linux-stable/arch/alpha/mm/fault.c
Linus Torvalds 35ce8ae9ae Merge branch 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull signal/exit/ptrace updates from Eric Biederman:
 "This set of changes deletes some dead code, makes a lot of cleanups
  which hopefully make the code easier to follow, and fixes bugs found
  along the way.

  The end-game which I have not yet reached yet is for fatal signals
  that generate coredumps to be short-circuit deliverable from
  complete_signal, for force_siginfo_to_task not to require changing
  userspace configured signal delivery state, and for the ptrace stops
  to always happen in locations where we can guarantee on all
  architectures that the all of the registers are saved and available on
  the stack.

  Removal of profile_task_ext, profile_munmap, and profile_handoff_task
  are the big successes for dead code removal this round.

  A bunch of small bug fixes are included, as most of the issues
  reported were small enough that they would not affect bisection so I
  simply added the fixes and did not fold the fixes into the changes
  they were fixing.

  There was a bug that broke coredumps piped to systemd-coredump. I
  dropped the change that caused that bug and replaced it entirely with
  something much more restrained. Unfortunately that required some
  rebasing.

  Some successes after this set of changes: There are few enough calls
  to do_exit to audit in a reasonable amount of time. The lifetime of
  struct kthread now matches the lifetime of struct task, and the
  pointer to struct kthread is no longer stored in set_child_tid. The
  flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
  removed. Issues where task->exit_code was examined with
  signal->group_exit_code should been examined were fixed.

  There are several loosely related changes included because I am
  cleaning up and if I don't include them they will probably get lost.

  The original postings of these changes can be found at:
     https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.org
     https://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.org
     https://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org

  I trimmed back the last set of changes to only the obviously correct
  once. Simply because there was less time for review than I had hoped"

* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
  ptrace/m68k: Stop open coding ptrace_report_syscall
  ptrace: Remove unused regs argument from ptrace_report_syscall
  ptrace: Remove second setting of PT_SEIZED in ptrace_attach
  taskstats: Cleanup the use of task->exit_code
  exit: Use the correct exit_code in /proc/<pid>/stat
  exit: Fix the exit_code for wait_task_zombie
  exit: Coredumps reach do_group_exit
  exit: Remove profile_handoff_task
  exit: Remove profile_task_exit & profile_munmap
  signal: clean up kernel-doc comments
  signal: Remove the helper signal_group_exit
  signal: Rename group_exit_task group_exec_task
  coredump: Stop setting signal->group_exit_task
  signal: Remove SIGNAL_GROUP_COREDUMP
  signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
  signal: Make coredump handling explicit in complete_signal
  signal: Have prepare_signal detect coredumps using signal->core_state
  signal: Have the oom killer detect coredumps using signal->core_state
  exit: Move force_uaccess back into do_exit
  exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
  ...
2022-01-17 05:49:30 +02:00

