linux-stable/kernel/sched/core.c
Linus Torvalds 6e2332e0ab cgroup: Changes for v6.5
* Whenever cpuset needs to rebuild sched_domain, it walked all tasks looking
   for DEADLINE tasks as they need to be accounted on the new domain. Walking
   all tasks can be expensive and there may not be any DEADLINE tasks at all.
   Task iteration is now omitted if there are no DEADLINE tasks.
 
 * Fixes DEADLINE bandwidth misaccounting after task migration failures.
 
 * When no controller is enabled, -Wstringop-overflow warning is triggered.
   The fix patch added an early exit which is too eager and got reverted for
   now. Will fix later.
 
 * Everything else are minor cleanups.
 -----BEGIN PGP SIGNATURE-----
 
 iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZJoRHw4cdGpAa2VybmVs
 Lm9yZwAKCRCxYfJx3gVYGZatAQCKTv8pb5HEgochph4n26laSdVZs6ce3Y+s7V1T
 rum+3QD/TyJFmCkZSMscolZGFuafpg41sjPbmc4SexeuAMYCMgY=
 =nioD
 -----END PGP SIGNATURE-----

Merge tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup

Pull cgroup updates from Tejun Heo:

 - Whenever cpuset needs to rebuild sched_domain, it walked all tasks
   looking for DEADLINE tasks as they need to be accounted on the new
   domain. Walking all tasks can be expensive and there may not be any
   DEADLINE tasks at all. Task iteration is now omitted if there are no
   DEADLINE tasks

 - Fixes DEADLINE bandwidth misaccounting after task migration failures

 - When no controller is enabled, -Wstringop-overflow warning is
   triggered. The fix patch added an early exit which is too eager and
   got reverted for now. Will fix later

 - Everything else is minor cleanups

* tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  Revert "cgroup: Avoid -Wstringop-overflow warnings"
  cgroup/misc: Expose misc.current on cgroup v2 root
  cgroup: Avoid -Wstringop-overflow warnings
  cgroup: remove obsolete comment on cgroup_on_dfl()
  cgroup: remove unused task_cgroup_path()
  cgroup/cpuset: remove unneeded header files
  cgroup: make cgroup_is_threaded() and cgroup_is_thread_root() static
  rdmacg: fix kernel-doc warnings in rdmacg
  cgroup: Replace the css_set call with cgroup_get
  cgroup: remove unused macro for_each_e_css()
  cgroup: Update out-of-date comment in cgroup_migrate()
  cgroup: Replace all non-returning strlcpy with strscpy
  cgroup/cpuset: remove unneeded header files
  cgroup/cpuset: Free DL BW in case can_attach() fails
  sched/deadline: Create DL BW alloc, free & check overflow interface
  cgroup/cpuset: Iterate only if DEADLINE tasks are present
  sched/cpuset: Keep track of SCHED_DEADLINE task in cpusets
  sched/cpuset: Bring back cpuset_mutex
  cgroup/cpuset: Rename functions dealing with DEADLINE accounting
2023-06-27 16:54:21 -07:00

