linux-stable/virt/kvm/arm/vgic/vgic-mmio-v3.c
Eric Auger ccc27bf5be KVM: arm/arm64: Helper to register a new redistributor region
We introduce a new helper that creates and inserts a new redistributor
region into the rdist region list. This helper both handles the case
where the redistributor region size is known at registration time
and the legacy case where it is not (eventually depending on the number
of online vcpus). Depending on pfns, we perform all the possible checks
that we can do:

- end of memory crossing
- incorrect alignment of the base address
- collision with distributor region if already defined
- collision with already registered rdist regions
- check of the new index

Rdist regions must be inserted by increasing order of indices. Indices
must be contiguous.

Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25 12:29:26 +01:00

983 lines
27 KiB
C

/*
* VGICv3 MMIO handling functions
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/iodev.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"
#include "vgic-mmio.h"
/* extract @num bytes at @offset bytes offset in data */
unsigned long extract_bytes(u64 data, unsigned int offset,
unsigned int num)
{
return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
}
/* allows updates of any half of a 64-bit register (or the whole thing) */
u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
unsigned long val)
{
int lower = (offset & 4) * 8;
int upper = lower + 8 * len - 1;
reg &= ~GENMASK_ULL(upper, lower);
val &= GENMASK_ULL(len * 8 - 1, 0);
return reg | ((u64)val << lower);
}
bool vgic_has_its(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
return false;
return dist->has_its;
}
bool vgic_supports_direct_msis(struct kvm *kvm)
{
return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
}
static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 value = 0;
switch (addr & 0x0c) {
case GICD_CTLR:
if (vcpu->kvm->arch.vgic.enabled)
value |= GICD_CTLR_ENABLE_SS_G1;
value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
break;
case GICD_TYPER:
value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
value = (value >> 5) - 1;
if (vgic_has_its(vcpu->kvm)) {
value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
value |= GICD_TYPER_LPIS;
} else {
value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
}
break;
case GICD_IIDR:
value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
break;
default:
return 0;
}
return value;
}
static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
bool was_enabled = dist->enabled;
switch (addr & 0x0c) {
case GICD_CTLR:
dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
if (!was_enabled && dist->enabled)
vgic_kick_vcpus(vcpu->kvm);
break;
case GICD_TYPER:
case GICD_IIDR:
return;
}
}
static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
int intid = VGIC_ADDR_TO_INTID(addr, 64);
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
unsigned long ret = 0;
if (!irq)
return 0;
/* The upper word is RAZ for us. */
if (!(addr & 4))
ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
vgic_put_irq(vcpu->kvm, irq);
return ret;
}
static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
int intid = VGIC_ADDR_TO_INTID(addr, 64);
struct vgic_irq *irq;
unsigned long flags;
/* The upper word is WI for us since we don't implement Aff3. */
if (addr & 4)
return;
irq = vgic_get_irq(vcpu->kvm, NULL, intid);
if (!irq)
return;
spin_lock_irqsave(&irq->irq_lock, flags);
/* We only care about and preserve Aff0, Aff1 and Aff2. */
irq->mpidr = val & GENMASK(23, 0);
irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
}
static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
bool was_enabled = vgic_cpu->lpis_enabled;
if (!vgic_has_its(vcpu->kvm))
return;
vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
if (!was_enabled && vgic_cpu->lpis_enabled)
vgic_enable_lpis(vcpu);
}
static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
int target_vcpu_id = vcpu->vcpu_id;
gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
(rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
u64 value;
value = (u64)(mpidr & GENMASK(23, 0)) << 32;
value |= ((target_vcpu_id & 0xffff) << 8);
if (addr == last_rdist_typer)
value |= GICR_TYPER_LAST;
if (vgic_has_its(vcpu->kvm))
value |= GICR_TYPER_PLPIS;
return extract_bytes(value, addr & 7, len);
}
static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
}
static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
switch (addr & 0xffff) {
case GICD_PIDR2:
/* report a GICv3 compliant implementation */
return 0x3b;
}
return 0;
}
static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
u32 value = 0;
int i;
/*
* pending state of interrupt is latched in pending_latch variable.
* Userspace will save and restore pending state and line_level
* separately.
* Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
* for handling of ISPENDR and ICPENDR.
*/
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
if (irq->pending_latch)
value |= (1U << i);
vgic_put_irq(vcpu->kvm, irq);
}
return value;
}
static void vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock_irqsave(&irq->irq_lock, flags);
if (test_bit(i, &val)) {
/*
* pending_latch is set irrespective of irq type
* (level or edge) to avoid dependency that VM should
* restore irq config before pending info.
