linux-stable/drivers/i2c/busses/i2c-xiic.c
Robert Hancock cb6e45c9a0 i2c: xiic: Don't try to handle more interrupt events after error
In xiic_process, it is possible that error events such as arbitration
lost or TX error can be raised in conjunction with other interrupt flags
such as TX FIFO empty or bus not busy. Error events result in the
controller being reset and the error returned to the calling request,
but the function could potentially try to keep handling the other
events, such as by writing more messages into the TX FIFO. Since the
transaction has already failed, this is not helpful and will just cause
issues.

This problem has been present ever since:

commit 7f9906bd7f ("i2c: xiic: Service all interrupts in isr")

which allowed non-error events to be handled after errors, but became
more obvious after:

commit 743e227a89 ("i2c: xiic: Defer xiic_wakeup() and
__xiic_start_xfer() in xiic_process()")

which reworked the code to add a WARN_ON which triggers if both the
xfer_more and wakeup_req flags were set, since this combination is
not supposed to happen, but was occurring in this scenario.

Skip further interrupt handling after error flags are detected to avoid
this problem.

Fixes: 7f9906bd7f ("i2c: xiic: Service all interrupts in isr")
Signed-off-by: Robert Hancock <robert.hancock@calian.com>
Acked-by: Andi Shyti <andi.shyti@kernel.org>
Signed-off-by: Wolfram Sang <wsa@kernel.org>
2023-07-06 21:32:50 +02:00

1400 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* i2c-xiic.c
* Copyright (c) 2002-2007 Xilinx Inc.
* Copyright (c) 2009-2010 Intel Corporation
*
* This code was implemented by Mocean Laboratories AB when porting linux
* to the automotive development board Russellville. The copyright holder
* as seen in the header is Intel corporation.
* Mocean Laboratories forked off the GNU/Linux platform work into a
* separate company called Pelagicore AB, which committed the code to the
* kernel.
*/
/* Supports:
* Xilinx IIC
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/platform_data/i2c-xiic.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#define DRIVER_NAME "xiic-i2c"
#define DYNAMIC_MODE_READ_BROKEN_BIT BIT(0)
#define SMBUS_BLOCK_READ_MIN_LEN 3
enum xilinx_i2c_state {
STATE_DONE,
STATE_ERROR,
STATE_START
};
enum xiic_endian {
LITTLE,
BIG
};
enum i2c_scl_freq {
REG_VALUES_100KHZ = 0,
REG_VALUES_400KHZ = 1,
REG_VALUES_1MHZ = 2
};
/**
* struct xiic_i2c - Internal representation of the XIIC I2C bus
* @dev: Pointer to device structure
* @base: Memory base of the HW registers
* @completion: Completion for callers
* @adap: Kernel adapter representation
* @tx_msg: Messages from above to be sent
* @lock: Mutual exclusion
* @tx_pos: Current pos in TX message
* @nmsgs: Number of messages in tx_msg
* @rx_msg: Current RX message
* @rx_pos: Position within current RX message
* @endianness: big/little-endian byte order
* @clk: Pointer to AXI4-lite input clock
* @state: See STATE_
* @singlemaster: Indicates bus is single master
* @dynamic: Mode of controller
* @prev_msg_tx: Previous message is Tx
* @quirks: To hold platform specific bug info
* @smbus_block_read: Flag to handle block read
* @input_clk: Input clock to I2C controller
* @i2c_clk: I2C SCL frequency
*/
struct xiic_i2c {
struct device *dev;
void __iomem *base;
struct completion completion;
struct i2c_adapter adap;
struct i2c_msg *tx_msg;
struct mutex lock;
unsigned int tx_pos;
unsigned int nmsgs;
struct i2c_msg *rx_msg;
int rx_pos;
enum xiic_endian endianness;
struct clk *clk;
enum xilinx_i2c_state state;
bool singlemaster;
bool dynamic;
bool prev_msg_tx;
u32 quirks;
bool smbus_block_read;
unsigned long input_clk;
unsigned int i2c_clk;
};
struct xiic_version_data {
u32 quirks;
};
/**
* struct timing_regs - AXI I2C timing registers that depend on I2C spec
* @tsusta: setup time for a repeated START condition
* @tsusto: setup time for a STOP condition
* @thdsta: hold time for a repeated START condition
* @tsudat: setup time for data
* @tbuf: bus free time between STOP and START
*/
struct timing_regs {
unsigned int tsusta;
unsigned int tsusto;
unsigned int thdsta;
unsigned int tsudat;
unsigned int tbuf;
};
/* Reg values in ns derived from I2C spec and AXI I2C PG for different frequencies */
static const struct timing_regs timing_reg_values[] = {
{ 5700, 5000, 4300, 550, 5000 }, /* Reg values for 100KHz */
{ 900, 900, 900, 400, 1600 }, /* Reg values for 400KHz */
{ 380, 380, 380, 170, 620 }, /* Reg values for 1MHz */
};
#define XIIC_MSB_OFFSET 0
#define XIIC_REG_OFFSET (0x100 + XIIC_MSB_OFFSET)
/*
* Register offsets in bytes from RegisterBase. Three is added to the
* base offset to access LSB (IBM style) of the word
*/
#define XIIC_CR_REG_OFFSET (0x00 + XIIC_REG_OFFSET) /* Control Register */
#define XIIC_SR_REG_OFFSET (0x04 + XIIC_REG_OFFSET) /* Status Register */
#define XIIC_DTR_REG_OFFSET (0x08 + XIIC_REG_OFFSET) /* Data Tx Register */
#define XIIC_DRR_REG_OFFSET (0x0C + XIIC_REG_OFFSET) /* Data Rx Register */
#define XIIC_ADR_REG_OFFSET (0x10 + XIIC_REG_OFFSET) /* Address Register */
#define XIIC_TFO_REG_OFFSET (0x14 + XIIC_REG_OFFSET) /* Tx FIFO Occupancy */
#define XIIC_RFO_REG_OFFSET (0x18 + XIIC_REG_OFFSET) /* Rx FIFO Occupancy */
#define XIIC_TBA_REG_OFFSET (0x1C + XIIC_REG_OFFSET) /* 10 Bit Address reg */
#define XIIC_RFD_REG_OFFSET (0x20 + XIIC_REG_OFFSET) /* Rx FIFO Depth reg */
#define XIIC_GPO_REG_OFFSET (0x24 + XIIC_REG_OFFSET) /* Output Register */
/*
* Timing register offsets from RegisterBase. These are used only for
* setting i2c clock frequency for the line.
