linux-stable/fs/bcachefs/extents.c
Kent Overstreet a7c7a3092e bcachefs: bch2_mark_key() now takes bch_data_type
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:08 -04:00

2397 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
*
* Code for managing the extent btree and dynamically updating the writeback
* dirty sector count.
*/
#include "bcachefs.h"
#include "bkey_methods.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "checksum.h"
#include "debug.h"
#include "dirent.h"
#include "disk_groups.h"
#include "error.h"
#include "extents.h"
#include "inode.h"
#include "journal.h"
#include "replicas.h"
#include "super.h"
#include "super-io.h"
#include "trace.h"
#include "util.h"
#include "xattr.h"
static void sort_key_next(struct btree_node_iter_large *iter,
struct btree *b,
struct btree_node_iter_set *i)
{
i->k += __btree_node_offset_to_key(b, i->k)->u64s;
if (i->k == i->end)
*i = iter->data[--iter->used];
}
/*
* Returns true if l > r - unless l == r, in which case returns true if l is
* older than r.
*
* Necessary for btree_sort_fixup() - if there are multiple keys that compare
* equal in different sets, we have to process them newest to oldest.
*/
#define key_sort_cmp(h, l, r) \
({ \
bkey_cmp_packed(b, \
__btree_node_offset_to_key(b, (l).k), \
__btree_node_offset_to_key(b, (r).k)) \
\
?: (l).k - (r).k; \
})
static inline bool should_drop_next_key(struct btree_node_iter_large *iter,
struct btree *b)
{
struct btree_node_iter_set *l = iter->data, *r = iter->data + 1;
struct bkey_packed *k = __btree_node_offset_to_key(b, l->k);
if (bkey_whiteout(k))
return true;
if (iter->used < 2)
return false;
if (iter->used > 2 &&
key_sort_cmp(iter, r[0], r[1]) >= 0)
r++;
/*
* key_sort_cmp() ensures that when keys compare equal the older key
* comes first; so if l->k compares equal to r->k then l->k is older and
* should be dropped.
*/
return !bkey_cmp_packed(b,
__btree_node_offset_to_key(b, l->k),
__btree_node_offset_to_key(b, r->k));
}
struct btree_nr_keys bch2_key_sort_fix_overlapping(struct bset *dst,
struct btree *b,
struct btree_node_iter_large *iter)
{
struct bkey_packed *out = dst->start;
struct btree_nr_keys nr;
memset(&nr, 0, sizeof(nr));
heap_resort(iter, key_sort_cmp);
while (!bch2_btree_node_iter_large_end(iter)) {
if (!should_drop_next_key(iter, b)) {
struct bkey_packed *k =
__btree_node_offset_to_key(b, iter->data->k);
bkey_copy(out, k);
btree_keys_account_key_add(&nr, 0, out);
out = bkey_next(out);
}
sort_key_next(iter, b, iter->data);
heap_sift_down(iter, 0, key_sort_cmp);
}
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
return nr;
}
/* Common among btree and extent ptrs */
const struct bch_extent_ptr *
bch2_extent_has_device(struct bkey_s_c_extent e, unsigned dev)
{
const struct bch_extent_ptr *ptr;
extent_for_each_ptr(e, ptr)
if (ptr->dev == dev)
return ptr;
return NULL;
}
bool bch2_extent_drop_device(struct bkey_s_extent e, unsigned dev)
{
struct bch_extent_ptr *ptr;
bool dropped = false;
extent_for_each_ptr_backwards(e, ptr)
if (ptr->dev == dev) {
__bch2_extent_drop_ptr(e, ptr);
dropped = true;
}
if (dropped)
bch2_extent_drop_redundant_crcs(e);
return dropped;
}
const struct bch_extent_ptr *
bch2_extent_has_group(struct bch_fs *c, struct bkey_s_c_extent e, unsigned group)
{
const struct bch_extent_ptr *ptr;
extent_for_each_ptr(e, ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
if (ca->mi.group &&
ca->mi.group - 1 == group)
return ptr;
}
return NULL;
}
const struct bch_extent_ptr *
bch2_extent_has_target(struct bch_fs *c, struct bkey_s_c_extent e, unsigned target)
{
const struct bch_extent_ptr *ptr;
extent_for_each_ptr(e, ptr)
if (bch2_dev_in_target(c, ptr->dev, target) &&
(!ptr->cached ||
!ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)))
return ptr;
return NULL;
}
unsigned bch2_extent_nr_ptrs(struct bkey_s_c_extent e)
{
const struct bch_extent_ptr *ptr;
unsigned nr_ptrs = 0;
extent_for_each_ptr(e, ptr)
nr_ptrs++;
return nr_ptrs;
}
unsigned bch2_extent_nr_dirty_ptrs(struct bkey_s_c k)
{
struct bkey_s_c_extent e;
const struct bch_extent_ptr *ptr;
unsigned nr_ptrs = 0;
switch (k.k->type) {
case BCH_EXTENT:
case BCH_EXTENT_CACHED:
e = bkey_s_c_to_extent(k);
extent_for_each_ptr(e, ptr)
nr_ptrs += !ptr->cached;
break;
case BCH_RESERVATION:
nr_ptrs = bkey_s_c_to_reservation(k).v->nr_replicas;
break;
}
return nr_ptrs;
}
unsigned bch2_extent_ptr_durability(struct bch_fs *c,
const struct bch_extent_ptr *ptr)
{
struct bch_dev *ca;
if (ptr->cached)
return 0;
ca = bch_dev_bkey_exists(c, ptr->dev);
if (ca->mi.state == BCH_MEMBER_STATE_FAILED)
return 0;
return ca->mi.durability;
}
unsigned bch2_extent_durability(struct bch_fs *c, struct bkey_s_c_extent e)
{
const struct bch_extent_ptr *ptr;
unsigned durability = 0;
extent_for_each_ptr(e, ptr)
durability += bch2_extent_ptr_durability(c, ptr);
return durability;
}
unsigned bch2_extent_is_compressed(struct bkey_s_c k)
{
struct bkey_s_c_extent e;
const struct bch_extent_ptr *ptr;
struct bch_extent_crc_unpacked crc;
unsigned ret = 0;
switch (k.k->type) {
case BCH_EXTENT:
case BCH_EXTENT_CACHED:
e = bkey_s_c_to_extent(k);
extent_for_each_ptr_crc(e, ptr, crc)
if (!ptr->cached &&
crc.compression_type != BCH_COMPRESSION_NONE &&
crc.compressed_size < crc.live_size)
ret = max_t(unsigned, ret, crc.compressed_size);
}
return ret;
}
bool bch2_extent_matches_ptr(struct bch_fs *c, struct bkey_s_c_extent e,
struct bch_extent_ptr m, u64 offset)
{
const struct bch_extent_ptr *ptr;
struct bch_extent_crc_unpacked crc;
extent_for_each_ptr_crc(e, ptr, crc)
if (ptr->dev == m.dev &&
ptr->gen == m.gen &&
(s64) ptr->offset + crc.offset - bkey_start_offset(e.k) ==
(s64) m.offset - offset)
return ptr;
return NULL;
}
/* Doesn't cleanup redundant crcs */
void __bch2_extent_drop_ptr(struct bkey_s_extent e, struct bch_extent_ptr *ptr)
{
EBUG_ON(ptr < &e.v->start->ptr ||
ptr >= &extent_entry_last(e)->ptr);
EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
memmove_u64s_down(ptr, ptr + 1,
(u64 *) extent_entry_last(e) - (u64 *) (ptr + 1));
e.k->u64s -= sizeof(*ptr) / sizeof(u64);
}
void bch2_extent_drop_ptr(struct bkey_s_extent e, struct bch_extent_ptr *ptr)
{
__bch2_extent_drop_ptr(e, ptr);
bch2_extent_drop_redundant_crcs(e);
}
static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
struct bch_extent_crc_unpacked n)
{
return !u.compression_type &&
u.csum_type &&
u.uncompressed_size > u.live_size &&
bch2_csum_type_is_encryption(u.csum_type) ==
bch2_csum_type_is_encryption(n.csum_type);
}
bool bch2_can_narrow_extent_crcs(struct bkey_s_c_extent e,
struct bch_extent_crc_unpacked n)
{
struct bch_extent_crc_unpacked crc;
const union bch_extent_entry *i;
if (!n.csum_type)
return false;
extent_for_each_crc(e, crc, i)
if (can_narrow_crc(crc, n))
return true;
return false;
}
/*
* We're writing another replica for this extent, so while we've got the data in
* memory we'll be computing a new checksum for the currently live data.