*/
irq->pending_latch = true;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
} else {
irq->pending_latch = false;
spin_unlock_irqrestore(&irq->irq_lock, flags);
}
vgic_put_irq(vcpu->kvm, irq);
}
}
/* We want to avoid outer shareable. */
u64 vgic_sanitise_shareability(u64 field)
{
switch (field) {
case GIC_BASER_OuterShareable:
return GIC_BASER_InnerShareable;
default:
return field;
}
}
/* Avoid any inner non-cacheable mapping. */
u64 vgic_sanitise_inner_cacheability(u64 field)
{
switch (field) {
case GIC_BASER_CACHE_nCnB:
case GIC_BASER_CACHE_nC:
return GIC_BASER_CACHE_RaWb;
default:
return field;
}
}
/* Non-cacheable or same-as-inner are OK. */
u64 vgic_sanitise_outer_cacheability(u64 field)
{
switch (field) {
case GIC_BASER_CACHE_SameAsInner:
case GIC_BASER_CACHE_nC:
return field;
default:
return GIC_BASER_CACHE_nC;
}
}
u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
u64 (*sanitise_fn)(u64))
{
u64 field = (reg & field_mask) >> field_shift;
field = sanitise_fn(field) << field_shift;
return (reg & ~field_mask) | field;
}
#define PROPBASER_RES0_MASK \
(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
#define PENDBASER_RES0_MASK \
(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
static u64 vgic_sanitise_pendbaser(u64 reg)
{
reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
GICR_PENDBASER_SHAREABILITY_SHIFT,
vgic_sanitise_shareability);
reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
vgic_sanitise_inner_cacheability);
reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
vgic_sanitise_outer_cacheability);
reg &= ~PENDBASER_RES0_MASK;
reg &= ~GENMASK_ULL(51, 48);
return reg;
}
static u64 vgic_sanitise_propbaser(u64 reg)
{
reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
GICR_PROPBASER_SHAREABILITY_SHIFT,
vgic_sanitise_shareability);
reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
vgic_sanitise_inner_cacheability);
reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
vgic_sanitise_outer_cacheability);
reg &= ~PROPBASER_RES0_MASK;
reg &= ~GENMASK_ULL(51, 48);
return reg;
}
static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return extract_bytes(dist->propbaser, addr & 7, len);
}
static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
u64 old_propbaser, propbaser;
/* Storing a value with LPIs already enabled is undefined */
if (vgic_cpu->lpis_enabled)
return;
do {
old_propbaser = READ_ONCE(dist->propbaser);
propbaser = old_propbaser;
propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
propbaser = vgic_sanitise_propbaser(propbaser);
} while (cmpxchg64(&dist->propbaser, old_propbaser,
propbaser) != old_propbaser);
}
static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
}
static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
u64 old_pendbaser, pendbaser;
/* Storing a value with LPIs already enabled is undefined */
if (vgic_cpu->lpis_enabled)
return;
do {
old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
pendbaser = old_pendbaser;
pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
pendbaser = vgic_sanitise_pendbaser(pendbaser);
} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
pendbaser) != old_pendbaser);
}
/*
* The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
* redistributors, while SPIs are covered by registers in the distributor
* block. Trying to set private IRQs in this block gets ignored.
* We take some special care here to fix the calculation of the register
* offset.
*/
#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
{ \
.reg_offset = off, \
.bits_per_irq = bpi, \
.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
.access_flags = acc, \
.read = vgic_mmio_read_raz, \
.write = vgic_mmio_write_wi, \
}, { \
.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
.bits_per_irq = bpi, \
.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
.access_flags = acc, \
.read = rd, \
.write = wr, \
.uaccess_read = ur, \
.uaccess_write = uw, \
}
static const struct vgic_register_region vgic_v3_dist_registers[] = {
REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
vgic_mmio_read_rao, vgic_mmio_write_wi, NULL, NULL, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
vgic_mmio_read_pending, vgic_mmio_write_spending,
vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
vgic_mmio_read_pending, vgic_mmio_write_cpending,
vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
vgic_mmio_read_active, vgic_mmio_write_sactive,
NULL, vgic_mmio_uaccess_write_sactive, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
vgic_mmio_read_active, vgic_mmio_write_cactive,
NULL, vgic_mmio_uaccess_write_cactive,
1, VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
VGIC_ACCESS_32bit),
};
static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
VGIC_ACCESS_32bit),
};
static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
vgic_mmio_read_pending, vgic_mmio_write_spending,
vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
vgic_mmio_read_pending, vgic_mmio_write_cpending,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
vgic_mmio_read_active, vgic_mmio_write_sactive,
NULL, vgic_mmio_uaccess_write_sactive,
4, VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
vgic_mmio_read_active, vgic_mmio_write_cactive,
NULL, vgic_mmio_uaccess_write_cactive,
4, VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
vgic_mmio_read_config, vgic_mmio_write_config, 8,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
};
unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
{
dev->regions = vgic_v3_dist_registers;
dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
return SZ_64K;
}
/**
* vgic_register_redist_iodev - register a single redist iodev
* @vcpu: The VCPU to which the redistributor belongs
*
* Register a KVM iodev for this VCPU's redistributor using the address
* provided.