248 lines
6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/alpha/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
*/
#include <linux/sched/signal.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/io.h>
#define __EXTERN_INLINE inline
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#undef __EXTERN_INLINE
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/extable.h>
#include <linux/uaccess.h>
#include <linux/perf_event.h>
extern void die_if_kernel(char *,struct pt_regs *,long, unsigned long *);
/*
* Force a new ASN for a task.
*/
#ifndef CONFIG_SMP
unsigned long last_asn = ASN_FIRST_VERSION;
#endif
void
__load_new_mm_context(struct mm_struct *next_mm)
{
unsigned long mmc;
struct pcb_struct *pcb;
mmc = __get_new_mm_context(next_mm, smp_processor_id());
next_mm->context[smp_processor_id()] = mmc;
pcb = &current_thread_info()->pcb;
pcb->asn = mmc & HARDWARE_ASN_MASK;
pcb->ptbr = ((unsigned long) next_mm->pgd - IDENT_ADDR) >> PAGE_SHIFT;
__reload_thread(pcb);
}
/*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to handle_mm_fault().
*
* mmcsr:
* 0 = translation not valid
* 1 = access violation
* 2 = fault-on-read
* 3 = fault-on-execute
* 4 = fault-on-write
*
* cause:
* -1 = instruction fetch
* 0 = load
* 1 = store
*
* Registers $9 through $15 are saved in a block just prior to `regs' and
* are saved and restored around the call to allow exception code to
* modify them.
*/
/* Macro for exception fixup code to access integer registers. */
#define dpf_reg(r) \
(((unsigned long *)regs)[(r) <= 8 ? (r) : (r) <= 15 ? (r)-16 : \
(r) <= 18 ? (r)+10 : (r)-10])
asmlinkage void
do_page_fault(unsigned long address, unsigned long mmcsr,
long cause, struct pt_regs *regs)
{
struct vm_area_struct * vma;
struct mm_struct *mm = current->mm;
const struct exception_table_entry *fixup;
int si_code = SEGV_MAPERR;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_DEFAULT;
/* As of EV6, a load into $31/$f31 is a prefetch, and never faults
(or is suppressed by the PALcode). Support that for older CPUs
by ignoring such an instruction. */
if (cause == 0) {
unsigned int insn;
__get_user(insn, (unsigned int __user *)regs->pc);
if ((insn >> 21 & 0x1f) == 0x1f &&
/* ldq ldl ldt lds ldg ldf ldwu ldbu */
(1ul << (insn >> 26) & 0x30f00001400ul)) {
regs->pc += 4;
return;
}
}
/* If we're in an interrupt context, or have no user context,
we must not take the fault. */
if (!mm || faulthandler_disabled())
goto no_context;
#ifdef CONFIG_ALPHA_LARGE_VMALLOC
if (address >= TASK_SIZE)
goto vmalloc_fault;
#endif
if (user_mode(regs))
flags |= FAULT_FLAG_USER;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
retry:
mmap_read_lock(mm);
vma = find_vma(mm, address);
if (!vma)
goto bad_area;
if (vma->vm_start <= address)
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if (expand_stack(vma, address))
goto bad_area;
/* Ok, we have a good vm_area for this memory access, so
we can handle it. */
good_area:
si_code = SEGV_ACCERR;
if (cause < 0) {
if (!(vma->vm_flags & VM_EXEC))
goto bad_area;
} else if (!cause) {
/* Allow reads even for write-only mappings */
if (!(vma->vm_flags & (VM_READ | VM_WRITE)))
goto bad_area;
} else {
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
flags |= FAULT_FLAG_WRITE;
}
/* If for any reason at all we couldn't handle the fault,
make sure we exit gracefully rather than endlessly redo
the fault. */
fault = handle_mm_fault(vma, address, flags, regs);
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
if (fault & VM_FAULT_OOM)
goto out_of_memory;
else if (fault & VM_FAULT_SIGSEGV)
goto bad_area;
else if (fault & VM_FAULT_SIGBUS)
goto do_sigbus;
BUG();
}
if (fault & VM_FAULT_RETRY) {
flags |= FAULT_FLAG_TRIED;
/* No need to mmap_read_unlock(mm) as we would
* have already released it in __lock_page_or_retry
* in mm/filemap.c.
*/
goto retry;
}
mmap_read_unlock(mm);
return;
/* Something tried to access memory that isn't in our memory map.
Fix it, but check if it's kernel or user first. */
bad_area:
mmap_read_unlock(mm);
if (user_mode(regs))
goto do_sigsegv;
no_context:
/* Are we prepared to handle this fault as an exception? */
if ((fixup = search_exception_tables(regs->pc)) != 0) {
unsigned long newpc;
newpc = fixup_exception(dpf_reg, fixup, regs->pc);
regs->pc = newpc;
return;
}
/* Oops. The kernel tried to access some bad page. We'll have to
terminate things with extreme prejudice. */
printk(KERN_ALERT "Unable to handle kernel paging request at "
"virtual address %016lx\n", address);
die_if_kernel("Oops", regs, cause, (unsigned long*)regs - 16);
make_task_dead(SIGKILL);
/* We ran out of memory, or some other thing happened to us that
made us unable to handle the page fault gracefully. */
out_of_memory:
mmap_read_unlock(mm);
if (!user_mode(regs))
goto no_context;
pagefault_out_of_memory();
return;
do_sigbus:
mmap_read_unlock(mm);
/* Send a sigbus, regardless of whether we were in kernel
or user mode. */
force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *) address);
if (!user_mode(regs))
goto no_context;
return;
do_sigsegv:
force_sig_fault(SIGSEGV, si_code, (void __user *) address);
return;
#ifdef CONFIG_ALPHA_LARGE_VMALLOC
vmalloc_fault:
if (user_mode(regs))
goto do_sigsegv;
else {
/* Synchronize this task's top level page-table
with the "reference" page table from init. */
long index = pgd_index(address);
pgd_t *pgd, *pgd_k;
pgd = current->active_mm->pgd + index;
pgd_k = swapper_pg_dir + index;
if (!pgd_present(*pgd) && pgd_present(*pgd_k)) {
pgd_val(*pgd) = pgd_val(*pgd_k);
return;
}
goto no_context;
}
#endif
}