*
* If there are other replicas we aren't moving, and they are checksummed but
* not compressed, we can modify them to point to only the data that is
* currently live (so that readers won't have to bounce) while we've got the
* checksum we need:
*/
bool bch2_extent_narrow_crcs(struct bkey_i_extent *e,
struct bch_extent_crc_unpacked n)
{
struct bch_extent_crc_unpacked u;
struct bch_extent_ptr *ptr;
union bch_extent_entry *i;
/* Find a checksum entry that covers only live data: */
if (!n.csum_type)
extent_for_each_crc(extent_i_to_s(e), u, i)
if (!u.compression_type &&
u.csum_type &&
u.live_size == u.uncompressed_size) {
n = u;
break;
}
if (!bch2_can_narrow_extent_crcs(extent_i_to_s_c(e), n))
return false;
BUG_ON(n.compression_type);
BUG_ON(n.offset);
BUG_ON(n.live_size != e->k.size);
bch2_extent_crc_append(e, n);
restart_narrow_pointers:
extent_for_each_ptr_crc(extent_i_to_s(e), ptr, u)
if (can_narrow_crc(u, n)) {
ptr->offset += u.offset;
extent_ptr_append(e, *ptr);
__bch2_extent_drop_ptr(extent_i_to_s(e), ptr);
goto restart_narrow_pointers;
}
bch2_extent_drop_redundant_crcs(extent_i_to_s(e));
return true;
}
/* returns true if not equal */
static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
struct bch_extent_crc_unpacked r)
{
return (l.csum_type != r.csum_type ||
l.compression_type != r.compression_type ||
l.compressed_size != r.compressed_size ||
l.uncompressed_size != r.uncompressed_size ||
l.offset != r.offset ||
l.live_size != r.live_size ||
l.nonce != r.nonce ||
bch2_crc_cmp(l.csum, r.csum));
}
void bch2_extent_drop_redundant_crcs(struct bkey_s_extent e)
{
union bch_extent_entry *entry = e.v->start;
union bch_extent_crc *crc, *prev = NULL;
struct bch_extent_crc_unpacked u, prev_u = { 0 };
while (entry != extent_entry_last(e)) {
union bch_extent_entry *next = extent_entry_next(entry);
size_t crc_u64s = extent_entry_u64s(entry);
if (!extent_entry_is_crc(entry))
goto next;
crc = entry_to_crc(entry);
u = bch2_extent_crc_unpack(e.k, crc);
if (next == extent_entry_last(e)) {
/* crc entry with no pointers after it: */
goto drop;
}
if (extent_entry_is_crc(next)) {
/* no pointers before next crc entry: */
goto drop;
}
if (prev && !bch2_crc_unpacked_cmp(u, prev_u)) {
/* identical to previous crc entry: */
goto drop;
}
if (!prev &&
!u.csum_type &&
!u.compression_type) {
/* null crc entry: */
union bch_extent_entry *e2;
extent_for_each_entry_from(e, e2, extent_entry_next(entry)) {
if (!extent_entry_is_ptr(e2))
break;
e2->ptr.offset += u.offset;
}
goto drop;
}
prev = crc;
prev_u = u;
next:
entry = next;
continue;
drop:
memmove_u64s_down(crc, next,
(u64 *) extent_entry_last(e) - (u64 *) next);
e.k->u64s -= crc_u64s;
}
EBUG_ON(bkey_val_u64s(e.k) && !bch2_extent_nr_ptrs(e.c));
}
static bool should_drop_ptr(const struct bch_fs *c,
struct bkey_s_c_extent e,
const struct bch_extent_ptr *ptr)
{
return ptr->cached && ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr);
}
static void bch2_extent_drop_stale(struct bch_fs *c, struct bkey_s_extent e)
{
struct bch_extent_ptr *ptr = &e.v->start->ptr;
bool dropped = false;
while ((ptr = extent_ptr_next(e, ptr)))
if (should_drop_ptr(c, e.c, ptr)) {
__bch2_extent_drop_ptr(e, ptr);
dropped = true;
} else
ptr++;
if (dropped)
bch2_extent_drop_redundant_crcs(e);
}
bool bch2_ptr_normalize(struct bch_fs *c, struct btree *b, struct bkey_s k)
{
return bch2_extent_normalize(c, k);
}
void bch2_ptr_swab(const struct bkey_format *f, struct bkey_packed *k)
{
switch (k->type) {
case BCH_EXTENT:
case BCH_EXTENT_CACHED: {
union bch_extent_entry *entry;
u64 *d = (u64 *) bkeyp_val(f, k);
unsigned i;
for (i = 0; i < bkeyp_val_u64s(f, k); i++)
d[i] = swab64(d[i]);
for (entry = (union bch_extent_entry *) d;
entry < (union bch_extent_entry *) (d + bkeyp_val_u64s(f, k));
entry = extent_entry_next(entry)) {
switch (extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_crc32:
entry->crc32.csum = swab32(entry->crc32.csum);
break;
case BCH_EXTENT_ENTRY_crc64:
entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
break;
case BCH_EXTENT_ENTRY_crc128:
entry->crc128.csum.hi = (__force __le64)
swab64((__force u64) entry->crc128.csum.hi);
entry->crc128.csum.lo = (__force __le64)
swab64((__force u64) entry->crc128.csum.lo);
break;
case BCH_EXTENT_ENTRY_ptr:
break;
}
}
break;
}
}
}
static const char *extent_ptr_invalid(const struct bch_fs *c,
struct bkey_s_c_extent e,
const struct bch_extent_ptr *ptr,
unsigned size_ondisk,
bool metadata)
{
const struct bch_extent_ptr *ptr2;
struct bch_dev *ca;
if (ptr->dev >= c->sb.nr_devices ||
!c->devs[ptr->dev])
return "pointer to invalid device";
ca = bch_dev_bkey_exists(c, ptr->dev);
if (!ca)
return "pointer to invalid device";
extent_for_each_ptr(e, ptr2)
if (ptr != ptr2 && ptr->dev == ptr2->dev)
return "multiple pointers to same device";
if (ptr->offset + size_ondisk > bucket_to_sector(ca, ca->mi.nbuckets))
return "offset past end of device";
if (ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket))
return "offset before first bucket";
if (bucket_remainder(ca, ptr->offset) +
size_ondisk > ca->mi.bucket_size)
return "spans multiple buckets";
return NULL;
}
static size_t extent_print_ptrs(struct bch_fs *c, char *buf,
size_t size, struct bkey_s_c_extent e)
{
char *out = buf, *end = buf + size;
const union bch_extent_entry *entry;
struct bch_extent_crc_unpacked crc;
const struct bch_extent_ptr *ptr;
struct bch_dev *ca;
bool first = true;
#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
extent_for_each_entry(e, entry) {
if (!first)
p(" ");
switch (__extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_crc32:
case BCH_EXTENT_ENTRY_crc64:
case BCH_EXTENT_ENTRY_crc128:
crc = bch2_extent_crc_unpack(e.k, entry_to_crc(entry));
p("crc: c_size %u size %u offset %u nonce %u csum %u compress %u",
crc.compressed_size,
crc.uncompressed_size,
crc.offset, crc.nonce,
crc.csum_type,
crc.compression_type);
break;
case BCH_EXTENT_ENTRY_ptr:
ptr = entry_to_ptr(entry);
ca = ptr->dev < c->sb.nr_devices && c->devs[ptr->dev]
? bch_dev_bkey_exists(c, ptr->dev)
: NULL;
p("ptr: %u:%llu gen %u%s%s", ptr->dev,
(u64) ptr->offset, ptr->gen,
ptr->cached ? " cached" : "",
ca && ptr_stale(ca, ptr)
? " stale" : "");
break;
default:
p("(invalid extent entry %.16llx)", *((u64 *) entry));
goto out;
}
first = false;
}
out:
if (bkey_extent_is_cached(e.k))
p(" cached");
#undef p
return out - buf;
}
static inline bool dev_latency_better(struct bch_fs *c,
const struct bch_extent_ptr *ptr1,
const struct bch_extent_ptr *ptr2)
{
struct bch_dev *dev1 = bch_dev_bkey_exists(c, ptr1->dev);
struct bch_dev *dev2 = bch_dev_bkey_exists(c, ptr2->dev);
u64 l1 = atomic64_read(&dev1->cur_latency[READ]);
u64 l2 = atomic64_read(&dev2->cur_latency[READ]);
/* Pick at random, biased in favor of the faster device: */
return bch2_rand_range(l1 + l2) > l1;
}
static int extent_pick_read_device(struct bch_fs *c,
struct bkey_s_c_extent e,
struct bch_devs_mask *avoid,
struct extent_pick_ptr *pick)
{
const struct bch_extent_ptr *ptr;
struct bch_extent_crc_unpacked crc;
struct bch_dev *ca;
int ret = 0;
extent_for_each_ptr_crc(e, ptr, crc) {
ca = bch_dev_bkey_exists(c, ptr->dev);
if (ptr->cached && ptr_stale(ca, ptr))
continue;
if (avoid && test_bit(ptr->dev, avoid->d))
continue;
if (ret && !dev_latency_better(c, ptr, &pick->ptr))
continue;
*pick = (struct extent_pick_ptr) {
.ptr = *ptr,
.crc = crc,
};
ret = 1;
}
return ret;
}
/* Btree ptrs */
const char *bch2_btree_ptr_invalid(const struct bch_fs *c, struct bkey_s_c k)
{
if (bkey_extent_is_cached(k.k))
return "cached";
if (k.k->size)
return "nonzero key size";
if (bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX)
return "value too big";
switch (k.k->type) {