*/
#define XIIC_TSUSTA_REG_OFFSET (0x28 + XIIC_REG_OFFSET) /* TSUSTA Register */
#define XIIC_TSUSTO_REG_OFFSET (0x2C + XIIC_REG_OFFSET) /* TSUSTO Register */
#define XIIC_THDSTA_REG_OFFSET (0x30 + XIIC_REG_OFFSET) /* THDSTA Register */
#define XIIC_TSUDAT_REG_OFFSET (0x34 + XIIC_REG_OFFSET) /* TSUDAT Register */
#define XIIC_TBUF_REG_OFFSET (0x38 + XIIC_REG_OFFSET) /* TBUF Register */
#define XIIC_THIGH_REG_OFFSET (0x3C + XIIC_REG_OFFSET) /* THIGH Register */
#define XIIC_TLOW_REG_OFFSET (0x40 + XIIC_REG_OFFSET) /* TLOW Register */
#define XIIC_THDDAT_REG_OFFSET (0x44 + XIIC_REG_OFFSET) /* THDDAT Register */
/* Control Register masks */
#define XIIC_CR_ENABLE_DEVICE_MASK 0x01 /* Device enable = 1 */
#define XIIC_CR_TX_FIFO_RESET_MASK 0x02 /* Transmit FIFO reset=1 */
#define XIIC_CR_MSMS_MASK 0x04 /* Master starts Txing=1 */
#define XIIC_CR_DIR_IS_TX_MASK 0x08 /* Dir of tx. Txing=1 */
#define XIIC_CR_NO_ACK_MASK 0x10 /* Tx Ack. NO ack = 1 */
#define XIIC_CR_REPEATED_START_MASK 0x20 /* Repeated start = 1 */
#define XIIC_CR_GENERAL_CALL_MASK 0x40 /* Gen Call enabled = 1 */
/* Status Register masks */
#define XIIC_SR_GEN_CALL_MASK 0x01 /* 1=a mstr issued a GC */
#define XIIC_SR_ADDR_AS_SLAVE_MASK 0x02 /* 1=when addr as slave */
#define XIIC_SR_BUS_BUSY_MASK 0x04 /* 1 = bus is busy */
#define XIIC_SR_MSTR_RDING_SLAVE_MASK 0x08 /* 1=Dir: mstr <-- slave */
#define XIIC_SR_TX_FIFO_FULL_MASK 0x10 /* 1 = Tx FIFO full */
#define XIIC_SR_RX_FIFO_FULL_MASK 0x20 /* 1 = Rx FIFO full */
#define XIIC_SR_RX_FIFO_EMPTY_MASK 0x40 /* 1 = Rx FIFO empty */
#define XIIC_SR_TX_FIFO_EMPTY_MASK 0x80 /* 1 = Tx FIFO empty */
/* Interrupt Status Register masks Interrupt occurs when... */
#define XIIC_INTR_ARB_LOST_MASK 0x01 /* 1 = arbitration lost */
#define XIIC_INTR_TX_ERROR_MASK 0x02 /* 1=Tx error/msg complete */
#define XIIC_INTR_TX_EMPTY_MASK 0x04 /* 1 = Tx FIFO/reg empty */
#define XIIC_INTR_RX_FULL_MASK 0x08 /* 1=Rx FIFO/reg=OCY level */
#define XIIC_INTR_BNB_MASK 0x10 /* 1 = Bus not busy */
#define XIIC_INTR_AAS_MASK 0x20 /* 1 = when addr as slave */
#define XIIC_INTR_NAAS_MASK 0x40 /* 1 = not addr as slave */
#define XIIC_INTR_TX_HALF_MASK 0x80 /* 1 = TX FIFO half empty */
/* The following constants specify the depth of the FIFOs */
#define IIC_RX_FIFO_DEPTH 16 /* Rx fifo capacity */
#define IIC_TX_FIFO_DEPTH 16 /* Tx fifo capacity */
/* The following constants specify groups of interrupts that are typically
* enabled or disables at the same time
*/
#define XIIC_TX_INTERRUPTS \
(XIIC_INTR_TX_ERROR_MASK | XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK)
#define XIIC_TX_RX_INTERRUPTS (XIIC_INTR_RX_FULL_MASK | XIIC_TX_INTERRUPTS)
/*
* Tx Fifo upper bit masks.
*/
#define XIIC_TX_DYN_START_MASK 0x0100 /* 1 = Set dynamic start */
#define XIIC_TX_DYN_STOP_MASK 0x0200 /* 1 = Set dynamic stop */
/* Dynamic mode constants */
#define MAX_READ_LENGTH_DYNAMIC 255 /* Max length for dynamic read */
/*
* The following constants define the register offsets for the Interrupt
* registers. There are some holes in the memory map for reserved addresses
* to allow other registers to be added and still match the memory map of the
* interrupt controller registers
*/
#define XIIC_DGIER_OFFSET 0x1C /* Device Global Interrupt Enable Register */
#define XIIC_IISR_OFFSET 0x20 /* Interrupt Status Register */
#define XIIC_IIER_OFFSET 0x28 /* Interrupt Enable Register */
#define XIIC_RESETR_OFFSET 0x40 /* Reset Register */
#define XIIC_RESET_MASK 0xAUL
#define XIIC_PM_TIMEOUT 1000 /* ms */
/* timeout waiting for the controller to respond */
#define XIIC_I2C_TIMEOUT (msecs_to_jiffies(1000))
/* timeout waiting for the controller finish transfers */
#define XIIC_XFER_TIMEOUT (msecs_to_jiffies(10000))
/*
* The following constant is used for the device global interrupt enable
* register, to enable all interrupts for the device, this is the only bit
* in the register
*/
#define XIIC_GINTR_ENABLE_MASK 0x80000000UL
#define xiic_tx_space(i2c) ((i2c)->tx_msg->len - (i2c)->tx_pos)
#define xiic_rx_space(i2c) ((i2c)->rx_msg->len - (i2c)->rx_pos)
static int xiic_start_xfer(struct xiic_i2c *i2c, struct i2c_msg *msgs, int num);
static void __xiic_start_xfer(struct xiic_i2c *i2c);
/*
* For the register read and write functions, a little-endian and big-endian
* version are necessary. Endianness is detected during the probe function.
* Only the least significant byte [doublet] of the register are ever
* accessed. This requires an offset of 3 [2] from the base address for
* big-endian systems.