*
* Return 0 on success, -ERRNO otherwise.
*/
int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
struct vgic_dist *vgic = &kvm->arch.vgic;
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
struct vgic_redist_region *rdreg;
gpa_t rd_base, sgi_base;
int ret;
/*
* We may be creating VCPUs before having set the base address for the
* redistributor region, in which case we will come back to this
* function for all VCPUs when the base address is set. Just return
* without doing any work for now.
*/
rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
if (!rdreg)
return 0;
if (!vgic_v3_check_base(kvm))
return -EINVAL;
vgic_cpu->rdreg = rdreg;
rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
sgi_base = rd_base + SZ_64K;
kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
rd_dev->base_addr = rd_base;
rd_dev->iodev_type = IODEV_REDIST;
rd_dev->regions = vgic_v3_rdbase_registers;
rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
rd_dev->redist_vcpu = vcpu;
mutex_lock(&kvm->slots_lock);
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
SZ_64K, &rd_dev->dev);
mutex_unlock(&kvm->slots_lock);
if (ret)
return ret;
kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
sgi_dev->base_addr = sgi_base;
sgi_dev->iodev_type = IODEV_REDIST;
sgi_dev->regions = vgic_v3_sgibase_registers;
sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
sgi_dev->redist_vcpu = vcpu;
mutex_lock(&kvm->slots_lock);
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
SZ_64K, &sgi_dev->dev);
if (ret) {
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
&rd_dev->dev);
goto out;
}
rdreg->free_index++;
out:
mutex_unlock(&kvm->slots_lock);
return ret;
}
static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
{
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
}
static int vgic_register_all_redist_iodevs(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
int c, ret = 0;
kvm_for_each_vcpu(c, vcpu, kvm) {
ret = vgic_register_redist_iodev(vcpu);
if (ret)
break;
}
if (ret) {
/* The current c failed, so we start with the previous one. */
mutex_lock(&kvm->slots_lock);
for (c--; c >= 0; c--) {
vcpu = kvm_get_vcpu(kvm, c);
vgic_unregister_redist_iodev(vcpu);
}
mutex_unlock(&kvm->slots_lock);
}
return ret;
}
/**
* vgic_v3_insert_redist_region - Insert a new redistributor region
*
* Performs various checks before inserting the rdist region in the list.
* Those tests depend on whether the size of the rdist region is known
* (ie. count != 0). The list is sorted by rdist region index.
*
* @kvm: kvm handle
* @index: redist region index
* @base: base of the new rdist region
* @count: number of redistributors the region is made of (0 in the old style
* single region, whose size is induced from the number of vcpus)
*
* Return 0 on success, < 0 otherwise
*/
static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
gpa_t base, uint32_t count)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
struct list_head *rd_regions = &d->rd_regions;
size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
int ret;
/* single rdist region already set ?*/
if (!count && !list_empty(rd_regions))
return -EINVAL;
/* cross the end of memory ? */
if (base + size < base)
return -EINVAL;
if (list_empty(rd_regions)) {
if (index != 0)
return -EINVAL;
} else {
rdreg = list_last_entry(rd_regions,
struct vgic_redist_region, list);
if (index != rdreg->index + 1)
return -EINVAL;
/* Cannot add an explicitly sized regions after legacy region */
if (!rdreg->count)
return -EINVAL;
}
/*
* For legacy single-region redistributor regions (!count),
* check that the redistributor region does not overlap with the
* distributor's address space.
*/
if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
vgic_dist_overlap(kvm, base, size))
return -EINVAL;
/* collision with any other rdist region? */
if (vgic_v3_rdist_overlap(kvm, base, size))
return -EINVAL;
rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
if (!rdreg)
return -ENOMEM;
rdreg->base = VGIC_ADDR_UNDEF;
ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
if (ret)
goto free;
rdreg->base = base;
rdreg->count = count;
rdreg->free_index = 0;
rdreg->index = index;
list_add_tail(&rdreg->list, rd_regions);
return 0;
free:
kfree(rdreg);
return ret;
}
int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr)
{
int ret;
ret = vgic_v3_insert_redist_region(kvm, 0, addr, 0);
if (ret)
return ret;
/*
* Register iodevs for each existing VCPU. Adding more VCPUs
* afterwards will register the iodevs when needed.
*/
ret = vgic_register_all_redist_iodevs(kvm);
if (ret)
return ret;
return 0;
}
int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
{
const struct vgic_register_region *region;
struct vgic_io_device iodev;
struct vgic_reg_attr reg_attr;
struct kvm_vcpu *vcpu;
gpa_t addr;
int ret;
ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
if (ret)
return ret;
vcpu = reg_attr.vcpu;
addr = reg_attr.addr;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
iodev.regions = vgic_v3_dist_registers;
iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
iodev.base_addr = 0;
break;
case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
iodev.regions = vgic_v3_rdbase_registers;
iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
iodev.base_addr = 0;
break;
}
case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
u64 reg, id;
id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
}
default:
return -ENXIO;
}
/* We only support aligned 32-bit accesses. */
if (addr & 3)
return -ENXIO;
region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
if (!region)
return -ENXIO;
return 0;
}
/*
* Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
* generation register ICC_SGI1R_EL1) with a given VCPU.
* If the VCPU's MPIDR matches, return the level0 affinity, otherwise
* return -1.
*/
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
{
unsigned long affinity;
int level0;
/*
* Split the current VCPU's MPIDR into affinity level 0 and the
* rest as this is what we have to compare against.
*/
affinity = kvm_vcpu_get_mpidr_aff(vcpu);
level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
affinity &= ~MPIDR_LEVEL_MASK;
/* bail out if the upper three levels don't match */
if (sgi_aff != affinity)
return -1;
/* Is this VCPU's bit set in the mask ? */
if (!(sgi_cpu_mask & BIT(level0)))
return -1;
return level0;
}
/*
* The ICC_SGI* registers encode the affinity differently from the MPIDR,
* so provide a wrapper to use the existing defines to isolate a certain
* affinity level.
*/
#define SGI_AFFINITY_LEVEL(reg, level) \
((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
/**
* vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
* @vcpu: The VCPU requesting a SGI
* @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
*
* With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
* This will trap in sys_regs.c and call this function.
* This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
* target processors as well as a bitmask of 16 Aff0 CPUs.
* If the interrupt routing mode bit is not set, we iterate over all VCPUs to
* check for matching ones. If this bit is set, we signal all, but not the
* calling VCPU.
*/
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu *c_vcpu;
u16 target_cpus;
u64 mpidr;
int sgi, c;
int vcpu_id = vcpu->vcpu_id;
bool broadcast;
unsigned long flags;
sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
mpidr = SGI_AFFINITY_LEVEL(reg, 3);
mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
/*
* We iterate over all VCPUs to find the MPIDRs matching the request.
* If we have handled one CPU, we clear its bit to detect early
* if we are already finished. This avoids iterating through all
* VCPUs when most of the times we just signal a single VCPU.
*/
kvm_for_each_vcpu(c, c_vcpu, kvm) {
struct vgic_irq *irq;
/* Exit early if we have dealt with all requested CPUs */
if (!broadcast && target_cpus == 0)
break;
/* Don't signal the calling VCPU */
if (broadcast && c == vcpu_id)
continue;
if (!broadcast) {
int level0;
level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
if (level0 == -1)
continue;
/* remove this matching VCPU from the mask */
target_cpus &= ~BIT(level0);
}
irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->pending_latch = true;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
int offset, u32 *val)
{
struct vgic_io_device dev = {
.regions = vgic_v3_dist_registers,
.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
};
return vgic_uaccess(vcpu, &dev, is_write, offset, val);
}
int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
int offset, u32 *val)
{
struct vgic_io_device rd_dev = {
.regions = vgic_v3_rdbase_registers,
.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
};
struct vgic_io_device sgi_dev = {
.regions = vgic_v3_sgibase_registers,
.nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
};
/* SGI_base is the next 64K frame after RD_base */
if (offset >= SZ_64K)
return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
val);
else
return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
}
int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
u32 intid, u64 *val)
{
if (intid % 32)
return -EINVAL;
if (is_write)
vgic_write_irq_line_level_info(vcpu, intid, *val);
else
*val = vgic_read_irq_line_level_info(vcpu, intid);
return 0;
}