case BCH_EXTENT: {
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const union bch_extent_entry *entry;
const struct bch_extent_ptr *ptr;
const char *reason;
extent_for_each_entry(e, entry) {
if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX)
return "invalid extent entry type";
if (extent_entry_is_crc(entry))
return "has crc field";
}
extent_for_each_ptr(e, ptr) {
reason = extent_ptr_invalid(c, e, ptr,
c->opts.btree_node_size,
true);
if (reason)
return reason;
}
return NULL;
}
default:
return "invalid value type";
}
}
void bch2_btree_ptr_debugcheck(struct bch_fs *c, struct btree *b,
struct bkey_s_c k)
{
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const struct bch_extent_ptr *ptr;
unsigned seq;
const char *err;
char buf[160];
struct bucket_mark mark;
struct bch_dev *ca;
unsigned replicas = 0;
bool bad;
extent_for_each_ptr(e, ptr) {
ca = bch_dev_bkey_exists(c, ptr->dev);
replicas++;
if (!test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags))
continue;
err = "stale";
if (ptr_stale(ca, ptr))
goto err;
do {
seq = read_seqcount_begin(&c->gc_pos_lock);
mark = ptr_bucket_mark(ca, ptr);
bad = gc_pos_cmp(c->gc_pos, gc_pos_btree_node(b)) > 0 &&
(mark.data_type != BCH_DATA_BTREE ||
mark.dirty_sectors < c->opts.btree_node_size);
} while (read_seqcount_retry(&c->gc_pos_lock, seq));
err = "inconsistent";
if (bad)
goto err;
}
if (!bch2_bkey_replicas_marked(c, BCH_DATA_BTREE, e.s_c)) {
bch2_bkey_val_to_text(c, btree_node_type(b),
buf, sizeof(buf), k);
bch2_fs_bug(c,
"btree key bad (replicas not marked in superblock):\n%s",
buf);
return;
}
return;
err:
bch2_bkey_val_to_text(c, btree_node_type(b), buf, sizeof(buf), k);
bch2_fs_bug(c, "%s btree pointer %s: bucket %zi "
"gen %i mark %08x",
err, buf, PTR_BUCKET_NR(ca, ptr),
mark.gen, (unsigned) mark.v.counter);
}
int bch2_btree_ptr_to_text(struct bch_fs *c, char *buf,
size_t size, struct bkey_s_c k)
{
char *out = buf, *end = buf + size;
const char *invalid;
#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
if (bkey_extent_is_data(k.k))
out += extent_print_ptrs(c, buf, size, bkey_s_c_to_extent(k));
invalid = bch2_btree_ptr_invalid(c, k);
if (invalid)
p(" invalid: %s", invalid);
#undef p
return out - buf;
}
int bch2_btree_pick_ptr(struct bch_fs *c, const struct btree *b,
struct bch_devs_mask *avoid,
struct extent_pick_ptr *pick)
{
return extent_pick_read_device(c, bkey_i_to_s_c_extent(&b->key),
avoid, pick);
}
/* Extents */
static bool __bch2_cut_front(struct bpos where, struct bkey_s k)
{
u64 len = 0;
if (bkey_cmp(where, bkey_start_pos(k.k)) <= 0)
return false;
EBUG_ON(bkey_cmp(where, k.k->p) > 0);
len = k.k->p.offset - where.offset;
BUG_ON(len > k.k->size);
/*
* Don't readjust offset if the key size is now 0, because that could
* cause offset to point to the next bucket:
*/
if (!len)
k.k->type = KEY_TYPE_DELETED;
else if (bkey_extent_is_data(k.k)) {
struct bkey_s_extent e = bkey_s_to_extent(k);
union bch_extent_entry *entry;
bool seen_crc = false;
extent_for_each_entry(e, entry) {
switch (extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_ptr:
if (!seen_crc)
entry->ptr.offset += e.k->size - len;
break;
case BCH_EXTENT_ENTRY_crc32:
entry->crc32.offset += e.k->size - len;
break;
case BCH_EXTENT_ENTRY_crc64:
entry->crc64.offset += e.k->size - len;
break;
case BCH_EXTENT_ENTRY_crc128:
entry->crc128.offset += e.k->size - len;
break;
}
if (extent_entry_is_crc(entry))
seen_crc = true;
}
}
k.k->size = len;
return true;
}
bool bch2_cut_front(struct bpos where, struct bkey_i *k)
{
return __bch2_cut_front(where, bkey_i_to_s(k));
}
bool bch2_cut_back(struct bpos where, struct bkey *k)
{
u64 len = 0;
if (bkey_cmp(where, k->p) >= 0)
return false;
EBUG_ON(bkey_cmp(where, bkey_start_pos(k)) < 0);
len = where.offset - bkey_start_offset(k);
BUG_ON(len > k->size);
k->p = where;
k->size = len;
if (!len)
k->type = KEY_TYPE_DELETED;
return true;
}
/**
* bch_key_resize - adjust size of @k
*
* bkey_start_offset(k) will be preserved, modifies where the extent ends
*/
void bch2_key_resize(struct bkey *k,
unsigned new_size)
{
k->p.offset -= k->size;
k->p.offset += new_size;
k->size = new_size;
}
/*
* In extent_sort_fix_overlapping(), insert_fixup_extent(),
* extent_merge_inline() - we're modifying keys in place that are packed. To do
* that we have to unpack the key, modify the unpacked key - then this
* copies/repacks the unpacked to the original as necessary.
*/
static bool __extent_save(struct btree *b, struct btree_node_iter *iter,
struct bkey_packed *dst, struct bkey *src)
{
struct bkey_format *f = &b->format;
struct bkey_i *dst_unpacked;
bool ret;
if ((dst_unpacked = packed_to_bkey(dst))) {
dst_unpacked->k = *src;
ret = true;
} else {
ret = bch2_bkey_pack_key(dst, src, f);
}
if (ret && iter)
bch2_verify_key_order(b, iter, dst);
return ret;
}
static void extent_save(struct btree *b, struct btree_node_iter *iter,
struct bkey_packed *dst, struct bkey *src)
{
BUG_ON(!__extent_save(b, iter, dst, src));
}
/*
* If keys compare equal, compare by pointer order:
*
* Necessary for sort_fix_overlapping() - if there are multiple keys that
* compare equal in different sets, we have to process them newest to oldest.
*/
#define extent_sort_cmp(h, l, r) \
({ \
struct bkey _ul = bkey_unpack_key(b, \
__btree_node_offset_to_key(b, (l).k)); \
struct bkey _ur = bkey_unpack_key(b, \
__btree_node_offset_to_key(b, (r).k)); \
\
bkey_cmp(bkey_start_pos(&_ul), \
bkey_start_pos(&_ur)) ?: (r).k - (l).k; \
})
static inline void extent_sort_sift(struct btree_node_iter_large *iter,
struct btree *b, size_t i)
{
heap_sift_down(iter, i, extent_sort_cmp);
}
static inline void extent_sort_next(struct btree_node_iter_large *iter,
struct btree *b,
struct btree_node_iter_set *i)
{
sort_key_next(iter, b, i);
heap_sift_down(iter, i - iter->data, extent_sort_cmp);
}
static void extent_sort_append(struct bch_fs *c,
struct btree *b,
struct btree_nr_keys *nr,
struct bkey_packed *start,
struct bkey_packed **prev,
struct bkey_packed *k)
{
struct bkey_format *f = &b->format;
BKEY_PADDED(k) tmp;
if (bkey_whiteout(k))
return;
bch2_bkey_unpack(b, &tmp.k, k);
if (*prev &&
bch2_extent_merge(c, b, (void *) *prev, &tmp.k))
return;
if (*prev) {
bch2_bkey_pack(*prev, (void *) *prev, f);
btree_keys_account_key_add(nr, 0, *prev);
*prev = bkey_next(*prev);
} else {
*prev = start;
}
bkey_copy(*prev, &tmp.k);
}
struct btree_nr_keys bch2_extent_sort_fix_overlapping(struct bch_fs *c,
struct bset *dst,
struct btree *b,
struct btree_node_iter_large *iter)
{
struct bkey_format *f = &b->format;
struct btree_node_iter_set *_l = iter->data, *_r;
struct bkey_packed *prev = NULL, *out, *lk, *rk;
struct bkey l_unpacked, r_unpacked;
struct bkey_s l, r;
struct btree_nr_keys nr;
memset(&nr, 0, sizeof(nr));
heap_resort(iter, extent_sort_cmp);
while (!bch2_btree_node_iter_large_end(iter)) {
lk = __btree_node_offset_to_key(b, _l->k);
if (iter->used == 1) {
extent_sort_append(c, b, &nr, dst->start, &prev, lk);
extent_sort_next(iter, b, _l);
continue;
}
_r = iter->data + 1;
if (iter->used > 2 &&
extent_sort_cmp(iter, _r[0], _r[1]) >= 0)
_r++;
rk = __btree_node_offset_to_key(b, _r->k);
l = __bkey_disassemble(b, lk, &l_unpacked);
r = __bkey_disassemble(b, rk, &r_unpacked);
/* If current key and next key don't overlap, just append */
if (bkey_cmp(l.k->p, bkey_start_pos(r.k)) <= 0) {
extent_sort_append(c, b, &nr, dst->start, &prev, lk);
extent_sort_next(iter, b, _l);
continue;
}
/* Skip 0 size keys */
if (!r.k->size) {
extent_sort_next(iter, b, _r);
continue;
}
/*
* overlap: keep the newer key and trim the older key so they
* don't overlap. comparing pointers tells us which one is
* newer, since the bsets are appended one after the other.