*/
static inline void xiic_setreg8(struct xiic_i2c *i2c, int reg, u8 value)
{
if (i2c->endianness == LITTLE)
iowrite8(value, i2c->base + reg);
else
iowrite8(value, i2c->base + reg + 3);
}
static inline u8 xiic_getreg8(struct xiic_i2c *i2c, int reg)
{
u8 ret;
if (i2c->endianness == LITTLE)
ret = ioread8(i2c->base + reg);
else
ret = ioread8(i2c->base + reg + 3);
return ret;
}
static inline void xiic_setreg16(struct xiic_i2c *i2c, int reg, u16 value)
{
if (i2c->endianness == LITTLE)
iowrite16(value, i2c->base + reg);
else
iowrite16be(value, i2c->base + reg + 2);
}
static inline void xiic_setreg32(struct xiic_i2c *i2c, int reg, int value)
{
if (i2c->endianness == LITTLE)
iowrite32(value, i2c->base + reg);
else
iowrite32be(value, i2c->base + reg);
}
static inline int xiic_getreg32(struct xiic_i2c *i2c, int reg)
{
u32 ret;
if (i2c->endianness == LITTLE)
ret = ioread32(i2c->base + reg);
else
ret = ioread32be(i2c->base + reg);
return ret;
}
static inline void xiic_irq_dis(struct xiic_i2c *i2c, u32 mask)
{
u32 ier = xiic_getreg32(i2c, XIIC_IIER_OFFSET);
xiic_setreg32(i2c, XIIC_IIER_OFFSET, ier & ~mask);
}
static inline void xiic_irq_en(struct xiic_i2c *i2c, u32 mask)
{
u32 ier = xiic_getreg32(i2c, XIIC_IIER_OFFSET);
xiic_setreg32(i2c, XIIC_IIER_OFFSET, ier | mask);
}
static inline void xiic_irq_clr(struct xiic_i2c *i2c, u32 mask)
{
u32 isr = xiic_getreg32(i2c, XIIC_IISR_OFFSET);
xiic_setreg32(i2c, XIIC_IISR_OFFSET, isr & mask);
}
static inline void xiic_irq_clr_en(struct xiic_i2c *i2c, u32 mask)
{
xiic_irq_clr(i2c, mask);
xiic_irq_en(i2c, mask);
}
static int xiic_clear_rx_fifo(struct xiic_i2c *i2c)
{
u8 sr;
unsigned long timeout;
timeout = jiffies + XIIC_I2C_TIMEOUT;
for (sr = xiic_getreg8(i2c, XIIC_SR_REG_OFFSET);
!(sr & XIIC_SR_RX_FIFO_EMPTY_MASK);
sr = xiic_getreg8(i2c, XIIC_SR_REG_OFFSET)) {
xiic_getreg8(i2c, XIIC_DRR_REG_OFFSET);
if (time_after(jiffies, timeout)) {
dev_err(i2c->dev, "Failed to clear rx fifo\n");
return -ETIMEDOUT;
}
}
return 0;
}
static int xiic_wait_tx_empty(struct xiic_i2c *i2c)
{
u8 isr;
unsigned long timeout;
timeout = jiffies + XIIC_I2C_TIMEOUT;
for (isr = xiic_getreg32(i2c, XIIC_IISR_OFFSET);
!(isr & XIIC_INTR_TX_EMPTY_MASK);
isr = xiic_getreg32(i2c, XIIC_IISR_OFFSET)) {
if (time_after(jiffies, timeout)) {
dev_err(i2c->dev, "Timeout waiting at Tx empty\n");
return -ETIMEDOUT;
}
}
return 0;
}
/**
* xiic_setclk - Sets the configured clock rate
* @i2c: Pointer to the xiic device structure
*
* The timing register values are calculated according to the input clock
* frequency and configured scl frequency. For details, please refer the
* AXI I2C PG and NXP I2C Spec.
* Supported frequencies are 100KHz, 400KHz and 1MHz.
*
* Return: 0 on success (Supported frequency selected or not configurable in SW)
* -EINVAL on failure (scl frequency not supported or THIGH is 0)
*/
static int xiic_setclk(struct xiic_i2c *i2c)
{
unsigned int clk_in_mhz;
unsigned int index = 0;
u32 reg_val;
dev_dbg(i2c->adap.dev.parent,
"%s entry, i2c->input_clk: %ld, i2c->i2c_clk: %d\n",
__func__, i2c->input_clk, i2c->i2c_clk);
/* If not specified in DT, do not configure in SW. Rely only on Vivado design */
if (!i2c->i2c_clk || !i2c->input_clk)
return 0;
clk_in_mhz = DIV_ROUND_UP(i2c->input_clk, 1000000);
switch (i2c->i2c_clk) {
case I2C_MAX_FAST_MODE_PLUS_FREQ:
index = REG_VALUES_1MHZ;
break;
case I2C_MAX_FAST_MODE_FREQ:
index = REG_VALUES_400KHZ;
break;
case I2C_MAX_STANDARD_MODE_FREQ:
index = REG_VALUES_100KHZ;
break;
default:
dev_warn(i2c->adap.dev.parent, "Unsupported scl frequency\n");
return -EINVAL;
}
/*
* Value to be stored in a register is the number of clock cycles required
* for the time duration. So the time is divided by the input clock time
* period to get the number of clock cycles required. Refer Xilinx AXI I2C
* PG document and I2C specification for further details.