12056 lines
307 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* kernel/sched/core.c
*
* Core kernel scheduler code and related syscalls
*
* Copyright (C) 1991-2002 Linus Torvalds
*/
#include <linux/highmem.h>
#include <linux/hrtimer_api.h>
#include <linux/ktime_api.h>
#include <linux/sched/signal.h>
#include <linux/syscalls_api.h>
#include <linux/debug_locks.h>
#include <linux/prefetch.h>
#include <linux/capability.h>
#include <linux/pgtable_api.h>
#include <linux/wait_bit.h>
#include <linux/jiffies.h>
#include <linux/spinlock_api.h>
#include <linux/cpumask_api.h>
#include <linux/lockdep_api.h>
#include <linux/hardirq.h>
#include <linux/softirq.h>
#include <linux/refcount_api.h>
#include <linux/topology.h>
#include <linux/sched/clock.h>
#include <linux/sched/cond_resched.h>
#include <linux/sched/cputime.h>
#include <linux/sched/debug.h>
#include <linux/sched/hotplug.h>
#include <linux/sched/init.h>
#include <linux/sched/isolation.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/mm.h>
#include <linux/sched/nohz.h>
#include <linux/sched/rseq_api.h>
#include <linux/sched/rt.h>
#include <linux/blkdev.h>
#include <linux/context_tracking.h>
#include <linux/cpuset.h>
#include <linux/delayacct.h>
#include <linux/init_task.h>
#include <linux/interrupt.h>
#include <linux/ioprio.h>
#include <linux/kallsyms.h>
#include <linux/kcov.h>
#include <linux/kprobes.h>
#include <linux/llist_api.h>
#include <linux/mmu_context.h>
#include <linux/mmzone.h>
#include <linux/mutex_api.h>
#include <linux/nmi.h>
#include <linux/nospec.h>
#include <linux/perf_event_api.h>
#include <linux/profile.h>
#include <linux/psi.h>
#include <linux/rcuwait_api.h>
#include <linux/sched/wake_q.h>
#include <linux/scs.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#include <linux/vtime.h>
#include <linux/wait_api.h>
#include <linux/workqueue_api.h>
#ifdef CONFIG_PREEMPT_DYNAMIC
# ifdef CONFIG_GENERIC_ENTRY
# include <linux/entry-common.h>
# endif
#endif
#include <uapi/linux/sched/types.h>
#include <asm/irq_regs.h>
#include <asm/switch_to.h>
#include <asm/tlb.h>
#define CREATE_TRACE_POINTS
#include <linux/sched/rseq_api.h>
#include <trace/events/sched.h>
#include <trace/events/ipi.h>
#undef CREATE_TRACE_POINTS
#include "sched.h"
#include "stats.h"
#include "autogroup.h"
#include "autogroup.h"
#include "pelt.h"
#include "smp.h"
#include "stats.h"
#include "../workqueue_internal.h"
#include "../../io_uring/io-wq.h"
#include "../smpboot.h"
EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
/*
* Export tracepoints that act as a bare tracehook (ie: have no trace event
* associated with them) to allow external modules to probe them.
*/
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
#ifdef CONFIG_SCHED_DEBUG
/*
* Debugging: various feature bits
*
* If SCHED_DEBUG is disabled, each compilation unit has its own copy of
* sysctl_sched_features, defined in sched.h, to allow constants propagation
* at compile time and compiler optimization based on features default.
*/
#define SCHED_FEAT(name, enabled) \
(1UL << __SCHED_FEAT_##name) * enabled |
const_debug unsigned int sysctl_sched_features =
#include "features.h"
0;
#undef SCHED_FEAT
/*
* Print a warning if need_resched is set for the given duration (if
* LATENCY_WARN is enabled).
*
* If sysctl_resched_latency_warn_once is set, only one warning will be shown
* per boot.
*/
__read_mostly int sysctl_resched_latency_warn_ms = 100;
__read_mostly int sysctl_resched_latency_warn_once = 1;
#endif /* CONFIG_SCHED_DEBUG */
/*
* Number of tasks to iterate in a single balance run.
* Limited because this is done with IRQs disabled.
*/
const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
__read_mostly int scheduler_running;
#ifdef CONFIG_SCHED_CORE
DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
/* kernel prio, less is more */
static inline int __task_prio(const struct task_struct *p)
{
if (p->sched_class == &stop_sched_class) /* trumps deadline */
return -2;
if (rt_prio(p->prio)) /* includes deadline */
return p->prio; /* [-1, 99] */
if (p->sched_class == &idle_sched_class)
return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
}
/*
* l(a,b)
* le(a,b) := !l(b,a)
* g(a,b) := l(b,a)
* ge(a,b) := !l(a,b)
*/
/* real prio, less is less */
static inline bool prio_less(const struct task_struct *a,
const struct task_struct *b, bool in_fi)
{
int pa = __task_prio(a), pb = __task_prio(b);
if (-pa < -pb)
return true;
if (-pb < -pa)
return false;
if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
return !dl_time_before(a->dl.deadline, b->dl.deadline);
if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
return cfs_prio_less(a, b, in_fi);
return false;
}
static inline bool __sched_core_less(const struct task_struct *a,
const struct task_struct *b)
{
if (a->core_cookie < b->core_cookie)
return true;
if (a->core_cookie > b->core_cookie)
return false;
/* flip prio, so high prio is leftmost */
if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
return true;
return false;
}
#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
{
return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
}
static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
{
const struct task_struct *p = __node_2_sc(node);
unsigned long cookie = (unsigned long)key;
if (cookie < p->core_cookie)
return -1;
if (cookie > p->core_cookie)
return 1;
return 0;
}
void sched_core_enqueue(struct rq *rq, struct task_struct *p)
{
rq->core->core_task_seq++;
if (!p->core_cookie)
return;
rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
}
void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
{
rq->core->core_task_seq++;
if (sched_core_enqueued(p)) {
rb_erase(&p->core_node, &rq->core_tree);
RB_CLEAR_NODE(&p->core_node);
}
/*
* Migrating the last task off the cpu, with the cpu in forced idle
* state. Reschedule to create an accounting edge for forced idle,
* and re-examine whether the core is still in forced idle state.