*/
/* can't happen because of comparison func */
BUG_ON(_l->k < _r->k &&
!bkey_cmp(bkey_start_pos(l.k), bkey_start_pos(r.k)));
if (_l->k > _r->k) {
/* l wins, trim r */
if (bkey_cmp(l.k->p, r.k->p) >= 0) {
sort_key_next(iter, b, _r);
} else {
__bch2_cut_front(l.k->p, r);
extent_save(b, NULL, rk, r.k);
}
extent_sort_sift(iter, b, _r - iter->data);
} else if (bkey_cmp(l.k->p, r.k->p) > 0) {
BKEY_PADDED(k) tmp;
/*
* r wins, but it overlaps in the middle of l - split l:
*/
bkey_reassemble(&tmp.k, l.s_c);
bch2_cut_back(bkey_start_pos(r.k), &tmp.k.k);
__bch2_cut_front(r.k->p, l);
extent_save(b, NULL, lk, l.k);
extent_sort_sift(iter, b, 0);
extent_sort_append(c, b, &nr, dst->start, &prev,
bkey_to_packed(&tmp.k));
} else {
bch2_cut_back(bkey_start_pos(r.k), l.k);
extent_save(b, NULL, lk, l.k);
}
}
if (prev) {
bch2_bkey_pack(prev, (void *) prev, f);
btree_keys_account_key_add(&nr, 0, prev);
out = bkey_next(prev);
} else {
out = dst->start;
}
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
return nr;
}
struct extent_insert_state {
struct btree_insert *trans;
struct btree_insert_entry *insert;
struct bpos committed;
struct bch_fs_usage stats;
/* for deleting: */
struct bkey_i whiteout;
bool do_journal;
bool deleting;
};
static void bch2_add_sectors(struct extent_insert_state *s,
struct bkey_s_c k, u64 offset, s64 sectors)
{
struct bch_fs *c = s->trans->c;
struct btree *b = s->insert->iter->l[0].b;
EBUG_ON(bkey_cmp(bkey_start_pos(k.k), b->data->min_key) < 0);
if (!sectors)
return;
bch2_mark_key(c, k, sectors, BCH_DATA_USER, gc_pos_btree_node(b),
&s->stats, s->trans->journal_res.seq, 0);
}
static void bch2_subtract_sectors(struct extent_insert_state *s,
struct bkey_s_c k, u64 offset, s64 sectors)
{
bch2_add_sectors(s, k, offset, -sectors);
}
/* These wrappers subtract exactly the sectors that we're removing from @k */
static void bch2_cut_subtract_back(struct extent_insert_state *s,
struct bpos where, struct bkey_s k)
{
bch2_subtract_sectors(s, k.s_c, where.offset,
k.k->p.offset - where.offset);
bch2_cut_back(where, k.k);
}
static void bch2_cut_subtract_front(struct extent_insert_state *s,
struct bpos where, struct bkey_s k)
{
bch2_subtract_sectors(s, k.s_c, bkey_start_offset(k.k),
where.offset - bkey_start_offset(k.k));
__bch2_cut_front(where, k);
}
static void bch2_drop_subtract(struct extent_insert_state *s, struct bkey_s k)
{
if (k.k->size)
bch2_subtract_sectors(s, k.s_c,
bkey_start_offset(k.k), k.k->size);
k.k->size = 0;
k.k->type = KEY_TYPE_DELETED;
}
static bool bch2_extent_merge_inline(struct bch_fs *,
struct btree_iter *,
struct bkey_packed *,
struct bkey_packed *,
bool);
#define MAX_LOCK_HOLD_TIME (5 * NSEC_PER_MSEC)
static enum btree_insert_ret
extent_insert_should_stop(struct extent_insert_state *s)
{
struct btree *b = s->insert->iter->l[0].b;
/*
* Check if we have sufficient space in both the btree node and the
* journal reservation:
*
* Each insert checks for room in the journal entry, but we check for
* room in the btree node up-front. In the worst case, bkey_cmpxchg()
* will insert two keys, and one iteration of this room will insert one
* key, so we need room for three keys.
*/
if (!bch2_btree_node_insert_fits(s->trans->c, b, s->insert->k->k.u64s))
return BTREE_INSERT_BTREE_NODE_FULL;
else if (!journal_res_insert_fits(s->trans, s->insert))
return BTREE_INSERT_JOURNAL_RES_FULL; /* XXX worth tracing */
else
return BTREE_INSERT_OK;
}
static void extent_bset_insert(struct bch_fs *c, struct btree_iter *iter,
struct bkey_i *insert)
{
struct btree_iter_level *l = &iter->l[0];
struct bset_tree *t = bset_tree_last(l->b);
struct bkey_packed *where =
bch2_btree_node_iter_bset_pos(&l->iter, l->b, t);
struct bkey_packed *prev = bch2_bkey_prev_filter(l->b, t, where,
KEY_TYPE_DISCARD);
struct bkey_packed *next_live_key = where;
unsigned clobber_u64s;
EBUG_ON(bkey_deleted(&insert->k) || !insert->k.size);
if (prev)
where = bkey_next(prev);
while (next_live_key != btree_bkey_last(l->b, t) &&
bkey_deleted(next_live_key))
next_live_key = bkey_next(next_live_key);
/*
* Everything between where and next_live_key is now deleted keys, and
* is overwritten:
*/
clobber_u64s = (u64 *) next_live_key - (u64 *) where;
if (prev &&
bch2_extent_merge_inline(c, iter, prev, bkey_to_packed(insert), true))
goto drop_deleted_keys;
if (next_live_key != btree_bkey_last(l->b, t) &&
bch2_extent_merge_inline(c, iter, bkey_to_packed(insert),
next_live_key, false))
goto drop_deleted_keys;
bch2_bset_insert(l->b, &l->iter, where, insert, clobber_u64s);
bch2_btree_node_iter_fix(iter, l->b, &l->iter, t, where,
clobber_u64s, where->u64s);
return;
drop_deleted_keys:
bch2_bset_delete(l->b, where, clobber_u64s);
bch2_btree_node_iter_fix(iter, l->b, &l->iter, t,
where, clobber_u64s, 0);
}
static void extent_insert_committed(struct extent_insert_state *s)
{
struct bch_fs *c = s->trans->c;
struct btree_iter *iter = s->insert->iter;
struct bkey_i *insert = !s->deleting
? s->insert->k
: &s->whiteout;
BKEY_PADDED(k) split;
EBUG_ON(bkey_deleted(&insert->k) || !insert->k.size);
EBUG_ON(bkey_cmp(insert->k.p, s->committed) < 0);
EBUG_ON(bkey_cmp(s->committed, bkey_start_pos(&insert->k)) < 0);
if (!bkey_cmp(s->committed, bkey_start_pos(&insert->k)))
return;
if (s->deleting && !s->do_journal) {
bch2_cut_front(s->committed, insert);
goto done;
}
EBUG_ON(bkey_deleted(&insert->k) || !insert->k.size);
bkey_copy(&split.k, insert);
if (!(s->trans->flags & BTREE_INSERT_JOURNAL_REPLAY) &&
bkey_cmp(s->committed, insert->k.p) &&
bch2_extent_is_compressed(bkey_i_to_s_c(insert))) {
/* XXX: possibly need to increase our reservation? */
bch2_cut_subtract_back(s, s->committed,
bkey_i_to_s(&split.k));
bch2_cut_front(s->committed, insert);
bch2_add_sectors(s, bkey_i_to_s_c(insert),
bkey_start_offset(&insert->k),
insert->k.size);
} else {
bch2_cut_back(s->committed, &split.k.k);
bch2_cut_front(s->committed, insert);
}
if (debug_check_bkeys(c))
bch2_bkey_debugcheck(c, iter->l[0].b, bkey_i_to_s_c(&split.k));
bch2_btree_journal_key(s->trans, iter, &split.k);
if (!s->deleting)
extent_bset_insert(c, iter, &split.k);
done:
bch2_btree_iter_set_pos_same_leaf(iter, s->committed);
insert->k.needs_whiteout = false;
s->do_journal = false;
s->trans->did_work = true;
}
static enum btree_insert_ret
__extent_insert_advance_pos(struct extent_insert_state *s,
struct bpos next_pos,
struct bkey_s_c k)
{
struct extent_insert_hook *hook = s->trans->hook;
enum btree_insert_ret ret;
if (hook)
ret = hook->fn(hook, s->committed, next_pos, k, s->insert->k);
else
