linux-stable/drivers/bus/fsl-mc/dprc-driver.c
Diana Craciun 5d781fabe6 bus/fsl-mc: Export dprc_scan/dprc_remove functions to be used by multiple entities
Currently the DPRC scan function is used only by the bus driver.
But the same functionality will be needed by the VFIO driver.
To support this, the dprc scan function was exported and a little
bit adjusted to fit both scenarios. Also the scan mutex initialization
is done when the bus object is created, not in dprc_probe in order
to be used by both VFIO and bus driver.
Similarily dprc_remove_devices is exported to be used by VFIO.

Reviewed-by: Laurentiu Tudor <laurentiu.tudor@nxp.com>
Acked-by: Laurentiu Tudor <laurentiu.tudor@nxp.com>
Signed-off-by: Diana Craciun <diana.craciun@oss.nxp.com>
Link: https://lore.kernel.org/r/20200929085441.17448-8-diana.craciun@oss.nxp.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-02 16:05:01 +02:00

804 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Freescale data path resource container (DPRC) driver
*
* Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
* Copyright 2019-2020 NXP
* Author: German Rivera <German.Rivera@freescale.com>
*
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/msi.h>
#include <linux/fsl/mc.h>
#include "fsl-mc-private.h"
#define FSL_MC_DPRC_DRIVER_NAME "fsl_mc_dprc"
struct fsl_mc_child_objs {
int child_count;
struct fsl_mc_obj_desc *child_array;
};
static bool fsl_mc_device_match(struct fsl_mc_device *mc_dev,
struct fsl_mc_obj_desc *obj_desc)
{
return mc_dev->obj_desc.id == obj_desc->id &&
strcmp(mc_dev->obj_desc.type, obj_desc->type) == 0;
}
static bool fsl_mc_obj_desc_is_allocatable(struct fsl_mc_obj_desc *obj)
{
if (strcmp(obj->type, "dpmcp") == 0 ||
strcmp(obj->type, "dpcon") == 0 ||
strcmp(obj->type, "dpbp") == 0)
return true;
else
return false;
}
static int __fsl_mc_device_remove_if_not_in_mc(struct device *dev, void *data)
{
int i;
struct fsl_mc_child_objs *objs;
struct fsl_mc_device *mc_dev;
mc_dev = to_fsl_mc_device(dev);
objs = data;
for (i = 0; i < objs->child_count; i++) {
struct fsl_mc_obj_desc *obj_desc = &objs->child_array[i];
if (strlen(obj_desc->type) != 0 &&
fsl_mc_device_match(mc_dev, obj_desc))
break;
}
if (i == objs->child_count)
fsl_mc_device_remove(mc_dev);
return 0;
}
static int __fsl_mc_device_remove(struct device *dev, void *data)
{
fsl_mc_device_remove(to_fsl_mc_device(dev));
return 0;
}
/**
* dprc_remove_devices - Removes devices for objects removed from a DPRC
*
* @mc_bus_dev: pointer to the fsl-mc device that represents a DPRC object
* @obj_desc_array: array of object descriptors for child objects currently
* present in the DPRC in the MC.
* @num_child_objects_in_mc: number of entries in obj_desc_array
*
* Synchronizes the state of the Linux bus driver with the actual state of
* the MC by removing devices that represent MC objects that have
* been dynamically removed in the physical DPRC.
*/
void dprc_remove_devices(struct fsl_mc_device *mc_bus_dev,
struct fsl_mc_obj_desc *obj_desc_array,
int num_child_objects_in_mc)
{
if (num_child_objects_in_mc != 0) {
/*
* Remove child objects that are in the DPRC in Linux,
* but not in the MC:
*/
struct fsl_mc_child_objs objs;
objs.child_count = num_child_objects_in_mc;
objs.child_array = obj_desc_array;
device_for_each_child(&mc_bus_dev->dev, &objs,
__fsl_mc_device_remove_if_not_in_mc);
} else {
/*
* There are no child objects for this DPRC in the MC.