*/
/* THIGH - Depends on SCL clock frequency(i2c_clk) as below */
reg_val = (DIV_ROUND_UP(i2c->input_clk, 2 * i2c->i2c_clk)) - 7;
if (reg_val == 0)
return -EINVAL;
xiic_setreg32(i2c, XIIC_THIGH_REG_OFFSET, reg_val - 1);
/* TLOW - Value same as THIGH */
xiic_setreg32(i2c, XIIC_TLOW_REG_OFFSET, reg_val - 1);
/* TSUSTA */
reg_val = (timing_reg_values[index].tsusta * clk_in_mhz) / 1000;
xiic_setreg32(i2c, XIIC_TSUSTA_REG_OFFSET, reg_val - 1);
/* TSUSTO */
reg_val = (timing_reg_values[index].tsusto * clk_in_mhz) / 1000;
xiic_setreg32(i2c, XIIC_TSUSTO_REG_OFFSET, reg_val - 1);
/* THDSTA */
reg_val = (timing_reg_values[index].thdsta * clk_in_mhz) / 1000;
xiic_setreg32(i2c, XIIC_THDSTA_REG_OFFSET, reg_val - 1);
/* TSUDAT */
reg_val = (timing_reg_values[index].tsudat * clk_in_mhz) / 1000;
xiic_setreg32(i2c, XIIC_TSUDAT_REG_OFFSET, reg_val - 1);
/* TBUF */
reg_val = (timing_reg_values[index].tbuf * clk_in_mhz) / 1000;
xiic_setreg32(i2c, XIIC_TBUF_REG_OFFSET, reg_val - 1);
/* THDDAT */
xiic_setreg32(i2c, XIIC_THDDAT_REG_OFFSET, 1);
return 0;
}
static int xiic_reinit(struct xiic_i2c *i2c)
{
int ret;
xiic_setreg32(i2c, XIIC_RESETR_OFFSET, XIIC_RESET_MASK);
ret = xiic_setclk(i2c);
if (ret)
return ret;
/* Set receive Fifo depth to maximum (zero based). */
xiic_setreg8(i2c, XIIC_RFD_REG_OFFSET, IIC_RX_FIFO_DEPTH - 1);
/* Reset Tx Fifo. */
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, XIIC_CR_TX_FIFO_RESET_MASK);
/* Enable IIC Device, remove Tx Fifo reset & disable general call. */
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, XIIC_CR_ENABLE_DEVICE_MASK);
/* make sure RX fifo is empty */
ret = xiic_clear_rx_fifo(i2c);
if (ret)
return ret;
/* Enable interrupts */
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, XIIC_GINTR_ENABLE_MASK);
xiic_irq_clr_en(i2c, XIIC_INTR_ARB_LOST_MASK);
return 0;
}
static void xiic_deinit(struct xiic_i2c *i2c)
{
u8 cr;
xiic_setreg32(i2c, XIIC_RESETR_OFFSET, XIIC_RESET_MASK);
/* Disable IIC Device. */
cr = xiic_getreg8(i2c, XIIC_CR_REG_OFFSET);
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, cr & ~XIIC_CR_ENABLE_DEVICE_MASK);
}
static void xiic_smbus_block_read_setup(struct xiic_i2c *i2c)
{
u8 rxmsg_len, rfd_set = 0;
/*
* Clear the I2C_M_RECV_LEN flag to avoid setting
* message length again
*/
i2c->rx_msg->flags &= ~I2C_M_RECV_LEN;
/* Set smbus_block_read flag to identify in isr */
i2c->smbus_block_read = true;
/* Read byte from rx fifo and set message length */
rxmsg_len = xiic_getreg8(i2c, XIIC_DRR_REG_OFFSET);
i2c->rx_msg->buf[i2c->rx_pos++] = rxmsg_len;
/* Check if received length is valid */
if (rxmsg_len <= I2C_SMBUS_BLOCK_MAX) {
/* Set Receive fifo depth */
if (rxmsg_len > IIC_RX_FIFO_DEPTH) {
/*
* When Rx msg len greater than or equal to Rx fifo capacity
* Receive fifo depth should set to Rx fifo capacity minus 1
*/
rfd_set = IIC_RX_FIFO_DEPTH - 1;
i2c->rx_msg->len = rxmsg_len + 1;
} else if ((rxmsg_len == 1) ||
(rxmsg_len == 0)) {
/*
* Minimum of 3 bytes required to exit cleanly. 1 byte
* already received, Second byte is being received. Have
* to set NACK in read_rx before receiving the last byte
*/
rfd_set = 0;
i2c->rx_msg->len = SMBUS_BLOCK_READ_MIN_LEN;
} else {
/*
* When Rx msg len less than Rx fifo capacity
* Receive fifo depth should set to Rx msg len minus 2
*/
rfd_set = rxmsg_len - 2;
i2c->rx_msg->len = rxmsg_len + 1;
}
xiic_setreg8(i2c, XIIC_RFD_REG_OFFSET, rfd_set);
return;
}
/* Invalid message length, trigger STATE_ERROR with tx_msg_len in ISR */
i2c->tx_msg->len = 3;
i2c->smbus_block_read = false;
dev_err(i2c->adap.dev.parent, "smbus_block_read Invalid msg length\n");
}
static void xiic_read_rx(struct xiic_i2c *i2c)
{
u8 bytes_in_fifo, cr = 0, bytes_to_read = 0;
u32 bytes_rem = 0;
int i;
bytes_in_fifo = xiic_getreg8(i2c, XIIC_RFO_REG_OFFSET) + 1;
dev_dbg(i2c->adap.dev.parent,
"%s entry, bytes in fifo: %d, rem: %d, SR: 0x%x, CR: 0x%x\n",
__func__, bytes_in_fifo, xiic_rx_space(i2c),
xiic_getreg8(i2c, XIIC_SR_REG_OFFSET),
xiic_getreg8(i2c, XIIC_CR_REG_OFFSET));
if (bytes_in_fifo > xiic_rx_space(i2c))
bytes_in_fifo = xiic_rx_space(i2c);
bytes_to_read = bytes_in_fifo;
if (!i2c->dynamic) {
bytes_rem = xiic_rx_space(i2c) - bytes_in_fifo;
/* Set msg length if smbus_block_read */
if (i2c->rx_msg->flags & I2C_M_RECV_LEN) {
xiic_smbus_block_read_setup(i2c);
return;
}
if (bytes_rem > IIC_RX_FIFO_DEPTH) {
bytes_to_read = bytes_in_fifo;
} else if (bytes_rem > 1) {
bytes_to_read = bytes_rem - 1;
} else if (bytes_rem == 1) {
bytes_to_read = 1;
/* Set NACK in CR to indicate slave transmitter */
cr = xiic_getreg8(i2c, XIIC_CR_REG_OFFSET);
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, cr |
XIIC_CR_NO_ACK_MASK);
} else if (bytes_rem == 0) {
bytes_to_read = bytes_in_fifo;
/* Generate stop on the bus if it is last message */
if (i2c->nmsgs == 1) {
cr = xiic_getreg8(i2c, XIIC_CR_REG_OFFSET);
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, cr &
~XIIC_CR_MSMS_MASK);
}
/* Make TXACK=0, clean up for next transaction */
cr = xiic_getreg8(i2c, XIIC_CR_REG_OFFSET);
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, cr &
~XIIC_CR_NO_ACK_MASK);
}
}
/* Read the fifo */
for (i = 0; i < bytes_to_read; i++) {
i2c->rx_msg->buf[i2c->rx_pos++] =
xiic_getreg8(i2c, XIIC_DRR_REG_OFFSET);
}
if (i2c->dynamic) {
u8 bytes;
/* Receive remaining bytes if less than fifo depth */