ret = BTREE_INSERT_OK;
if (ret == BTREE_INSERT_OK)
s->committed = next_pos;
return ret;
}
/*
* Update iter->pos, marking how much of @insert we've processed, and call hook
* fn:
*/
static enum btree_insert_ret
extent_insert_advance_pos(struct extent_insert_state *s, struct bkey_s_c k)
{
struct btree *b = s->insert->iter->l[0].b;
struct bpos next_pos = bpos_min(s->insert->k->k.p,
k.k ? k.k->p : b->key.k.p);
enum btree_insert_ret ret;
if (race_fault())
return BTREE_INSERT_NEED_TRAVERSE;
/* hole? */
if (k.k && bkey_cmp(s->committed, bkey_start_pos(k.k)) < 0) {
ret = __extent_insert_advance_pos(s, bkey_start_pos(k.k),
bkey_s_c_null);
if (ret != BTREE_INSERT_OK)
return ret;
}
/* avoid redundant calls to hook fn: */
if (!bkey_cmp(s->committed, next_pos))
return BTREE_INSERT_OK;
return __extent_insert_advance_pos(s, next_pos, k);
}
static enum btree_insert_ret
extent_insert_check_split_compressed(struct extent_insert_state *s,
struct bkey_s_c k,
enum bch_extent_overlap overlap)
{
struct bch_fs *c = s->trans->c;
unsigned sectors;
if (overlap == BCH_EXTENT_OVERLAP_MIDDLE &&
(sectors = bch2_extent_is_compressed(k))) {
int flags = BCH_DISK_RESERVATION_BTREE_LOCKS_HELD;
if (s->trans->flags & BTREE_INSERT_NOFAIL)
flags |= BCH_DISK_RESERVATION_NOFAIL;
switch (bch2_disk_reservation_add(c,
s->trans->disk_res,
sectors * bch2_extent_nr_dirty_ptrs(k),
flags)) {
case 0:
break;
case -ENOSPC:
return BTREE_INSERT_ENOSPC;
case -EINTR:
return BTREE_INSERT_NEED_GC_LOCK;
default:
BUG();
}
}
return BTREE_INSERT_OK;
}
static enum btree_insert_ret
extent_squash(struct extent_insert_state *s, struct bkey_i *insert,
struct bset_tree *t, struct bkey_packed *_k, struct bkey_s k,
enum bch_extent_overlap overlap)
{
struct bch_fs *c = s->trans->c;
struct btree_iter *iter = s->insert->iter;
struct btree_iter_level *l = &iter->l[0];
struct btree *b = l->b;
struct btree_node_iter *node_iter = &l->iter;
enum btree_insert_ret ret;
switch (overlap) {
case BCH_EXTENT_OVERLAP_FRONT:
/* insert overlaps with start of k: */
bch2_cut_subtract_front(s, insert->k.p, k);
BUG_ON(bkey_deleted(k.k));
extent_save(b, node_iter, _k, k.k);
break;
case BCH_EXTENT_OVERLAP_BACK:
/* insert overlaps with end of k: */
bch2_cut_subtract_back(s, bkey_start_pos(&insert->k), k);
BUG_ON(bkey_deleted(k.k));
extent_save(b, node_iter, _k, k.k);
/*
* As the auxiliary tree is indexed by the end of the
* key and we've just changed the end, update the
* auxiliary tree.
*/
bch2_bset_fix_invalidated_key(b, t, _k);
bch2_btree_node_iter_fix(iter, b, node_iter, t,
_k, _k->u64s, _k->u64s);
break;
case BCH_EXTENT_OVERLAP_ALL: {
struct bpos orig_pos = k.k->p;
/* The insert key completely covers k, invalidate k */
if (!bkey_whiteout(k.k))
btree_keys_account_key_drop(&b->nr,
t - b->set, _k);
bch2_drop_subtract(s, k);
k.k->p = bkey_start_pos(&insert->k);
if (!__extent_save(b, node_iter, _k, k.k)) {
/*
* Couldn't repack: we aren't necessarily able
* to repack if the new key is outside the range
* of the old extent, so we have to split
* @insert:
*/
k.k->p = orig_pos;
extent_save(b, node_iter, _k, k.k);
ret = extent_insert_advance_pos(s, k.s_c);
if (ret != BTREE_INSERT_OK)
return ret;
extent_insert_committed(s);
/*
* We split and inserted upto at k.k->p - that
* has to coincide with iter->pos, so that we
* don't have anything more we have to insert
* until we recheck our journal reservation:
*/
EBUG_ON(bkey_cmp(s->committed, k.k->p));
} else {
bch2_bset_fix_invalidated_key(b, t, _k);
bch2_btree_node_iter_fix(iter, b, node_iter, t,
_k, _k->u64s, _k->u64s);
}
break;
}
case BCH_EXTENT_OVERLAP_MIDDLE: {
BKEY_PADDED(k) split;
/*
* The insert key falls 'in the middle' of k
* The insert key splits k in 3:
* - start only in k, preserve
* - middle common section, invalidate in k
* - end only in k, preserve
*
* We update the old key to preserve the start,
* insert will be the new common section,
* we manually insert the end that we are preserving.
*
* modify k _before_ doing the insert (which will move
* what k points to)
*/
bkey_reassemble(&split.k, k.s_c);
split.k.k.needs_whiteout |= bset_written(b, bset(b, t));
bch2_cut_back(bkey_start_pos(&insert->k), &split.k.k);
BUG_ON(bkey_deleted(&split.k.k));
bch2_cut_subtract_front(s, insert->k.p, k);
BUG_ON(bkey_deleted(k.k));
extent_save(b, node_iter, _k, k.k);
bch2_add_sectors(s, bkey_i_to_s_c(&split.k),
bkey_start_offset(&split.k.k),
split.k.k.size);
extent_bset_insert(c, iter, &split.k);
break;
}
}
return BTREE_INSERT_OK;
}
static enum btree_insert_ret
__bch2_delete_fixup_extent(struct extent_insert_state *s)
{
struct bch_fs *c = s->trans->c;
struct btree_iter *iter = s->insert->iter;
struct btree_iter_level *l = &iter->l[0];
struct btree *b = l->b;
struct btree_node_iter *node_iter = &l->iter;
struct bkey_packed *_k;
struct bkey unpacked;
struct bkey_i *insert = s->insert->k;
enum btree_insert_ret ret = BTREE_INSERT_OK;
EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k)));
s->whiteout = *insert;
s->whiteout.k.type = KEY_TYPE_DISCARD;
while (bkey_cmp(s->committed, insert->k.p) < 0 &&
(ret = extent_insert_should_stop(s)) == BTREE_INSERT_OK &&
(_k = bch2_btree_node_iter_peek_all(node_iter, b))) {
struct bset_tree *t = bch2_bkey_to_bset(b, _k);
struct bkey_s k = __bkey_disassemble(b, _k, &unpacked);
enum bch_extent_overlap overlap;
EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k)));
EBUG_ON(bkey_cmp(iter->pos, k.k->p) >= 0);
if (bkey_cmp(bkey_start_pos(k.k), insert->k.p) >= 0)
break;
if (bkey_whiteout(k.k)) {
s->committed = bpos_min(insert->k.p, k.k->p);
goto next;
}
overlap = bch2_extent_overlap(&insert->k, k.k);
ret = extent_insert_check_split_compressed(s, k.s_c, overlap);
if (ret)
break;
ret = extent_insert_advance_pos(s, k.s_c);
if (ret)
break;
s->do_journal = true;
if (overlap == BCH_EXTENT_OVERLAP_ALL) {
btree_keys_account_key_drop(&b->nr,
t - b->set, _k);
bch2_subtract_sectors(s, k.s_c,
bkey_start_offset(k.k), k.k->size);
_k->type = KEY_TYPE_DISCARD;
reserve_whiteout(b, t, _k);
} else if (k.k->needs_whiteout ||
bset_written(b, bset(b, t))) {
struct bkey_i discard = *insert;
discard.k.type = KEY_TYPE_DISCARD;
switch (overlap) {
case BCH_EXTENT_OVERLAP_FRONT:
bch2_cut_front(bkey_start_pos(k.k), &discard);
break;
case BCH_EXTENT_OVERLAP_BACK:
bch2_cut_back(k.k->p, &discard.k);
break;
default:
break;
}
discard.k.needs_whiteout = true;
ret = extent_squash(s, insert, t, _k, k, overlap);
BUG_ON(ret != BTREE_INSERT_OK);
extent_bset_insert(c, iter, &discard);
} else {
ret = extent_squash(s, insert, t, _k, k, overlap);