* So, remove all the child devices from Linux:
*/
device_for_each_child(&mc_bus_dev->dev, NULL,
__fsl_mc_device_remove);
}
}
EXPORT_SYMBOL_GPL(dprc_remove_devices);
static int __fsl_mc_device_match(struct device *dev, void *data)
{
struct fsl_mc_obj_desc *obj_desc = data;
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
return fsl_mc_device_match(mc_dev, obj_desc);
}
struct fsl_mc_device *fsl_mc_device_lookup(struct fsl_mc_obj_desc *obj_desc,
struct fsl_mc_device *mc_bus_dev)
{
struct device *dev;
dev = device_find_child(&mc_bus_dev->dev, obj_desc,
__fsl_mc_device_match);
return dev ? to_fsl_mc_device(dev) : NULL;
}
/**
* check_plugged_state_change - Check change in an MC object's plugged state
*
* @mc_dev: pointer to the fsl-mc device for a given MC object
* @obj_desc: pointer to the MC object's descriptor in the MC
*
* If the plugged state has changed from unplugged to plugged, the fsl-mc
* device is bound to the corresponding device driver.
* If the plugged state has changed from plugged to unplugged, the fsl-mc
* device is unbound from the corresponding device driver.
*/
static void check_plugged_state_change(struct fsl_mc_device *mc_dev,
struct fsl_mc_obj_desc *obj_desc)
{
int error;
u32 plugged_flag_at_mc =
obj_desc->state & FSL_MC_OBJ_STATE_PLUGGED;
if (plugged_flag_at_mc !=
(mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED)) {
if (plugged_flag_at_mc) {
mc_dev->obj_desc.state |= FSL_MC_OBJ_STATE_PLUGGED;
error = device_attach(&mc_dev->dev);
if (error < 0) {
dev_err(&mc_dev->dev,
"device_attach() failed: %d\n",
error);
}
} else {
mc_dev->obj_desc.state &= ~FSL_MC_OBJ_STATE_PLUGGED;
device_release_driver(&mc_dev->dev);
}
}
}
static void fsl_mc_obj_device_add(struct fsl_mc_device *mc_bus_dev,
struct fsl_mc_obj_desc *obj_desc)
{
int error;
struct fsl_mc_device *child_dev;
/*
* Check if device is already known to Linux:
*/
child_dev = fsl_mc_device_lookup(obj_desc, mc_bus_dev);
if (child_dev) {
check_plugged_state_change(child_dev, obj_desc);
put_device(&child_dev->dev);
} else {
error = fsl_mc_device_add(obj_desc, NULL, &mc_bus_dev->dev,
&child_dev);
if (error < 0)
return;
}
}
/**
* dprc_add_new_devices - Adds devices to the logical bus for a DPRC
*
* @mc_bus_dev: pointer to the fsl-mc device that represents a DPRC object
* @obj_desc_array: array of device descriptors for child devices currently
* present in the physical DPRC.
* @num_child_objects_in_mc: number of entries in obj_desc_array
*
* Synchronizes the state of the Linux bus driver with the actual
* state of the MC by adding objects that have been newly discovered
* in the physical DPRC.
*/
static void dprc_add_new_devices(struct fsl_mc_device *mc_bus_dev,
struct fsl_mc_obj_desc *obj_desc_array,
int num_child_objects_in_mc)
{
int i;
/* probe the allocable objects first */
for (i = 0; i < num_child_objects_in_mc; i++) {
struct fsl_mc_obj_desc *obj_desc = &obj_desc_array[i];
if (strlen(obj_desc->type) > 0 &&
fsl_mc_obj_desc_is_allocatable(obj_desc))
fsl_mc_obj_device_add(mc_bus_dev, obj_desc);
}
for (i = 0; i < num_child_objects_in_mc; i++) {
struct fsl_mc_obj_desc *obj_desc = &obj_desc_array[i];
if (strlen(obj_desc->type) > 0 &&
!fsl_mc_obj_desc_is_allocatable(obj_desc))
fsl_mc_obj_device_add(mc_bus_dev, obj_desc);
}
}
/**
* dprc_scan_objects - Discover objects in a DPRC
*
* @mc_bus_dev: pointer to the fsl-mc device that represents a DPRC object
* @alloc_interrupts: if true the function allocates the interrupt pool,
* otherwise the interrupt allocation is delayed
*
* Detects objects added and removed from a DPRC and synchronizes the
* state of the Linux bus driver, MC by adding and removing
* devices accordingly.
* Two types of devices can be found in a DPRC: allocatable objects (e.g.,
* dpbp, dpmcp) and non-allocatable devices (e.g., dprc, dpni).
