == NULL || nat->ct == NULL)
return;
NF_CT_ASSERT(nat->ct->status & IPS_NAT_DONE_MASK);
spin_lock_bh(&nf_nat_lock);
hlist_del_rcu(&nat->bysource);
spin_unlock_bh(&nf_nat_lock);
}
static void nf_nat_move_storage(void *new, void *old)
{
struct nf_conn_nat *new_nat = new;
struct nf_conn_nat *old_nat = old;
struct nf_conn *ct = old_nat->ct;
if (!ct || !(ct->status & IPS_NAT_DONE_MASK))
return;
spin_lock_bh(&nf_nat_lock);
new_nat->ct = ct;
hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
spin_unlock_bh(&nf_nat_lock);
}
static struct nf_ct_ext_type nat_extend __read_mostly = {
.len = sizeof(struct nf_conn_nat),
.align = __alignof__(struct nf_conn_nat),
.destroy = nf_nat_cleanup_conntrack,
.move = nf_nat_move_storage,
.id = NF_CT_EXT_NAT,
.flags = NF_CT_EXT_F_PREALLOC,
};
#if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_conntrack.h>
static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
[CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
[CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
};
static int nfnetlink_parse_nat_proto(struct nlattr *attr,
const struct nf_conn *ct,
struct nf_nat_range *range)
{
struct nlattr *tb[CTA_PROTONAT_MAX+1];
const struct nf_nat_protocol *npt;
int err;
err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
if (err < 0)
return err;
npt = nf_nat_proto_find_get(nf_ct_protonum(ct));
if (npt->nlattr_to_range)
err = npt->nlattr_to_range(tb, range);
nf_nat_proto_put(npt);
return err;
}
static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
[CTA_NAT_MINIP] = { .type = NLA_U32 },
[CTA_NAT_MAXIP] = { .type = NLA_U32 },
};
static int
nfnetlink_parse_nat(struct nlattr *nat,
const struct nf_conn *ct, struct nf_nat_range *range)
{
struct nlattr *tb[CTA_NAT_MAX+1];
int err;
memset(range, 0, sizeof(*range));
err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
if (err < 0)
return err;
if (tb[CTA_NAT_MINIP])
range->min_ip = nla_get_be32(tb[CTA_NAT_MINIP]);
if (!tb[CTA_NAT_MAXIP])
range->max_ip = range->min_ip;
else
range->max_ip = nla_get_be32(tb[CTA_NAT_MAXIP]);
if (range->min_ip)
range->flags |= IP_NAT_RANGE_MAP_IPS;
if (!tb[CTA_NAT_PROTO])
return 0;
err = nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
if (err < 0)
return err;
return 0;
}
static int
nfnetlink_parse_nat_setup(struct nf_conn *ct,
enum nf_nat_manip_type manip,
struct nlattr *attr)
{
struct nf_nat_range range;
if (nfnetlink_parse_nat(attr, ct, &range) < 0)
return -EINVAL;
if (nf_nat_initialized(ct, manip))
return -EEXIST;
return nf_nat_setup_info(ct, &range, manip);
}
#else
static int
nfnetlink_parse_nat_setup(struct nf_conn *ct,
enum nf_nat_manip_type manip,
struct nlattr *attr)
{
return -EOPNOTSUPP;
}
#endif
static int __net_init nf_nat_net_init(struct net *net)
{
net->ipv4.nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size,
&net->ipv4.nat_vmalloced);
if (!net->ipv4.nat_bysource)
return -ENOMEM;
return 0;
}
/* Clear NAT section of all conntracks, in case we're loaded again. */
static int clean_nat(struct nf_conn *i, void *data)
{
struct nf_conn_nat *nat = nfct_nat(i);
if (!nat)
return 0;
memset(nat, 0, sizeof(*nat));
i->status &= ~(IPS_NAT_MASK | IPS_NAT_DONE_MASK | IPS_SEQ_ADJUST);
return 0;
}
static void __net_exit nf_nat_net_exit(struct net *net)
{
nf_ct_iterate_cleanup(net, &clean_nat, NULL);
synchronize_rcu();
nf_ct_free_hashtable(net->ipv4.nat_bysource, net->ipv4.nat_vmalloced,
nf_nat_htable_size);
}
static struct pernet_operations nf_nat_net_ops = {
.init = nf_nat_net_init,
.exit = nf_nat_net_exit,
};
static int __init nf_nat_init(void)
{
size_t i;
int ret;
need_ipv4_conntrack();
ret = nf_ct_extend_register(&nat_extend);
if (ret < 0) {
printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
return ret;
}
/* Leave them the same for the moment. */
nf_nat_htable_size = nf_conntrack_htable_size;
ret = register_pernet_subsys(&nf_nat_net_ops);
if (ret < 0)
goto cleanup_extend;
/* Sew in builtin protocols. */
spin_lock_bh(&nf_nat_lock);
for (i = 0; i < MAX_IP_NAT_PROTO; i++)
rcu_assign_pointer(nf_nat_protos[i], &nf_nat_unknown_protocol);
rcu_assign_pointer(nf_nat_protos[IPPROTO_TCP], &nf_nat_protocol_tcp);
rcu_assign_pointer(nf_nat_protos[IPPROTO_UDP], &nf_nat_protocol_udp);
rcu_assign_pointer(nf_nat_protos[IPPROTO_ICMP], &nf_nat_protocol_icmp);
spin_unlock_bh(&nf_nat_lock);
/* Initialize fake conntrack so that NAT will skip it */
nf_conntrack_untracked.status |= IPS_NAT_DONE_MASK;
l3proto = nf_ct_l3proto_find_get((u_int16_t)AF_INET);
BUG_ON(nf_nat_seq_adjust_hook != NULL);
rcu_assign_pointer(nf_nat_seq_adjust_hook, nf_nat_seq_adjust);
BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
rcu_assign_pointer(nfnetlink_parse_nat_setup_hook,
nfnetlink_parse_nat_setup);
return 0;
cleanup_extend:
nf_ct_extend_unregister(&nat_extend);
return ret;
}
static void __exit nf_nat_cleanup(void)
{
unregister_pernet_subsys(&nf_nat_net_ops);
nf_ct_l3proto_put(l3proto);
nf_ct_extend_unregister(&nat_extend);
rcu_assign_pointer(nf_nat_seq_adjust_hook, NULL);
rcu_assign_pointer(nfnetlink_parse_nat_setup_hook, NULL);
synchronize_net();
}
MODULE_LICENSE("GPL");
MODULE_ALIAS("nf-nat-ipv4");
module_init(nf_nat_init);
module_exit(nf_nat_cleanup);