bytes = min_t(u8, xiic_rx_space(i2c), IIC_RX_FIFO_DEPTH);
bytes--;
xiic_setreg8(i2c, XIIC_RFD_REG_OFFSET, bytes);
}
}
static int xiic_tx_fifo_space(struct xiic_i2c *i2c)
{
/* return the actual space left in the FIFO */
return IIC_TX_FIFO_DEPTH - xiic_getreg8(i2c, XIIC_TFO_REG_OFFSET) - 1;
}
static void xiic_fill_tx_fifo(struct xiic_i2c *i2c)
{
u8 fifo_space = xiic_tx_fifo_space(i2c);
int len = xiic_tx_space(i2c);
len = (len > fifo_space) ? fifo_space : len;
dev_dbg(i2c->adap.dev.parent, "%s entry, len: %d, fifo space: %d\n",
__func__, len, fifo_space);
while (len--) {
u16 data = i2c->tx_msg->buf[i2c->tx_pos++];
if (!xiic_tx_space(i2c) && i2c->nmsgs == 1) {
/* last message in transfer -> STOP */
if (i2c->dynamic) {
data |= XIIC_TX_DYN_STOP_MASK;
} else {
u8 cr;
int status;
/* Wait till FIFO is empty so STOP is sent last */
status = xiic_wait_tx_empty(i2c);
if (status)
return;
/* Write to CR to stop */
cr = xiic_getreg8(i2c, XIIC_CR_REG_OFFSET);
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, cr &
~XIIC_CR_MSMS_MASK);
}
dev_dbg(i2c->adap.dev.parent, "%s TX STOP\n", __func__);
}
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET, data);
}
}
static void xiic_wakeup(struct xiic_i2c *i2c, enum xilinx_i2c_state code)
{
i2c->tx_msg = NULL;
i2c->rx_msg = NULL;
i2c->nmsgs = 0;
i2c->state = code;
complete(&i2c->completion);
}
static irqreturn_t xiic_process(int irq, void *dev_id)
{
struct xiic_i2c *i2c = dev_id;
u32 pend, isr, ier;
u32 clr = 0;
int xfer_more = 0;
int wakeup_req = 0;
enum xilinx_i2c_state wakeup_code = STATE_DONE;
int ret;
/* Get the interrupt Status from the IPIF. There is no clearing of
* interrupts in the IPIF. Interrupts must be cleared at the source.
* To find which interrupts are pending; AND interrupts pending with
* interrupts masked.
*/
mutex_lock(&i2c->lock);
isr = xiic_getreg32(i2c, XIIC_IISR_OFFSET);
ier = xiic_getreg32(i2c, XIIC_IIER_OFFSET);
pend = isr & ier;
dev_dbg(i2c->adap.dev.parent, "%s: IER: 0x%x, ISR: 0x%x, pend: 0x%x\n",
__func__, ier, isr, pend);
dev_dbg(i2c->adap.dev.parent, "%s: SR: 0x%x, msg: %p, nmsgs: %d\n",
__func__, xiic_getreg8(i2c, XIIC_SR_REG_OFFSET),
i2c->tx_msg, i2c->nmsgs);
dev_dbg(i2c->adap.dev.parent, "%s, ISR: 0x%x, CR: 0x%x\n",
__func__, xiic_getreg32(i2c, XIIC_IISR_OFFSET),
xiic_getreg8(i2c, XIIC_CR_REG_OFFSET));
/* Service requesting interrupt */
if ((pend & XIIC_INTR_ARB_LOST_MASK) ||
((pend & XIIC_INTR_TX_ERROR_MASK) &&
!(pend & XIIC_INTR_RX_FULL_MASK))) {
/* bus arbritration lost, or...
* Transmit error _OR_ RX completed
* if this happens when RX_FULL is not set
* this is probably a TX error
*/
dev_dbg(i2c->adap.dev.parent, "%s error\n", __func__);
/* dynamic mode seem to suffer from problems if we just flushes
* fifos and the next message is a TX with len 0 (only addr)
* reset the IP instead of just flush fifos
*/
ret = xiic_reinit(i2c);
if (!ret)
dev_dbg(i2c->adap.dev.parent, "reinit failed\n");
if (i2c->rx_msg) {
wakeup_req = 1;
wakeup_code = STATE_ERROR;
}
if (i2c->tx_msg) {
wakeup_req = 1;
wakeup_code = STATE_ERROR;
}
/* don't try to handle other events */
goto out;
}
if (pend & XIIC_INTR_RX_FULL_MASK) {
/* Receive register/FIFO is full */
clr |= XIIC_INTR_RX_FULL_MASK;
if (!i2c->rx_msg) {
dev_dbg(i2c->adap.dev.parent,
"%s unexpected RX IRQ\n", __func__);
xiic_clear_rx_fifo(i2c);
goto out;
}
xiic_read_rx(i2c);
if (xiic_rx_space(i2c) == 0) {
/* this is the last part of the message */
i2c->rx_msg = NULL;
/* also clear TX error if there (RX complete) */
clr |= (isr & XIIC_INTR_TX_ERROR_MASK);
dev_dbg(i2c->adap.dev.parent,
"%s end of message, nmsgs: %d\n",
__func__, i2c->nmsgs);
/* send next message if this wasn't the last,
* otherwise the transfer will be finialise when
* receiving the bus not busy interrupt
*/
if (i2c->nmsgs > 1) {
i2c->nmsgs--;
i2c->tx_msg++;
dev_dbg(i2c->adap.dev.parent,
"%s will start next...\n", __func__);
xfer_more = 1;
}
}
}
if (pend & (XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK)) {
/* Transmit register/FIFO is empty or ½ empty */
clr |= (pend &
(XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK));
if (!i2c->tx_msg) {
dev_dbg(i2c->adap.dev.parent,
"%s unexpected TX IRQ\n", __func__);
goto out;
}
xiic_fill_tx_fifo(i2c);
/* current message sent and there is space in the fifo */
if (!xiic_tx_space(i2c) && xiic_tx_fifo_space(i2c) >= 2) {
dev_dbg(i2c->adap.dev.parent,
"%s end of message sent, nmsgs: %d\n",
__func__, i2c->nmsgs);
if (i2c->nmsgs > 1) {
i2c->nmsgs--;
i2c->tx_msg++;
xfer_more = 1;
} else {
xiic_irq_dis(i2c, XIIC_INTR_TX_HALF_MASK);
dev_dbg(i2c->adap.dev.parent,
"%s Got TX IRQ but no more to do...\n",
__func__);
}
} else if (!xiic_tx_space(i2c) && (i2c->nmsgs == 1))
/* current frame is sent and is last,
* make sure to disable tx half
*/
xiic_irq_dis(i2c, XIIC_INTR_TX_HALF_MASK);
}
if (pend & XIIC_INTR_BNB_MASK) {
/* IIC bus has transitioned to not busy */
clr |= XIIC_INTR_BNB_MASK;
/* The bus is not busy, disable BusNotBusy interrupt */
xiic_irq_dis(i2c, XIIC_INTR_BNB_MASK);
if (i2c->tx_msg && i2c->smbus_block_read) {
i2c->smbus_block_read = false;
/* Set requested message len=1 to indicate STATE_DONE */
i2c->tx_msg->len = 1;
}
if (!i2c->tx_msg)
goto out;
wakeup_req = 1;
if (i2c->nmsgs == 1 && !i2c->rx_msg &&
xiic_tx_space(i2c) == 0)
wakeup_code = STATE_DONE;
else
wakeup_code = STATE_ERROR;
}
out:
dev_dbg(i2c->adap.dev.parent, "%s clr: 0x%x\n", __func__, clr);
xiic_setreg32(i2c, XIIC_IISR_OFFSET, clr);
if (xfer_more)
__xiic_start_xfer(i2c);
if (wakeup_req)
xiic_wakeup(i2c, wakeup_code);
WARN_ON(xfer_more && wakeup_req);
mutex_unlock(&i2c->lock);
return IRQ_HANDLED;
}
static int xiic_bus_busy(struct xiic_i2c *i2c)
{
u8 sr = xiic_getreg8(i2c, XIIC_SR_REG_OFFSET);
return (sr & XIIC_SR_BUS_BUSY_MASK) ? -EBUSY : 0;
}
static int xiic_busy(struct xiic_i2c *i2c)
{
int tries = 3;
int err;
if (i2c->tx_msg || i2c->rx_msg)
return -EBUSY;
/* In single master mode bus can only be busy, when in use by this
* driver. If the register indicates bus being busy for some reason we
* should ignore it, since bus will never be released and i2c will be
* stuck forever.
*/
if (i2c->singlemaster) {
return 0;
}
/* for instance if previous transfer was terminated due to TX error
* it might be that the bus is on it's way to become available
* give it at most 3 ms to wake
*/
err = xiic_bus_busy(i2c);
while (err && tries--) {
msleep(1);
err = xiic_bus_busy(i2c);
}
return err;
}
static void xiic_start_recv(struct xiic_i2c *i2c)
{
u16 rx_watermark;
u8 cr = 0, rfd_set = 0;
struct i2c_msg *msg = i2c->rx_msg = i2c->tx_msg;
dev_dbg(i2c->adap.dev.parent, "%s entry, ISR: 0x%x, CR: 0x%x\n",
__func__, xiic_getreg32(i2c, XIIC_IISR_OFFSET),
xiic_getreg8(i2c, XIIC_CR_REG_OFFSET));
/* Disable Tx interrupts */
xiic_irq_dis(i2c, XIIC_INTR_TX_HALF_MASK | XIIC_INTR_TX_EMPTY_MASK);
if (i2c->dynamic) {
u8 bytes;
u16 val;
/* Clear and enable Rx full interrupt. */
xiic_irq_clr_en(i2c, XIIC_INTR_RX_FULL_MASK |
XIIC_INTR_TX_ERROR_MASK);
/*
* We want to get all but last byte, because the TX_ERROR IRQ
* is used to indicate error ACK on the address, and
* negative ack on the last received byte, so to not mix
* them receive all but last.
* In the case where there is only one byte to receive
* we can check if ERROR and RX full is set at the same time
*/
rx_watermark = msg->len;
bytes = min_t(u8, rx_watermark, IIC_RX_FIFO_DEPTH);
if (rx_watermark > 0)
bytes--;
xiic_setreg8(i2c, XIIC_RFD_REG_OFFSET, bytes);
/* write the address */
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET,
i2c_8bit_addr_from_msg(msg) |
XIIC_TX_DYN_START_MASK);
/* If last message, include dynamic stop bit with length */
val = (i2c->nmsgs == 1) ? XIIC_TX_DYN_STOP_MASK : 0;
val |= msg->len;
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET, val);
xiic_irq_clr_en(i2c, XIIC_INTR_BNB_MASK);
} else {
/*
* If previous message is Tx, make sure that Tx FIFO is empty
* before starting a new transfer as the repeated start in
* standard mode can corrupt the transaction if there are
* still bytes to be transmitted in FIFO
*/
if (i2c->prev_msg_tx) {
int status;
status = xiic_wait_tx_empty(i2c);
if (status)
return;
}
cr = xiic_getreg8(i2c, XIIC_CR_REG_OFFSET);
/* Set Receive fifo depth */
rx_watermark = msg->len;
if (rx_watermark > IIC_RX_FIFO_DEPTH) {
rfd_set = IIC_RX_FIFO_DEPTH - 1;
} else if (rx_watermark == 1) {
rfd_set = rx_watermark - 1;
/* Set No_ACK, except for smbus_block_read */
if (!(i2c->rx_msg->flags & I2C_M_RECV_LEN)) {
/* Handle single byte transfer separately */
cr |= XIIC_CR_NO_ACK_MASK;
}
} else if (rx_watermark == 0) {
rfd_set = rx_watermark;
} else {
rfd_set = rx_watermark - 2;
}
/* Check if RSTA should be set */
if (cr & XIIC_CR_MSMS_MASK) {
/* Already a master, RSTA should be set */
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, (cr |
XIIC_CR_REPEATED_START_MASK) &
~(XIIC_CR_DIR_IS_TX_MASK));
}
xiic_setreg8(i2c, XIIC_RFD_REG_OFFSET, rfd_set);
/* Clear and enable Rx full and transmit complete interrupts */
xiic_irq_clr_en(i2c, XIIC_INTR_RX_FULL_MASK |
XIIC_INTR_TX_ERROR_MASK);
/* Write the address */
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET,
i2c_8bit_addr_from_msg(msg));
/* Write to Control Register,to start transaction in Rx mode */
if ((cr & XIIC_CR_MSMS_MASK) == 0) {
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, (cr |
XIIC_CR_MSMS_MASK)
& ~(XIIC_CR_DIR_IS_TX_MASK));
}
dev_dbg(i2c->adap.dev.parent, "%s end, ISR: 0x%x, CR: 0x%x\n",
__func__, xiic_getreg32(i2c, XIIC_IISR_OFFSET),
xiic_getreg8(i2c, XIIC_CR_REG_OFFSET));
}
if (i2c->nmsgs == 1)
/* very last, enable bus not busy as well */
xiic_irq_clr_en(i2c, XIIC_INTR_BNB_MASK);
/* the message is tx:ed */
i2c->tx_pos = msg->len;
/* Enable interrupts */
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, XIIC_GINTR_ENABLE_MASK);
i2c->prev_msg_tx = false;
}
static void xiic_start_send(struct xiic_i2c *i2c)
{
u8 cr = 0;
u16 data;
struct i2c_msg *msg = i2c->tx_msg;
dev_dbg(i2c->adap.dev.parent, "%s entry, msg: %p, len: %d",
__func__, msg, msg->len);
dev_dbg(i2c->adap.dev.parent, "%s entry, ISR: 0x%x, CR: 0x%x\n",
__func__, xiic_getreg32(i2c, XIIC_IISR_OFFSET),
xiic_getreg8(i2c, XIIC_CR_REG_OFFSET));
if (i2c->dynamic) {
/* write the address */
data = i2c_8bit_addr_from_msg(msg) |
XIIC_TX_DYN_START_MASK;
if (i2c->nmsgs == 1 && msg->len == 0)
/* no data and last message -> add STOP */
data |= XIIC_TX_DYN_STOP_MASK;
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET, data);
/* Clear any pending Tx empty, Tx Error and then enable them */
xiic_irq_clr_en(i2c, XIIC_INTR_TX_EMPTY_MASK |
XIIC_INTR_TX_ERROR_MASK |
XIIC_INTR_BNB_MASK |
((i2c->nmsgs > 1 || xiic_tx_space(i2c)) ?
XIIC_INTR_TX_HALF_MASK : 0));
xiic_fill_tx_fifo(i2c);
} else {
/*
* If previous message is Tx, make sure that Tx FIFO is empty
* before starting a new transfer as the repeated start in
* standard mode can corrupt the transaction if there are
* still bytes to be transmitted in FIFO
*/
if (i2c->prev_msg_tx) {
int status;
status = xiic_wait_tx_empty(i2c);
if (status)
return;
}
/* Check if RSTA should be set */
cr = xiic_getreg8(i2c, XIIC_CR_REG_OFFSET);
if (cr & XIIC_CR_MSMS_MASK) {
/* Already a master, RSTA should be set */
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, (cr |
XIIC_CR_REPEATED_START_MASK |
XIIC_CR_DIR_IS_TX_MASK) &
~(XIIC_CR_NO_ACK_MASK));
}
/* Write address to FIFO */
data = i2c_8bit_addr_from_msg(msg);
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET, data);
/* Fill fifo */
xiic_fill_tx_fifo(i2c);
if ((cr & XIIC_CR_MSMS_MASK) == 0) {
/* Start Tx by writing to CR */
cr = xiic_getreg8(i2c, XIIC_CR_REG_OFFSET);
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, cr |
XIIC_CR_MSMS_MASK |
XIIC_CR_DIR_IS_TX_MASK);
}
/* Clear any pending Tx empty, Tx Error and then enable them */
xiic_irq_clr_en(i2c, XIIC_INTR_TX_EMPTY_MASK |
XIIC_INTR_TX_ERROR_MASK |
XIIC_INTR_BNB_MASK);
}
i2c->prev_msg_tx = true;
}
static void __xiic_start_xfer(struct xiic_i2c *i2c)
{
int fifo_space = xiic_tx_fifo_space(i2c);
dev_dbg(i2c->adap.dev.parent, "%s entry, msg: %p, fifos space: %d\n",
__func__, i2c->tx_msg, fifo_space);
if (!i2c->tx_msg)
return;
i2c->rx_pos = 0;
i2c->tx_pos = 0;
i2c->state = STATE_START;
if (i2c->tx_msg->flags & I2C_M_RD) {
/* we dont date putting several reads in the FIFO */
xiic_start_recv(i2c);
} else {
xiic_start_send(i2c);
}
}
static int xiic_start_xfer(struct xiic_i2c *i2c, struct i2c_msg *msgs, int num)
{
bool broken_read, max_read_len, smbus_blk_read;
int ret, count;
mutex_lock(&i2c->lock);
ret = xiic_busy(i2c);
if (ret)
goto out;
i2c->tx_msg = msgs;
i2c->rx_msg = NULL;
i2c->nmsgs = num;
init_completion(&i2c->completion);
/* Decide standard mode or Dynamic mode */
i2c->dynamic = true;
/* Initialize prev message type */
i2c->prev_msg_tx = false;
/*
* Scan through nmsgs, use dynamic mode when none of the below three
* conditions occur. We need standard mode even if one condition holds
* true in the entire array of messages in a single transfer.
* If read transaction as dynamic mode is broken for delayed reads
* in xlnx,axi-iic-2.0 / xlnx,xps-iic-2.00.a IP versions.
* If read length is > 255 bytes.
* If smbus_block_read transaction.