* All allocatable devices needed to be probed before all non-allocatable
* devices, to ensure that device drivers for non-allocatable
* devices can allocate any type of allocatable devices.
* That is, we need to ensure that the corresponding resource pools are
* populated before they can get allocation requests from probe callbacks
* of the device drivers for the non-allocatable devices.
*/
static int dprc_scan_objects(struct fsl_mc_device *mc_bus_dev,
bool alloc_interrupts)
{
int num_child_objects;
int dprc_get_obj_failures;
int error;
unsigned int irq_count = mc_bus_dev->obj_desc.irq_count;
struct fsl_mc_obj_desc *child_obj_desc_array = NULL;
struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev);
error = dprc_get_obj_count(mc_bus_dev->mc_io,
0,
mc_bus_dev->mc_handle,
&num_child_objects);
if (error < 0) {
dev_err(&mc_bus_dev->dev, "dprc_get_obj_count() failed: %d\n",
error);
return error;
}
if (num_child_objects != 0) {
int i;
child_obj_desc_array =
devm_kmalloc_array(&mc_bus_dev->dev, num_child_objects,
sizeof(*child_obj_desc_array),
GFP_KERNEL);
if (!child_obj_desc_array)
return -ENOMEM;
/*
* Discover objects currently present in the physical DPRC:
*/
dprc_get_obj_failures = 0;
for (i = 0; i < num_child_objects; i++) {
struct fsl_mc_obj_desc *obj_desc =
&child_obj_desc_array[i];
error = dprc_get_obj(mc_bus_dev->mc_io,
0,
mc_bus_dev->mc_handle,
i, obj_desc);
if (error < 0) {
dev_err(&mc_bus_dev->dev,
"dprc_get_obj(i=%d) failed: %d\n",
i, error);
/*
* Mark the obj entry as "invalid", by using the
* empty string as obj type:
*/
obj_desc->type[0] = '\0';
obj_desc->id = error;
dprc_get_obj_failures++;
continue;
}
/*
* add a quirk for all versions of dpsec < 4.0...none
* are coherent regardless of what the MC reports.
*/
if ((strcmp(obj_desc->type, "dpseci") == 0) &&
(obj_desc->ver_major < 4))
obj_desc->flags |=
FSL_MC_OBJ_FLAG_NO_MEM_SHAREABILITY;
irq_count += obj_desc->irq_count;
dev_dbg(&mc_bus_dev->dev,
"Discovered object: type %s, id %d\n",
obj_desc->type, obj_desc->id);
}
if (dprc_get_obj_failures != 0) {
dev_err(&mc_bus_dev->dev,
"%d out of %d devices could not be retrieved\n",
dprc_get_obj_failures, num_child_objects);
}
}
/*
* Allocate IRQ's before binding the scanned devices with their
* respective drivers.
*/
if (dev_get_msi_domain(&mc_bus_dev->dev)) {
if (irq_count > FSL_MC_IRQ_POOL_MAX_TOTAL_IRQS) {
dev_warn(&mc_bus_dev->dev,
"IRQs needed (%u) exceed IRQs preallocated (%u)\n",
irq_count, FSL_MC_IRQ_POOL_MAX_TOTAL_IRQS);
}
if (alloc_interrupts && !mc_bus->irq_resources) {
error = fsl_mc_populate_irq_pool(mc_bus,
FSL_MC_IRQ_POOL_MAX_TOTAL_IRQS);
if (error < 0)
return error;
}
}
dprc_remove_devices(mc_bus_dev, child_obj_desc_array,
num_child_objects);
dprc_add_new_devices(mc_bus_dev, child_obj_desc_array,
num_child_objects);
if (child_obj_desc_array)
devm_kfree(&mc_bus_dev->dev, child_obj_desc_array);
return 0;
}
/**
* dprc_scan_container - Scans a physical DPRC and synchronizes Linux bus state
*
* @mc_bus_dev: pointer to the fsl-mc device that represents a DPRC object
*
* Scans the physical DPRC and synchronizes the state of the Linux
* bus driver with the actual state of the MC by adding and removing
* devices as appropriate.
*/
int dprc_scan_container(struct fsl_mc_device *mc_bus_dev,
bool alloc_interrupts)
{
int error = 0;
struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev);
fsl_mc_init_all_resource_pools(mc_bus_dev);
/*
* Discover objects in the DPRC:
*/
mutex_lock(&mc_bus->scan_mutex);
error = dprc_scan_objects(mc_bus_dev, alloc_interrupts);
mutex_unlock(&mc_bus->scan_mutex);
return error;
}
EXPORT_SYMBOL_GPL(dprc_scan_container);
/**
* dprc_irq0_handler - Regular ISR for DPRC interrupt 0
*
* @irq: IRQ number of the interrupt being handled
* @arg: Pointer to device structure
*/
static irqreturn_t dprc_irq0_handler(int irq_num, void *arg)
{
return IRQ_WAKE_THREAD;
}
/**
* dprc_irq0_handler_thread - Handler thread function for DPRC interrupt 0
*
* @irq: IRQ number of the interrupt being handled
* @arg: Pointer to device structure
*/
static irqreturn_t dprc_irq0_handler_thread(int irq_num, void *arg)
{
int error;
u32 status;
struct device *dev = arg;
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev);
struct fsl_mc_io *mc_io = mc_dev->mc_io;
struct msi_desc *msi_desc = mc_dev->irqs[0]->msi_desc;
dev_dbg(dev, "DPRC IRQ %d triggered on CPU %u\n",
irq_num, smp_processor_id());
if (!(mc_dev->flags & FSL_MC_IS_DPRC))
return IRQ_HANDLED;
mutex_lock(&mc_bus->scan_mutex);
if (!msi_desc || msi_desc->irq != (u32)irq_num)
goto out;
status = 0;
error = dprc_get_irq_status(mc_io, 0, mc_dev->mc_handle, 0,
&status);
if (error < 0) {
dev_err(dev,
"dprc_get_irq_status() failed: %d\n", error);
goto out;
}
error = dprc_clear_irq_status(mc_io, 0, mc_dev->mc_handle, 0,
status);
if (error < 0) {
dev_err(dev,
"dprc_clear_irq_status() failed: %d\n", error);
goto out;
}
if (status & (DPRC_IRQ_EVENT_OBJ_ADDED |
DPRC_IRQ_EVENT_OBJ_REMOVED |
DPRC_IRQ_EVENT_CONTAINER_DESTROYED |
DPRC_IRQ_EVENT_OBJ_DESTROYED |
DPRC_IRQ_EVENT_OBJ_CREATED)) {
error = dprc_scan_objects(mc_dev, true);
if (error < 0) {
/*
* If the error is -ENXIO, we ignore it, as it indicates
* that the object scan was aborted, as we detected that
* an object was removed from the DPRC in the MC, while
* we were scanning the DPRC.
*/
if (error != -ENXIO) {
dev_err(dev, "dprc_scan_objects() failed: %d\n",
error);
}
goto out;
}
}
out:
mutex_unlock(&mc_bus->scan_mutex);
return IRQ_HANDLED;
}
/*
* Disable and clear interrupt for a given DPRC object
*/
static int disable_dprc_irq(struct fsl_mc_device *mc_dev)
{
int error;
struct fsl_mc_io *mc_io = mc_dev->mc_io;
/*
* Disable generation of interrupt, while we configure it:
*/
error = dprc_set_irq_enable(mc_io, 0, mc_dev->mc_handle, 0, 0);
if (error < 0) {
dev_err(&mc_dev->dev,
"Disabling DPRC IRQ failed: dprc_set_irq_enable() failed: %d\n",
error);
return error;
}
/*
* Disable all interrupt causes for the interrupt:
*/
error = dprc_set_irq_mask(mc_io, 0, mc_dev->mc_handle, 0, 0x0);
if (error < 0) {
dev_err(&mc_dev->dev,
"Disabling DPRC IRQ failed: dprc_set_irq_mask() failed: %d\n",
error);
return error;
}
/*
* Clear any leftover interrupts:
*/
error = dprc_clear_irq_status(mc_io, 0, mc_dev->mc_handle, 0, ~0x0U);
if (error < 0) {
dev_err(&mc_dev->dev,
"Disabling DPRC IRQ failed: dprc_clear_irq_status() failed: %d\n",
error);
return error;
}
return 0;
}
static int register_dprc_irq_handler(struct fsl_mc_device *mc_dev)
{
int error;
struct fsl_mc_device_irq *irq = mc_dev->irqs[0];
/*
* NOTE: devm_request_threaded_irq() invokes the device-specific
* function that programs the MSI physically in the device
*/
error = devm_request_threaded_irq(&mc_dev->dev,
irq->msi_desc->irq,
dprc_irq0_handler,
dprc_irq0_handler_thread,
IRQF_NO_SUSPEND | IRQF_ONESHOT,
dev_name(&mc_dev->dev),
&mc_dev->dev);
if (error < 0) {
dev_err(&mc_dev->dev,
"devm_request_threaded_irq() failed: %d\n",
error);
return error;
}
return 0;
}
static int enable_dprc_irq(struct fsl_mc_device *mc_dev)
{
int error;
/*
* Enable all interrupt causes for the interrupt:
*/
error = dprc_set_irq_mask(mc_dev->mc_io, 0, mc_dev->mc_handle, 0,
~0x0u);
if (error < 0) {
dev_err(&mc_dev->dev,
"Enabling DPRC IRQ failed: dprc_set_irq_mask() failed: %d\n",
error);
return error;
}
/*
* Enable generation of the interrupt:
*/
error = dprc_set_irq_enable(mc_dev->mc_io, 0, mc_dev->mc_handle, 0, 1);
if (error < 0) {
dev_err(&mc_dev->dev,
"Enabling DPRC IRQ failed: dprc_set_irq_enable() failed: %d\n",
error);
return error;
}
return 0;
}
/*
* Setup interrupt for a given DPRC device
*/
static int dprc_setup_irq(struct fsl_mc_device *mc_dev)
{
int error;
error = fsl_mc_allocate_irqs(mc_dev);
if (error < 0)
return error;
error = disable_dprc_irq(mc_dev);
if (error < 0)
goto error_free_irqs;
error = register_dprc_irq_handler(mc_dev);
if (error < 0)
goto error_free_irqs;
error = enable_dprc_irq(mc_dev);
if (error < 0)
goto error_free_irqs;
return 0;
error_free_irqs:
fsl_mc_free_irqs(mc_dev);
return error;
}
/**
* dprc_probe - callback invoked when a DPRC is being bound to this driver
*
* @mc_dev: Pointer to fsl-mc device representing a DPRC
*
* It opens the physical DPRC in the MC.
* It scans the DPRC to discover the MC objects contained in it.
* It creates the interrupt pool for the MC bus associated with the DPRC.
* It configures the interrupts for the DPRC device itself.
*/
static int dprc_probe(struct fsl_mc_device *mc_dev)
{
int error;
size_t region_size;
struct device *parent_dev = mc_dev->dev.parent;
struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev);
bool mc_io_created = false;
bool msi_domain_set = false;
u16 major_ver, minor_ver;
struct irq_domain *mc_msi_domain;
if (!is_fsl_mc_bus_dprc(mc_dev))
return -EINVAL;
if (dev_get_msi_domain(&mc_dev->dev))
return -EINVAL;
if (!mc_dev->mc_io) {
/*
* This is a child DPRC:
*/
if (!dev_is_fsl_mc(parent_dev))
return -EINVAL;
if (mc_dev->obj_desc.region_count == 0)
return -EINVAL;
region_size = resource_size(mc_dev->regions);
error = fsl_create_mc_io(&mc_dev->dev,
mc_dev->regions[0].start,
region_size,
NULL,
FSL_MC_IO_ATOMIC_CONTEXT_PORTAL,
&mc_dev->mc_io);
if (error < 0)
return error;
mc_io_created = true;
}
mc_msi_domain = fsl_mc_find_msi_domain(&mc_dev->dev);
if (!mc_msi_domain) {
dev_warn(&mc_dev->dev,
"WARNING: MC bus without interrupt support\n");
} else {
dev_set_msi_domain(&mc_dev->dev, mc_msi_domain);
msi_domain_set = true;
}
error = dprc_open(mc_dev->mc_io, 0, mc_dev->obj_desc.id,
&mc_dev->mc_handle);
if (error < 0) {
dev_err(&mc_dev->dev, "dprc_open() failed: %d\n", error);
goto error_cleanup_msi_domain;
}
error = dprc_get_attributes(mc_dev->mc_io, 0, mc_dev->mc_handle,
&mc_bus->dprc_attr);
if (error < 0) {
dev_err(&mc_dev->dev, "dprc_get_attributes() failed: %d\n",
error);
goto error_cleanup_open;
}
error = dprc_get_api_version(mc_dev->mc_io, 0,
&major_ver,
&minor_ver);
if (error < 0) {
dev_err(&mc_dev->dev, "dprc_get_api_version() failed: %d\n",
error);
goto error_cleanup_open;
}
if (major_ver < DPRC_MIN_VER_MAJOR ||
(major_ver == DPRC_MIN_VER_MAJOR &&
minor_ver < DPRC_MIN_VER_MINOR)) {
dev_err(&mc_dev->dev,
"ERROR: DPRC version %d.%d not supported\n",
major_ver, minor_ver);
error = -ENOTSUPP;
goto error_cleanup_open;
}
/*
* Discover MC objects in DPRC object:
*/
error = dprc_scan_container(mc_dev, true);
if (error < 0)
goto error_cleanup_open;
/*
* Configure interrupt for the DPRC object associated with this MC bus:
*/
error = dprc_setup_irq(mc_dev);
if (error < 0)
goto error_cleanup_open;
dev_info(&mc_dev->dev, "DPRC device bound to driver");
return 0;
error_cleanup_open:
(void)dprc_close(mc_dev->mc_io, 0, mc_dev->mc_handle);
error_cleanup_msi_domain:
if (msi_domain_set)
dev_set_msi_domain(&mc_dev->dev, NULL);
if (mc_io_created) {
fsl_destroy_mc_io(mc_dev->mc_io);
mc_dev->mc_io = NULL;
}
return error;
}
/*
* Tear down interrupt for a given DPRC object
*/
static void dprc_teardown_irq(struct fsl_mc_device *mc_dev)
{
struct fsl_mc_device_irq *irq = mc_dev->irqs[0];
(void)disable_dprc_irq(mc_dev);
devm_free_irq(&mc_dev->dev, irq->msi_desc->irq, &mc_dev->dev);
fsl_mc_free_irqs(mc_dev);
}
/**
* dprc_remove - callback invoked when a DPRC is being unbound from this driver
*
* @mc_dev: Pointer to fsl-mc device representing the DPRC
*
* It removes the DPRC's child objects from Linux (not from the MC) and
* closes the DPRC device in the MC.
* It tears down the interrupts that were configured for the DPRC device.
* It destroys the interrupt pool associated with this MC bus.
*/
static int dprc_remove(struct fsl_mc_device *mc_dev)
{
int error;
struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev);
if (!is_fsl_mc_bus_dprc(mc_dev))
return -EINVAL;
if (!mc_dev->mc_io)
return -EINVAL;
if (!mc_bus->irq_resources)
return -EINVAL;
if (dev_get_msi_domain(&mc_dev->dev))
dprc_teardown_irq(mc_dev);
device_for_each_child(&mc_dev->dev, NULL, __fsl_mc_device_remove);
if (dev_get_msi_domain(&mc_dev->dev)) {
fsl_mc_cleanup_irq_pool(mc_bus);
dev_set_msi_domain(&mc_dev->dev, NULL);
}
fsl_mc_cleanup_all_resource_pools(mc_dev);
error = dprc_close(mc_dev->mc_io, 0, mc_dev->mc_handle);
if (error < 0)
dev_err(&mc_dev->dev, "dprc_close() failed: %d\n", error);
if (!fsl_mc_is_root_dprc(&mc_dev->dev)) {
fsl_destroy_mc_io(mc_dev->mc_io);
mc_dev->mc_io = NULL;
}
dev_info(&mc_dev->dev, "DPRC device unbound from driver");
return 0;
}
static const struct fsl_mc_device_id match_id_table[] = {
{
.vendor = FSL_MC_VENDOR_FREESCALE,
.obj_type = "dprc"},
{.vendor = 0x0},
};
static struct fsl_mc_driver dprc_driver = {
.driver = {
.name = FSL_MC_DPRC_DRIVER_NAME,
.owner = THIS_MODULE,
.pm = NULL,
},
.match_id_table = match_id_table,
.probe = dprc_probe,
.remove = dprc_remove,
};
int __init dprc_driver_init(void)
{
return fsl_mc_driver_register(&dprc_driver);
}
void dprc_driver_exit(void)
{
fsl_mc_driver_unregister(&dprc_driver);
}