*/
if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
rq->core->core_forceidle_count && rq->curr == rq->idle)
resched_curr(rq);
}
static int sched_task_is_throttled(struct task_struct *p, int cpu)
{
if (p->sched_class->task_is_throttled)
return p->sched_class->task_is_throttled(p, cpu);
return 0;
}
static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
{
struct rb_node *node = &p->core_node;
int cpu = task_cpu(p);
do {
node = rb_next(node);
if (!node)
return NULL;
p = __node_2_sc(node);
if (p->core_cookie != cookie)
return NULL;
} while (sched_task_is_throttled(p, cpu));
return p;
}
/*
* Find left-most (aka, highest priority) and unthrottled task matching @cookie.
* If no suitable task is found, NULL will be returned.
*/
static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
{
struct task_struct *p;
struct rb_node *node;
node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
if (!node)
return NULL;
p = __node_2_sc(node);
if (!sched_task_is_throttled(p, rq->cpu))
return p;
return sched_core_next(p, cookie);
}
/*
* Magic required such that:
*
* raw_spin_rq_lock(rq);
* ...
* raw_spin_rq_unlock(rq);
*
* ends up locking and unlocking the _same_ lock, and all CPUs
* always agree on what rq has what lock.
*
* XXX entirely possible to selectively enable cores, don't bother for now.
*/
static DEFINE_MUTEX(sched_core_mutex);
static atomic_t sched_core_count;
static struct cpumask sched_core_mask;
static void sched_core_lock(int cpu, unsigned long *flags)
{
const struct cpumask *smt_mask = cpu_smt_mask(cpu);
int t, i = 0;
local_irq_save(*flags);
for_each_cpu(t, smt_mask)
raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
}
static void sched_core_unlock(int cpu, unsigned long *flags)
{
const struct cpumask *smt_mask = cpu_smt_mask(cpu);
int t;
for_each_cpu(t, smt_mask)
raw_spin_unlock(&cpu_rq(t)->__lock);
local_irq_restore(*flags);
}
static void __sched_core_flip(bool enabled)
{
unsigned long flags;
int cpu, t;
cpus_read_lock();
/*
* Toggle the online cores, one by one.
*/
cpumask_copy(&sched_core_mask, cpu_online_mask);
for_each_cpu(cpu, &sched_core_mask) {
const struct cpumask *smt_mask = cpu_smt_mask(cpu);
sched_core_lock(cpu, &flags);
for_each_cpu(t, smt_mask)
cpu_rq(t)->core_enabled = enabled;
cpu_rq(cpu)->core->core_forceidle_start = 0;
sched_core_unlock(cpu, &flags);
cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
}
/*
* Toggle the offline CPUs.
*/
for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
cpu_rq(cpu)->core_enabled = enabled;
cpus_read_unlock();
}
static void sched_core_assert_empty(void)
{
int cpu;
for_each_possible_cpu(cpu)
WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
}
static void __sched_core_enable(void)
{
static_branch_enable(&__sched_core_enabled);
/*
* Ensure all previous instances of raw_spin_rq_*lock() have finished
* and future ones will observe !sched_core_disabled().
*/
synchronize_rcu();
__sched_core_flip(true);
sched_core_assert_empty();
}
static void __sched_core_disable(void)
{
sched_core_assert_empty();
__sched_core_flip(false);
static_branch_disable(&__sched_core_enabled);
}
void sched_core_get(void)
{
if (atomic_inc_not_zero(&sched_core_count))
return;
mutex_lock(&sched_core_mutex);
if (!atomic_read(&sched_core_count))
__sched_core_enable();
smp_mb__before_atomic();
atomic_inc(&sched_core_count);
mutex_unlock(&sched_core_mutex);
}
static void __sched_core_put(struct work_struct *work)
{
if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
__sched_core_disable();
mutex_unlock(&sched_core_mutex);
}
}
void sched_core_put(void)
{
static DECLARE_WORK(_work, __sched_core_put);
/*
* "There can be only one"
*
* Either this is the last one, or we don't actually need to do any
* 'work'. If it is the last *again*, we rely on
* WORK_STRUCT_PENDING_BIT.
*/
if (!atomic_add_unless(&sched_core_count, -1, 1))
schedule_work(&_work);
}
#else /* !CONFIG_SCHED_CORE */
static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
static inline void
sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
#endif /* CONFIG_SCHED_CORE */
/*
* Serialization rules:
*
* Lock order:
*
* p->pi_lock
* rq->lock
* hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
*
* rq1->lock
* rq2->lock where: rq1 < rq2
*
* Regular state:
*
* Normal scheduling state is serialized by rq->lock. __schedule() takes the
* local CPU's rq->lock, it optionally removes the task from the runqueue and
* always looks at the local rq data structures to find the most eligible task
* to run next.
*
* Task enqueue is also under rq->lock, possibly taken from another CPU.
* Wakeups from another LLC domain might use an IPI to transfer the enqueue to
* the local CPU to avoid bouncing the runqueue state around [ see
* ttwu_queue_wakelist() ]
*
* Task wakeup, specifically wakeups that involve migration, are horribly
* complicated to avoid having to take two rq->locks.
*
* Special state:
*
* System-calls and anything external will use task_rq_lock() which acquires
* both p->pi_lock and rq->lock. As a consequence the state they change is
* stable while holding either lock:
*
* - sched_setaffinity()/
* set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
* - set_user_nice(): p->se.load, p->*prio
* - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
* p->se.load, p->rt_priority,
* p->dl.dl_{runtime, deadline, period, flags, bw, density}
* - sched_setnuma(): p->numa_preferred_nid
* - sched_move_task(): p->sched_task_group
* - uclamp_update_active() p->uclamp*
*
* p->state <- TASK_*:
*
* is changed locklessly using set_current_state(), __set_current_state() or
* set_special_state(), see their respective comments, or by
* try_to_wake_up(). This latter uses p->pi_lock to serialize against
* concurrent self.
*
* p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
*
* is set by activate_task() and cleared by deactivate_task(), under
* rq->lock. