linux-stable/drivers/hwmon/adm1031.c
Julia Lawall bfb6b1732a hwmon: (adm1031) use permission-specific DEVICE_ATTR variants
Use DEVICE_ATTR_RW for read/write attributes. This simplifies the source
code, improves readbility, and reduces the chance of inconsistencies.

The conversion was done automatically using coccinelle. It was validated
by compiling both the old and the new source code and comparing its text,
data, and bss size.

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
[groeck: Updated description]
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2017-01-02 10:19:45 -08:00

1101 lines
33 KiB
C

/*
* adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Based on lm75.c and lm85.c
* Supports adm1030 / adm1031
* Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
* Reworked by Jean Delvare <jdelvare@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Following macros takes channel parameter starting from 0 to 2 */
#define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
#define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
#define ADM1031_REG_PWM (0x22)
#define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
#define ADM1031_REG_FAN_FILTER (0x23)
#define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr))
#define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
#define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
#define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
#define ADM1031_REG_TEMP(nr) (0x0a + (nr))
#define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
#define ADM1031_REG_STATUS(nr) (0x2 + (nr))
#define ADM1031_REG_CONF1 0x00
#define ADM1031_REG_CONF2 0x01
#define ADM1031_REG_EXT_TEMP 0x06
#define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
#define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
#define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
#define ADM1031_CONF2_PWM1_ENABLE 0x01
#define ADM1031_CONF2_PWM2_ENABLE 0x02
#define ADM1031_CONF2_TACH1_ENABLE 0x04
#define ADM1031_CONF2_TACH2_ENABLE 0x08
#define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
#define ADM1031_UPDATE_RATE_MASK 0x1c
#define ADM1031_UPDATE_RATE_SHIFT 2
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
enum chips { adm1030, adm1031 };
typedef u8 auto_chan_table_t[8][2];
/* Each client has this additional data */
struct adm1031_data {
struct i2c_client *client;
const struct attribute_group *groups[3];
struct mutex update_lock;
int chip_type;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
unsigned int update_interval; /* In milliseconds */
/*
* The chan_select_table contains the possible configurations for
* auto fan control.
*/
const auto_chan_table_t *chan_select_table;
u16 alarm;
u8 conf1;
u8 conf2;
u8 fan[2];
u8 fan_div[2];
u8 fan_min[2];
u8 pwm[2];
u8 old_pwm[2];
s8 temp[3];
u8 ext_temp[3];
u8 auto_temp[3];
u8 auto_temp_min[3];
u8 auto_temp_off[3];
u8 auto_temp_max[3];
s8 temp_offset[3];
s8 temp_min[3];
s8 temp_max[3];
s8 temp_crit[3];
};
static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static inline int
adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
static struct adm1031_data *adm1031_update_device(struct device *dev)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long next_update;
int chan;
mutex_lock(&data->update_lock);
next_update = data->last_updated
+ msecs_to_jiffies(data->update_interval);
if (time_after(jiffies, next_update) || !data->valid) {
dev_dbg(&client->dev, "Starting adm1031 update\n");
for (chan = 0;
chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
u8 oldh, newh;
oldh =
adm1031_read_value(client, ADM1031_REG_TEMP(chan));
data->ext_temp[chan] =
adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
newh =
adm1031_read_value(client, ADM1031_REG_TEMP(chan));
if (newh != oldh) {
data->ext_temp[chan] =
adm1031_read_value(client,
ADM1031_REG_EXT_TEMP);
#ifdef DEBUG
oldh =
adm1031_read_value(client,
ADM1031_REG_TEMP(chan));
/* oldh is actually newer */
if (newh != oldh)
dev_warn(&client->dev,
"Remote temperature may be wrong.\n");
#endif
}
data->temp[chan] = newh;
data->temp_offset[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_OFFSET(chan));
data->temp_min[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_MIN(chan));
data->temp_max[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_MAX(chan));
data->temp_crit[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_CRIT(chan));
data->auto_temp[chan] =
adm1031_read_value(client,
ADM1031_REG_AUTO_TEMP(chan));
}
data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
| (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
if (data->chip_type == adm1030)
data->alarm &= 0xc0ff;
for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
chan++) {
data->fan_div[chan] =
adm1031_read_value(client,
ADM1031_REG_FAN_DIV(chan));
data->fan_min[chan] =
adm1031_read_value(client,
ADM1031_REG_FAN_MIN(chan));
data->fan[chan] =
adm1031_read_value(client,
ADM1031_REG_FAN_SPEED(chan));
data->pwm[chan] =
(adm1031_read_value(client,
ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
}
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
#define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
((val + 500) / 1000)))
#define TEMP_FROM_REG(val) ((val) * 1000)
#define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
#define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f)
#define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \
(val) | 0x70 : (val))
#define FAN_FROM_REG(reg, div) ((reg) ? \
(11250 * 60) / ((reg) * (div)) : 0)
static int FAN_TO_REG(int reg, int div)
{
int tmp;
tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
return tmp > 255 ? 255 : tmp;
}
#define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
#define PWM_TO_REG(val) (clamp_val((val), 0, 255) >> 4)
#define PWM_FROM_REG(val) ((val) << 4)
#define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
#define FAN_CHAN_TO_REG(val, reg) \
(((reg) & 0x1F) | (((val) << 5) & 0xe0))
#define AUTO_TEMP_MIN_TO_REG(val, reg) \
((((val) / 500) & 0xf8) | ((reg) & 0x7))
#define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7)))
#define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
#define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
#define AUTO_TEMP_OFF_FROM_REG(reg) \
(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
#define AUTO_TEMP_MAX_FROM_REG(reg) \
(AUTO_TEMP_RANGE_FROM_REG(reg) + \
AUTO_TEMP_MIN_FROM_REG(reg))
static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
{
int ret;
int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
ret = ((reg & 0xf8) |
(range < 10000 ? 0 :
range < 20000 ? 1 :
range < 40000 ? 2 : range < 80000 ? 3 : 4));
return ret;
}
/* FAN auto control */
#define GET_FAN_AUTO_BITFIELD(data, idx) \
(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
/*
* The tables below contains the possible values for the auto fan
* control bitfields. the index in the table is the register value.
* MSb is the auto fan control enable bit, so the four first entries
* in the table disables auto fan control when both bitfields are zero.
*/
static const auto_chan_table_t auto_channel_select_table_adm1031 = {
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 2 /* 0b010 */ , 4 /* 0b100 */ },
{ 2 /* 0b010 */ , 2 /* 0b010 */ },
{ 4 /* 0b100 */ , 4 /* 0b100 */ },
{ 7 /* 0b111 */ , 7 /* 0b111 */ },
};
static const auto_chan_table_t auto_channel_select_table_adm1030 = {
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 2 /* 0b10 */ , 0 },
{ 0xff /* invalid */ , 0 },
{ 0xff /* invalid */ , 0 },
{ 3 /* 0b11 */ , 0 },
};
/*
* That function checks if a bitfield is valid and returns the other bitfield
* nearest match if no exact match where found.
*/
static int
get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
{
int i;
int first_match = -1, exact_match = -1;
u8 other_reg_val =
(*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
if (val == 0)
return 0;
for (i = 0; i < 8; i++) {
if ((val == (*data->chan_select_table)[i][chan]) &&
((*data->chan_select_table)[i][chan ? 0 : 1] ==
other_reg_val)) {
/* We found an exact match */
exact_match = i;
break;
} else if (val == (*data->chan_select_table)[i][chan] &&
first_match == -1) {
/*
* Save the first match in case of an exact match has
* not been found
*/
first_match = i;
}
}
if (exact_match >= 0)
return exact_match;
else if (first_match >= 0)
return first_match;
return -EINVAL;
}
static ssize_t show_fan_auto_channel(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
}
static ssize_t
set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
u8 reg;
int ret;
u8 old_fan_mode;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
old_fan_mode = data->conf1;
mutex_lock(&data->update_lock);
ret = get_fan_auto_nearest(data, nr, val, data->conf1);
if (ret < 0) {
mutex_unlock(&data->update_lock);
return ret;
}
reg = ret;
data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
(old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
/*
* Switch to Auto Fan Mode
* Save PWM registers
* Set PWM registers to 33% Both
*/
data->old_pwm[0] = data->pwm[0];
data->old_pwm[1] = data->pwm[1];
adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
} else {
/* Switch to Manual Mode */
data->pwm[0] = data->old_pwm[0];
data->pwm[1] = data->old_pwm[1];
/* Restore PWM registers */
adm1031_write_value(client, ADM1031_REG_PWM,
data->pwm[0] | (data->pwm[1] << 4));
}
}
data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
show_fan_auto_channel, set_fan_auto_channel, 0);
static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
show_fan_auto_channel, set_fan_auto_channel, 1);
/* Auto Temps */
static ssize_t show_auto_temp_off(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
}
static ssize_t show_auto_temp_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
set_auto_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, 0, 127000);
mutex_lock(&data->update_lock);
data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
data->auto_temp[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_auto_temp_max(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
set_auto_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, 0, 127000);
mutex_lock(&data->update_lock);
data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
data->pwm[nr]);
adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define auto_temp_reg(offset) \
static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \
show_auto_temp_off, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \
show_auto_temp_min, set_auto_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \
show_auto_temp_max, set_auto_temp_max, offset - 1)
auto_temp_reg(1);
auto_temp_reg(2);
auto_temp_reg(3);
/* pwm */
static ssize_t show_pwm(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
}
static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret, reg;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&data->update_lock);
if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
(((val>>4) & 0xf) != 5)) {
/* In automatic mode, the only PWM accepted is 33% */
mutex_unlock(&data->update_lock);
return -EINVAL;
}
data->pwm[nr] = PWM_TO_REG(val);
reg = adm1031_read_value(client, ADM1031_REG_PWM);
adm1031_write_value(client, ADM1031_REG_PWM,
nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
: (data->pwm[nr] & 0xf) | (reg & 0xf0));
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
show_pwm, set_pwm, 0);
static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
show_pwm, set_pwm, 1);
/* Fans */
/*
* That function checks the cases where the fan reading is not
* relevant. It is used to provide 0 as fan reading when the fan is
* not supposed to run
*/
static int trust_fan_readings(struct adm1031_data *data, int chan)
{
int res = 0;
if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
switch (data->conf1 & 0x60) {
case 0x00:
/*
* remote temp1 controls fan1,
* remote temp2 controls fan2
*/
res = data->temp[chan+1] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
break;
case 0x20: /* remote temp1 controls both fans */
res =
data->temp[1] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
break;
case 0x40: /* remote temp2 controls both fans */
res =
data->temp[2] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
break;
case 0x60: /* max controls both fans */
res =
data->temp[0] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
|| data->temp[1] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
|| (data->chip_type == adm1031
&& data->temp[2] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
break;
}
} else {
res = data->pwm[chan] > 0;
}
return res;
}
static ssize_t show_fan(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
int value;
value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
return sprintf(buf, "%d\n", value);
}
static ssize_t show_fan_div(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t show_fan_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
FAN_FROM_REG(data->fan_min[nr],
FAN_DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&data->update_lock);
if (val) {
data->fan_min[nr] =
FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
} else {
data->fan_min[nr] = 0xff;
}
adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
u8 tmp;
int old_div;
int new_min;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
tmp = val == 8 ? 0xc0 :
val == 4 ? 0x80 :
val == 2 ? 0x40 :
val == 1 ? 0x00 :
0xff;
if (tmp == 0xff)
return -EINVAL;
mutex_lock(&data->update_lock);
/* Get fresh readings */
data->fan_div[nr] = adm1031_read_value(client,
ADM1031_REG_FAN_DIV(nr));
data->fan_min[nr] = adm1031_read_value(client,
ADM1031_REG_FAN_MIN(nr));
/* Write the new clock divider and fan min */
old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
new_min = data->fan_min[nr] * old_div / val;
data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
data->fan_div[nr]);
adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
data->fan_min[nr]);
/* Invalidate the cache: fan speed is no longer valid */
data->valid = 0;
mutex_unlock(&data->update_lock);
return count;
}
#define fan_offset(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
show_fan, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
show_fan_div, set_fan_div, offset - 1)
fan_offset(1);
fan_offset(2);
/* Temps */
static ssize_t show_temp(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
int ext;
ext = nr == 0 ?
((data->ext_temp[nr] >> 6) & 0x3) * 2 :
(((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
}
static ssize_t show_temp_offset(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
}
static ssize_t show_temp_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t show_temp_max(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t show_temp_crit(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
}
static ssize_t set_temp_offset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, -15000, 15000);
mutex_lock(&data->update_lock);
data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
data->temp_offset[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, -55000, 127000);
mutex_lock(&data->update_lock);
data->temp_min[nr] = TEMP_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, -55000, 127000);
mutex_lock(&data->update_lock);
data->temp_max[nr] = TEMP_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = to_sensor_dev_attr(attr)->index;
long val;
int ret;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val, -55000, 127000);
mutex_lock(&data->update_lock);
data->temp_crit[nr] = TEMP_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
data->temp_crit[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
show_temp, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR, \
show_temp_offset, set_temp_offset, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
show_temp_min, set_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_max, set_temp_max, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
show_temp_crit, set_temp_crit, offset - 1)
temp_reg(1);
temp_reg(2);
temp_reg(3);
/* Alarms */
static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", data->alarm);
}
static DEVICE_ATTR_RO(alarms);
static ssize_t show_alarm(struct device *dev,
struct device_attribute *attr, char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
/* Update Interval */
static const unsigned int update_intervals[] = {
16000, 8000, 4000, 2000, 1000, 500, 250, 125,
};
static ssize_t update_interval_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm1031_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", data->update_interval);
}
static ssize_t update_interval_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1031_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int i, err;
u8 reg;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
/*
* Find the nearest update interval from the table.
* Use it to determine the matching update rate.
*/
for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
if (val >= update_intervals[i])
break;
}
/* if not found, we point to the last entry (lowest update interval) */
/* set the new update rate while preserving other settings */
reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
reg &= ~ADM1031_UPDATE_RATE_MASK;
reg |= i << ADM1031_UPDATE_RATE_SHIFT;
adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
mutex_lock(&data->update_lock);
data->update_interval = update_intervals[i];
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR_RW(update_interval);
static struct attribute *adm1031_attributes[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_fault.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_offset.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_offset.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
&dev_attr_update_interval.attr,
&dev_attr_alarms.attr,
NULL
};
static const struct attribute_group adm1031_group = {
.attrs = adm1031_attributes,
};
static struct attribute *adm1031_attributes_opt[] = {
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_fault.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_offset.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
NULL
};
static const struct attribute_group adm1031_group_opt = {
.attrs = adm1031_attributes_opt,
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adm1031_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
const char *name;
int id, co;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
id = i2c_smbus_read_byte_data(client, 0x3d);
co = i2c_smbus_read_byte_data(client, 0x3e);
if (!((id == 0x31 || id == 0x30) && co == 0x41))
return -ENODEV;
name = (id == 0x30) ? "adm1030" : "adm1031";
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static void adm1031_init_client(struct i2c_client *client)
{
unsigned int read_val;
unsigned int mask;
int i;
struct adm1031_data *data = i2c_get_clientdata(client);
mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
if (data->chip_type == adm1031) {
mask |= (ADM1031_CONF2_PWM2_ENABLE |
ADM1031_CONF2_TACH2_ENABLE);
}
/* Initialize the ADM1031 chip (enables fan speed reading ) */
read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
if ((read_val | mask) != read_val)
adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
adm1031_write_value(client, ADM1031_REG_CONF1,
read_val | ADM1031_CONF1_MONITOR_ENABLE);
}
/* Read the chip's update rate */
mask = ADM1031_UPDATE_RATE_MASK;
read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
/* Save it as update interval */
data->update_interval = update_intervals[i];
}
static int adm1031_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device *hwmon_dev;
struct adm1031_data *data;
data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
data->client = client;
data->chip_type = id->driver_data;
mutex_init(&data->update_lock);
if (data->chip_type == adm1030)
data->chan_select_table = &auto_channel_select_table_adm1030;
else
data->chan_select_table = &auto_channel_select_table_adm1031;
/* Initialize the ADM1031 chip */
adm1031_init_client(client);
/* sysfs hooks */
data->groups[0] = &adm1031_group;
if (data->chip_type == adm1031)
data->groups[1] = &adm1031_group_opt;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data, data->groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id adm1031_id[] = {
{ "adm1030", adm1030 },
{ "adm1031", adm1031 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adm1031_id);
static struct i2c_driver adm1031_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adm1031",
},
.probe = adm1031_probe,
.id_table = adm1031_id,
.detect = adm1031_detect,
.address_list = normal_i2c,
};
module_i2c_driver(adm1031_driver);
MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
MODULE_LICENSE("GPL");