BUG_ON(ret != BTREE_INSERT_OK);
}
next:
bch2_cut_front(s->committed, insert);
bch2_btree_iter_set_pos_same_leaf(iter, s->committed);
}
return ret;
}
static enum btree_insert_ret
__bch2_insert_fixup_extent(struct extent_insert_state *s)
{
struct btree_iter *iter = s->insert->iter;
struct btree_iter_level *l = &iter->l[0];
struct btree *b = l->b;
struct btree_node_iter *node_iter = &l->iter;
struct bkey_packed *_k;
struct bkey unpacked;
struct bkey_i *insert = s->insert->k;
enum btree_insert_ret ret = BTREE_INSERT_OK;
while (bkey_cmp(s->committed, insert->k.p) < 0 &&
(ret = extent_insert_should_stop(s)) == BTREE_INSERT_OK &&
(_k = bch2_btree_node_iter_peek_all(node_iter, b))) {
struct bset_tree *t = bch2_bkey_to_bset(b, _k);
struct bkey_s k = __bkey_disassemble(b, _k, &unpacked);
enum bch_extent_overlap overlap;
EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k)));
EBUG_ON(bkey_cmp(iter->pos, k.k->p) >= 0);
if (bkey_cmp(bkey_start_pos(k.k), insert->k.p) >= 0)
break;
overlap = bch2_extent_overlap(&insert->k, k.k);
ret = extent_insert_check_split_compressed(s, k.s_c, overlap);
if (ret)
break;
if (!k.k->size)
goto squash;
/*
* Only call advance pos & call hook for nonzero size extents:
*/
ret = extent_insert_advance_pos(s, k.s_c);
if (ret)
break;
if (k.k->size &&
(k.k->needs_whiteout || bset_written(b, bset(b, t))))
insert->k.needs_whiteout = true;
if (overlap == BCH_EXTENT_OVERLAP_ALL &&
bkey_whiteout(k.k) &&
k.k->needs_whiteout) {
unreserve_whiteout(b, t, _k);
_k->needs_whiteout = false;
}
squash:
ret = extent_squash(s, insert, t, _k, k, overlap);
if (ret != BTREE_INSERT_OK)
break;
}
return ret;
}
/**
* bch_extent_insert_fixup - insert a new extent and deal with overlaps
*
* this may result in not actually doing the insert, or inserting some subset
* of the insert key. For cmpxchg operations this is where that logic lives.
*
* All subsets of @insert that need to be inserted are inserted using
* bch2_btree_insert_and_journal(). If @b or @res fills up, this function
* returns false, setting @iter->pos for the prefix of @insert that actually got
* inserted.
*
* BSET INVARIANTS: this function is responsible for maintaining all the
* invariants for bsets of extents in memory. things get really hairy with 0
* size extents
*
* within one bset:
*
* bkey_start_pos(bkey_next(k)) >= k
* or bkey_start_offset(bkey_next(k)) >= k->offset
*
* i.e. strict ordering, no overlapping extents.
*
* multiple bsets (i.e. full btree node):
*
* ∀ k, j
* k.size != 0 ∧ j.size != 0 →
* ¬ (k > bkey_start_pos(j) ∧ k < j)
*
* i.e. no two overlapping keys _of nonzero size_
*
* We can't realistically maintain this invariant for zero size keys because of
* the key merging done in bch2_btree_insert_key() - for two mergeable keys k, j
* there may be another 0 size key between them in another bset, and it will
* thus overlap with the merged key.
*
* In addition, the end of iter->pos indicates how much has been processed.
* If the end of iter->pos is not the same as the end of insert, then
* key insertion needs to continue/be retried.
*/
enum btree_insert_ret
bch2_insert_fixup_extent(struct btree_insert *trans,
struct btree_insert_entry *insert)
{
struct bch_fs *c = trans->c;
struct btree_iter *iter = insert->iter;
struct btree_iter_level *l = &iter->l[0];
struct btree *b = l->b;
enum btree_insert_ret ret = BTREE_INSERT_OK;
struct extent_insert_state s = {
.trans = trans,
.insert = insert,
.committed = insert->iter->pos,
.deleting = bkey_whiteout(&insert->k->k),
};
EBUG_ON(iter->level);
EBUG_ON(!insert->k->k.size);
/*
* As we process overlapping extents, we advance @iter->pos both to
* signal to our caller (btree_insert_key()) how much of @insert->k has
* been inserted, and also to keep @iter->pos consistent with
* @insert->k and the node iterator that we're advancing:
*/
EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k->k)));
if (!s.deleting &&
!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))
bch2_add_sectors(&s, bkey_i_to_s_c(insert->k),
bkey_start_offset(&insert->k->k),
insert->k->k.size);
ret = !s.deleting
? __bch2_insert_fixup_extent(&s)
: __bch2_delete_fixup_extent(&s);
if (ret == BTREE_INSERT_OK &&
bkey_cmp(s.committed, insert->k->k.p) < 0)
ret = extent_insert_advance_pos(&s, bkey_s_c_null);
extent_insert_committed(&s);
if (s.deleting)
bch2_cut_front(iter->pos, insert->k);
/*
* Subtract any remaining sectors from @insert, if we bailed out early
* and didn't fully insert @insert:
*/
if (!s.deleting &&
!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY) &&
insert->k->k.size)
bch2_subtract_sectors(&s, bkey_i_to_s_c(insert->k),
bkey_start_offset(&insert->k->k),
insert->k->k.size);
bch2_fs_usage_apply(c, &s.stats, trans->disk_res,
gc_pos_btree_node(b));
EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k->k)));
EBUG_ON(bkey_cmp(iter->pos, s.committed));
EBUG_ON((bkey_cmp(iter->pos, b->key.k.p) == 0) !=
!!(iter->flags & BTREE_ITER_AT_END_OF_LEAF));
if (insert->k->k.size && (iter->flags & BTREE_ITER_AT_END_OF_LEAF))
ret = BTREE_INSERT_NEED_TRAVERSE;
WARN_ONCE((ret == BTREE_INSERT_OK) != (insert->k->k.size == 0),
"ret %u insert->k.size %u", ret, insert->k->k.size);
return ret;
}
const char *bch2_extent_invalid(const struct bch_fs *c, struct bkey_s_c k)
{
if (bkey_val_u64s(k.k) > BKEY_EXTENT_VAL_U64s_MAX)
return "value too big";
if (!k.k->size)
return "zero key size";
switch (k.k->type) {
case BCH_EXTENT:
case BCH_EXTENT_CACHED: {
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const union bch_extent_entry *entry;
struct bch_extent_crc_unpacked crc;
const struct bch_extent_ptr *ptr;
unsigned size_ondisk = e.k->size;
const char *reason;
unsigned nonce = UINT_MAX;
extent_for_each_entry(e, entry) {
if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX)
return "invalid extent entry type";
if (extent_entry_is_crc(entry)) {
crc = bch2_extent_crc_unpack(e.k, entry_to_crc(entry));
if (crc.offset + e.k->size >
crc.uncompressed_size)
return "checksum offset + key size > uncompressed size";
size_ondisk = crc.compressed_size;
if (!bch2_checksum_type_valid(c, crc.csum_type))
return "invalid checksum type";
if (crc.compression_type >= BCH_COMPRESSION_NR)
return "invalid compression type";
if (bch2_csum_type_is_encryption(crc.csum_type)) {
if (nonce == UINT_MAX)
nonce = crc.offset + crc.nonce;
else if (nonce != crc.offset + crc.nonce)
return "incorrect nonce";
}
} else {
ptr = entry_to_ptr(entry);
reason = extent_ptr_invalid(c, e, &entry->ptr,
size_ondisk, false);
if (reason)
return reason;