*/
for (count = 0; count < i2c->nmsgs; count++) {
broken_read = (i2c->quirks & DYNAMIC_MODE_READ_BROKEN_BIT) &&
(i2c->tx_msg[count].flags & I2C_M_RD);
max_read_len = (i2c->tx_msg[count].flags & I2C_M_RD) &&
(i2c->tx_msg[count].len > MAX_READ_LENGTH_DYNAMIC);
smbus_blk_read = (i2c->tx_msg[count].flags & I2C_M_RECV_LEN);
if (broken_read || max_read_len || smbus_blk_read) {
i2c->dynamic = false;
break;
}
}
ret = xiic_reinit(i2c);
if (!ret)
__xiic_start_xfer(i2c);
out:
mutex_unlock(&i2c->lock);
return ret;
}
static int xiic_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
struct xiic_i2c *i2c = i2c_get_adapdata(adap);
int err;
dev_dbg(adap->dev.parent, "%s entry SR: 0x%x\n", __func__,
xiic_getreg8(i2c, XIIC_SR_REG_OFFSET));
err = pm_runtime_resume_and_get(i2c->dev);
if (err < 0)
return err;
err = xiic_start_xfer(i2c, msgs, num);
if (err < 0) {
dev_err(adap->dev.parent, "Error xiic_start_xfer\n");
goto out;
}
err = wait_for_completion_timeout(&i2c->completion, XIIC_XFER_TIMEOUT);
mutex_lock(&i2c->lock);
if (err == 0) { /* Timeout */
i2c->tx_msg = NULL;
i2c->rx_msg = NULL;
i2c->nmsgs = 0;
err = -ETIMEDOUT;
} else {
err = (i2c->state == STATE_DONE) ? num : -EIO;
}
mutex_unlock(&i2c->lock);
out:
pm_runtime_mark_last_busy(i2c->dev);
pm_runtime_put_autosuspend(i2c->dev);
return err;
}
static u32 xiic_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA;
}
static const struct i2c_algorithm xiic_algorithm = {
.master_xfer = xiic_xfer,
.functionality = xiic_func,
};
static const struct i2c_adapter xiic_adapter = {
.owner = THIS_MODULE,
.class = I2C_CLASS_DEPRECATED,
.algo = &xiic_algorithm,
};
#if defined(CONFIG_OF)
static const struct xiic_version_data xiic_2_00 = {
.quirks = DYNAMIC_MODE_READ_BROKEN_BIT,
};
static const struct of_device_id xiic_of_match[] = {
{ .compatible = "xlnx,xps-iic-2.00.a", .data = &xiic_2_00 },
{ .compatible = "xlnx,axi-iic-2.1", },
{},
};
MODULE_DEVICE_TABLE(of, xiic_of_match);
#endif
static int xiic_i2c_probe(struct platform_device *pdev)
{
struct xiic_i2c *i2c;
struct xiic_i2c_platform_data *pdata;
const struct of_device_id *match;
struct resource *res;
int ret, irq;
u8 i;
u32 sr;
i2c = devm_kzalloc(&pdev->dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
match = of_match_node(xiic_of_match, pdev->dev.of_node);
if (match && match->data) {
const struct xiic_version_data *data = match->data;
i2c->quirks = data->quirks;
}
i2c->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(i2c->base))
return PTR_ERR(i2c->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
pdata = dev_get_platdata(&pdev->dev);
/* hook up driver to tree */
platform_set_drvdata(pdev, i2c);
i2c->adap = xiic_adapter;
i2c_set_adapdata(&i2c->adap, i2c);
i2c->adap.dev.parent = &pdev->dev;
i2c->adap.dev.of_node = pdev->dev.of_node;
snprintf(i2c->adap.name, sizeof(i2c->adap.name),
DRIVER_NAME " %s", pdev->name);
mutex_init(&i2c->lock);
i2c->clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(i2c->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(i2c->clk),
"failed to enable input clock.\n");
i2c->dev = &pdev->dev;
pm_runtime_set_autosuspend_delay(i2c->dev, XIIC_PM_TIMEOUT);
pm_runtime_use_autosuspend(i2c->dev);
pm_runtime_set_active(i2c->dev);
pm_runtime_enable(i2c->dev);
/* SCL frequency configuration */
i2c->input_clk = clk_get_rate(i2c->clk);
ret = of_property_read_u32(pdev->dev.of_node, "clock-frequency",
&i2c->i2c_clk);
/* If clock-frequency not specified in DT, do not configure in SW */
if (ret || i2c->i2c_clk > I2C_MAX_FAST_MODE_PLUS_FREQ)
i2c->i2c_clk = 0;
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
xiic_process, IRQF_ONESHOT,
pdev->name, i2c);
if (ret < 0) {
dev_err(&pdev->dev, "Cannot claim IRQ\n");
goto err_pm_disable;
}
i2c->singlemaster =
of_property_read_bool(pdev->dev.of_node, "single-master");
/*
* Detect endianness
* Try to reset the TX FIFO. Then check the EMPTY flag. If it is not
* set, assume that the endianness was wrong and swap.
*/
i2c->endianness = LITTLE;
xiic_setreg32(i2c, XIIC_CR_REG_OFFSET, XIIC_CR_TX_FIFO_RESET_MASK);
/* Reset is cleared in xiic_reinit */
sr = xiic_getreg32(i2c, XIIC_SR_REG_OFFSET);
if (!(sr & XIIC_SR_TX_FIFO_EMPTY_MASK))
i2c->endianness = BIG;
ret = xiic_reinit(i2c);
if (ret < 0) {
dev_err(&pdev->dev, "Cannot xiic_reinit\n");
goto err_pm_disable;
}
/* add i2c adapter to i2c tree */
ret = i2c_add_adapter(&i2c->adap);
if (ret) {
xiic_deinit(i2c);
goto err_pm_disable;
}
if (pdata) {
/* add in known devices to the bus */
for (i = 0; i < pdata->num_devices; i++)
i2c_new_client_device(&i2c->adap, pdata->devices + i);
}
dev_dbg(&pdev->dev, "mmio %08lx irq %d scl clock frequency %d\n",
(unsigned long)res->start, irq, i2c->i2c_clk);
return 0;
err_pm_disable:
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return ret;
}
static void xiic_i2c_remove(struct platform_device *pdev)
{
struct xiic_i2c *i2c = platform_get_drvdata(pdev);
int ret;
/* remove adapter & data */
i2c_del_adapter(&i2c->adap);
ret = pm_runtime_get_sync(i2c->dev);
if (ret < 0)
dev_warn(&pdev->dev, "Failed to activate device for removal (%pe)\n",
ERR_PTR(ret));
else
xiic_deinit(i2c);
pm_runtime_put_sync(i2c->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
}
static int __maybe_unused xiic_i2c_runtime_suspend(struct device *dev)
{
struct xiic_i2c *i2c = dev_get_drvdata(dev);
clk_disable(i2c->clk);
return 0;
}
static int __maybe_unused xiic_i2c_runtime_resume(struct device *dev)
{
struct xiic_i2c *i2c = dev_get_drvdata(dev);
int ret;
ret = clk_enable(i2c->clk);
if (ret) {
dev_err(dev, "Cannot enable clock.\n");
return ret;
}
return 0;
}
static const struct dev_pm_ops xiic_dev_pm_ops = {
SET_RUNTIME_PM_OPS(xiic_i2c_runtime_suspend,
xiic_i2c_runtime_resume, NULL)
};
static struct platform_driver xiic_i2c_driver = {
.probe = xiic_i2c_probe,
.remove_new = xiic_i2c_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(xiic_of_match),
.pm = &xiic_dev_pm_ops,
},
};
module_platform_driver(xiic_i2c_driver);
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("info@mocean-labs.com");
MODULE_DESCRIPTION("Xilinx I2C bus driver");
MODULE_LICENSE("GPL v2");