}
}
return NULL;
}
case BCH_RESERVATION: {
struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
if (bkey_val_bytes(k.k) != sizeof(struct bch_reservation))
return "incorrect value size";
if (!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX)
return "invalid nr_replicas";
return NULL;
}
default:
return "invalid value type";
}
}
static void bch2_extent_debugcheck_extent(struct bch_fs *c, struct btree *b,
struct bkey_s_c_extent e)
{
const struct bch_extent_ptr *ptr;
struct bch_dev *ca;
struct bucket_mark mark;
unsigned seq, stale;
char buf[160];
bool bad;
unsigned replicas = 0;
/*
* XXX: we should be doing most/all of these checks at startup time,
* where we check bch2_bkey_invalid() in btree_node_read_done()
*
* But note that we can't check for stale pointers or incorrect gc marks
* until after journal replay is done (it might be an extent that's
* going to get overwritten during replay)
*/
extent_for_each_ptr(e, ptr) {
ca = bch_dev_bkey_exists(c, ptr->dev);
replicas++;
/*
* If journal replay hasn't finished, we might be seeing keys
* that will be overwritten by the time journal replay is done:
*/
if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
continue;
stale = 0;
do {
seq = read_seqcount_begin(&c->gc_pos_lock);
mark = ptr_bucket_mark(ca, ptr);
/* between mark and bucket gen */
smp_rmb();
stale = ptr_stale(ca, ptr);
bch2_fs_bug_on(stale && !ptr->cached, c,
"stale dirty pointer");
bch2_fs_bug_on(stale > 96, c,
"key too stale: %i",
stale);
if (stale)
break;
bad = gc_pos_cmp(c->gc_pos, gc_pos_btree_node(b)) > 0 &&
(mark.data_type != BCH_DATA_USER ||
!(ptr->cached
? mark.cached_sectors
: mark.dirty_sectors));
} while (read_seqcount_retry(&c->gc_pos_lock, seq));
if (bad)
goto bad_ptr;
}
if (replicas > BCH_REPLICAS_MAX) {
bch2_bkey_val_to_text(c, btree_node_type(b), buf,
sizeof(buf), e.s_c);
bch2_fs_bug(c,
"extent key bad (too many replicas: %u): %s",
replicas, buf);
return;
}
if (!bkey_extent_is_cached(e.k) &&
!bch2_bkey_replicas_marked(c, BCH_DATA_USER, e.s_c)) {
bch2_bkey_val_to_text(c, btree_node_type(b),
buf, sizeof(buf), e.s_c);
bch2_fs_bug(c,
"extent key bad (replicas not marked in superblock):\n%s",
buf);
return;
}
return;
bad_ptr:
bch2_bkey_val_to_text(c, btree_node_type(b), buf,
sizeof(buf), e.s_c);
bch2_fs_bug(c, "extent pointer bad gc mark: %s:\nbucket %zu "
"gen %i type %u", buf,
PTR_BUCKET_NR(ca, ptr), mark.gen, mark.data_type);
return;
}
void bch2_extent_debugcheck(struct bch_fs *c, struct btree *b, struct bkey_s_c k)
{
switch (k.k->type) {
case BCH_EXTENT:
case BCH_EXTENT_CACHED:
bch2_extent_debugcheck_extent(c, b, bkey_s_c_to_extent(k));
break;
case BCH_RESERVATION:
break;
default:
BUG();
}
}
int bch2_extent_to_text(struct bch_fs *c, char *buf,
size_t size, struct bkey_s_c k)
{
char *out = buf, *end = buf + size;
const char *invalid;
#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
if (bkey_extent_is_data(k.k))
out += extent_print_ptrs(c, buf, size, bkey_s_c_to_extent(k));
invalid = bch2_extent_invalid(c, k);
if (invalid)
p(" invalid: %s", invalid);
#undef p
return out - buf;
}
static void bch2_extent_crc_init(union bch_extent_crc *crc,
struct bch_extent_crc_unpacked new)
{
#define common_fields(_crc) \
.csum_type = _crc.csum_type, \
.compression_type = _crc.compression_type, \
._compressed_size = _crc.compressed_size - 1, \
._uncompressed_size = _crc.uncompressed_size - 1, \
.offset = _crc.offset
if (bch_crc_bytes[new.csum_type] <= 4 &&
new.uncompressed_size <= CRC32_SIZE_MAX &&
new.nonce <= CRC32_NONCE_MAX) {
crc->crc32 = (struct bch_extent_crc32) {
.type = 1 << BCH_EXTENT_ENTRY_crc32,
common_fields(new),
.csum = *((__le32 *) &new.csum.lo),
};
return;
}
if (bch_crc_bytes[new.csum_type] <= 10 &&
new.uncompressed_size <= CRC64_SIZE_MAX &&
new.nonce <= CRC64_NONCE_MAX) {
crc->crc64 = (struct bch_extent_crc64) {
.type = 1 << BCH_EXTENT_ENTRY_crc64,
common_fields(new),
.nonce = new.nonce,
.csum_lo = new.csum.lo,
.csum_hi = *((__le16 *) &new.csum.hi),
};
return;
}
if (bch_crc_bytes[new.csum_type] <= 16 &&
new.uncompressed_size <= CRC128_SIZE_MAX &&
new.nonce <= CRC128_NONCE_MAX) {
crc->crc128 = (struct bch_extent_crc128) {
.type = 1 << BCH_EXTENT_ENTRY_crc128,
common_fields(new),
.nonce = new.nonce,
.csum = new.csum,
};
return;
}
#undef common_fields
BUG();
}
void bch2_extent_crc_append(struct bkey_i_extent *e,
struct bch_extent_crc_unpacked new)
{
struct bch_extent_crc_unpacked crc;
const union bch_extent_entry *i;
BUG_ON(new.compressed_size > new.uncompressed_size);
BUG_ON(new.live_size != e->k.size);
BUG_ON(!new.compressed_size || !new.uncompressed_size);
/*
* Look up the last crc entry, so we can check if we need to add
* another:
*/
extent_for_each_crc(extent_i_to_s(e), crc, i)
;
if (!bch2_crc_unpacked_cmp(crc, new))
return;
bch2_extent_crc_init((void *) extent_entry_last(extent_i_to_s(e)), new);
__extent_entry_push(e);
}
/*
* bch_extent_normalize - clean up an extent, dropping stale pointers etc.
*
* Returns true if @k should be dropped entirely
*
* For existing keys, only called when btree nodes are being rewritten, not when
* they're merely being compacted/resorted in memory.
*/
bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
{
struct bkey_s_extent e;
switch (k.k->type) {
case KEY_TYPE_ERROR:
return false;
case KEY_TYPE_DELETED:
return true;
case KEY_TYPE_DISCARD:
return bversion_zero(k.k->version);
case KEY_TYPE_COOKIE:
return false;
case BCH_EXTENT:
case BCH_EXTENT_CACHED:
e = bkey_s_to_extent(k);
bch2_extent_drop_stale(c, e);
if (!bkey_val_u64s(e.k)) {
if (bkey_extent_is_cached(e.k)) {
k.k->type = KEY_TYPE_DISCARD;
if (bversion_zero(k.k->version))
return true;
} else {
k.k->type = KEY_TYPE_ERROR;
}
}
return false;
case BCH_RESERVATION:
return false;
default:
BUG();
}
}
void bch2_extent_mark_replicas_cached(struct bch_fs *c,
struct bkey_s_extent e,
unsigned target,
unsigned nr_desired_replicas)
{
struct bch_extent_ptr *ptr;
int extra = bch2_extent_durability(c, e.c) - nr_desired_replicas;
if (target && extra > 0)
extent_for_each_ptr(e, ptr) {
int n = bch2_extent_ptr_durability(c, ptr);
if (n && n <= extra &&
!bch2_dev_in_target(c, ptr->dev, target)) {
ptr->cached = true;
extra -= n;
}
}
if (extra > 0)
extent_for_each_ptr(e, ptr) {
int n = bch2_extent_ptr_durability(c, ptr);
if (n && n <= extra) {
ptr->cached = true;
extra -= n;
}
}
}
/*
* This picks a non-stale pointer, preferably from a device other than @avoid.
* Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
* other devices, it will still pick a pointer from avoid.
*/
int bch2_extent_pick_ptr(struct bch_fs *c, struct bkey_s_c k,
struct bch_devs_mask *avoid,
struct extent_pick_ptr *pick)
{
int ret;
switch (k.k->type) {
case KEY_TYPE_ERROR:
return -EIO;
case BCH_EXTENT:
case BCH_EXTENT_CACHED:
ret = extent_pick_read_device(c, bkey_s_c_to_extent(k),
avoid, pick);
if (!ret && !bkey_extent_is_cached(k.k))
ret = -EIO;
return ret;
default:
return 0;
}
}
enum merge_result bch2_extent_merge(struct bch_fs *c, struct btree *b,
struct bkey_i *l, struct bkey_i *r)
{
struct bkey_s_extent el, er;
union bch_extent_entry *en_l, *en_r;
if (key_merging_disabled(c))
return BCH_MERGE_NOMERGE;
/*
* Generic header checks
* Assumes left and right are in order
* Left and right must be exactly aligned
*/
if (l->k.u64s != r->k.u64s ||
l->k.type != r->k.type ||
bversion_cmp(l->k.version, r->k.version) ||
bkey_cmp(l->k.p, bkey_start_pos(&r->k)))
return BCH_MERGE_NOMERGE;
switch (l->k.type) {
case KEY_TYPE_DISCARD:
case KEY_TYPE_ERROR:
/* These types are mergeable, and no val to check */
break;
case BCH_EXTENT:
case BCH_EXTENT_CACHED:
el = bkey_i_to_s_extent(l);
er = bkey_i_to_s_extent(r);
extent_for_each_entry(el, en_l) {
struct bch_extent_ptr *lp, *rp;
struct bch_dev *ca;
en_r = vstruct_idx(er.v, (u64 *) en_l - el.v->_data);
if ((extent_entry_type(en_l) !=
extent_entry_type(en_r)) ||
extent_entry_is_crc(en_l))
return BCH_MERGE_NOMERGE;
lp = &en_l->ptr;
rp = &en_r->ptr;
if (lp->offset + el.k->size != rp->offset ||
lp->dev != rp->dev ||
lp->gen != rp->gen)
return BCH_MERGE_NOMERGE;
/* We don't allow extents to straddle buckets: */
ca = bch_dev_bkey_exists(c, lp->dev);
if (PTR_BUCKET_NR(ca, lp) != PTR_BUCKET_NR(ca, rp))
return BCH_MERGE_NOMERGE;
}
break;
case BCH_RESERVATION: {
struct bkey_i_reservation *li = bkey_i_to_reservation(l);
struct bkey_i_reservation *ri = bkey_i_to_reservation(r);
if (li->v.generation != ri->v.generation ||
li->v.nr_replicas != ri->v.nr_replicas)
return BCH_MERGE_NOMERGE;
break;
}
default:
return BCH_MERGE_NOMERGE;
}
l->k.needs_whiteout |= r->k.needs_whiteout;
/* Keys with no pointers aren't restricted to one bucket and could
* overflow KEY_SIZE
*/
if ((u64) l->k.size + r->k.size > KEY_SIZE_MAX) {
bch2_key_resize(&l->k, KEY_SIZE_MAX);
bch2_cut_front(l->k.p, r);
return BCH_MERGE_PARTIAL;
}
bch2_key_resize(&l->k, l->k.size + r->k.size);
return BCH_MERGE_MERGE;
}
static void extent_i_save(struct btree *b, struct bkey_packed *dst,
struct bkey_i *src)
{
struct bkey_format *f = &b->format;
struct bkey_i *dst_unpacked;
BUG_ON(bkeyp_val_u64s(f, dst) != bkey_val_u64s(&src->k));
/*
* We don't want the bch2_verify_key_order() call in extent_save(),
* because we may be out of order with deleted keys that are about to be
* removed by extent_bset_insert()
*/
if ((dst_unpacked = packed_to_bkey(dst)))
bkey_copy(dst_unpacked, src);
else
BUG_ON(!bch2_bkey_pack(dst, src, f));
}
static bool extent_merge_one_overlapping(struct btree_iter *iter,
struct bpos new_pos,
struct bset_tree *t,
struct bkey_packed *k, struct bkey uk,
bool check, bool could_pack)
{
struct btree_iter_level *l = &iter->l[0];
BUG_ON(!bkey_deleted(k));
if (check) {
return !bkey_packed(k) || could_pack;
} else {
uk.p = new_pos;
extent_save(l->b, &l->iter, k, &uk);
bch2_bset_fix_invalidated_key(l->b, t, k);
bch2_btree_node_iter_fix(iter, l->b, &l->iter, t,
k, k->u64s, k->u64s);
return true;
}
}
static bool extent_merge_do_overlapping(struct btree_iter *iter,
struct bkey *m, bool back_merge)
{
struct btree_iter_level *l = &iter->l[0];
struct btree *b = l->b;
struct btree_node_iter *node_iter = &l->iter;
struct bset_tree *t;
struct bkey_packed *k;
struct bkey uk;
struct bpos new_pos = back_merge ? m->p : bkey_start_pos(m);
bool could_pack = bkey_pack_pos((void *) &uk, new_pos, b);
bool check = true;
/*
* @m is the new merged extent:
*
* The merge took place in the last bset; we know there can't be any 0
* size extents overlapping with m there because if so they would have
* been between the two extents we merged.
*
* But in the other bsets, we have to check for and fix such extents:
*/
do_fixup:
for_each_bset(b, t) {
if (t == bset_tree_last(b))
break;
/*
* if we don't find this bset in the iterator we already got to
* the end of that bset, so start searching from the end.
*/
k = bch2_btree_node_iter_bset_pos(node_iter, b, t);
if (k == btree_bkey_last(b, t))
k = bch2_bkey_prev_all(b, t, k);
if (!k)
continue;
if (back_merge) {
/*
* Back merge: 0 size extents will be before the key
* that was just inserted (and thus the iterator
* position) - walk backwards to find them
*/
for (;
k &&
(uk = bkey_unpack_key(b, k),
bkey_cmp(uk.p, bkey_start_pos(m)) > 0);
k = bch2_bkey_prev_all(b, t, k)) {
if (bkey_cmp(uk.p, m->p) >= 0)
continue;
if (!extent_merge_one_overlapping(iter, new_pos,
t, k, uk, check, could_pack))
return false;
}
} else {
/* Front merge - walk forwards */
for (;
k != btree_bkey_last(b, t) &&
(uk = bkey_unpack_key(b, k),
bkey_cmp(uk.p, m->p) < 0);
k = bkey_next(k)) {
if (bkey_cmp(uk.p,
bkey_start_pos(m)) <= 0)
continue;
if (!extent_merge_one_overlapping(iter, new_pos,
t, k, uk, check, could_pack))
return false;
}
}
}
if (check) {
check = false;
goto do_fixup;
}
return true;
}
/*
* When merging an extent that we're inserting into a btree node, the new merged
* extent could overlap with an existing 0 size extent - if we don't fix that,
* it'll break the btree node iterator so this code finds those 0 size extents
* and shifts them out of the way.
*
* Also unpacks and repacks.
*/
static bool bch2_extent_merge_inline(struct bch_fs *c,
struct btree_iter *iter,
struct bkey_packed *l,
struct bkey_packed *r,
bool back_merge)
{
struct btree *b = iter->l[0].b;
struct btree_node_iter *node_iter = &iter->l[0].iter;
const struct bkey_format *f = &b->format;
struct bset_tree *t = bset_tree_last(b);
struct bkey_packed *m;
BKEY_PADDED(k) li;
BKEY_PADDED(k) ri;
struct bkey_i *mi;
struct bkey tmp;
/*
* We need to save copies of both l and r, because we might get a
* partial merge (which modifies both) and then fails to repack
*/
bch2_bkey_unpack(b, &li.k, l);
bch2_bkey_unpack(b, &ri.k, r);
m = back_merge ? l : r;
mi = back_merge ? &li.k : &ri.k;
/* l & r should be in last bset: */
EBUG_ON(bch2_bkey_to_bset(b, m) != t);
switch (bch2_extent_merge(c, b, &li.k, &ri.k)) {
case BCH_MERGE_NOMERGE:
return false;
case BCH_MERGE_PARTIAL:
if (bkey_packed(m) && !bch2_bkey_pack_key((void *) &tmp, &mi->k, f))
return false;
if (!extent_merge_do_overlapping(iter, &li.k.k, back_merge))
return false;
extent_i_save(b, m, mi);
bch2_bset_fix_invalidated_key(b, t, m);
/*
* Update iterator to reflect what we just inserted - otherwise,
* the iter_fix() call is going to put us _before_ the key we
* just partially merged with:
*/
if (back_merge)
bch2_btree_iter_set_pos_same_leaf(iter, li.k.k.p);
bch2_btree_node_iter_fix(iter, b, node_iter,
t, m, m->u64s, m->u64s);
if (!back_merge)
bkey_copy(packed_to_bkey(l), &li.k);
else
bkey_copy(packed_to_bkey(r), &ri.k);
return false;
case BCH_MERGE_MERGE:
if (bkey_packed(m) && !bch2_bkey_pack_key((void *) &tmp, &li.k.k, f))
return false;
if (!extent_merge_do_overlapping(iter, &li.k.k, back_merge))
return false;
extent_i_save(b, m, &li.k);
bch2_bset_fix_invalidated_key(b, t, m);
bch2_btree_node_iter_fix(iter, b, node_iter,
t, m, m->u64s, m->u64s);
return true;
default:
BUG();
}
}
int bch2_check_range_allocated(struct bch_fs *c, struct bpos pos, u64 size)
{
struct btree_iter iter;
struct bpos end = pos;
struct bkey_s_c k;
int ret = 0;
end.offset += size;
for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, pos,
BTREE_ITER_SLOTS, k) {
if (bkey_cmp(bkey_start_pos(k.k), end) >= 0)
break;
if (!bch2_extent_is_fully_allocated(k)) {
ret = -ENOSPC;
break;
}
}
bch2_btree_iter_unlock(&iter);
return ret;
}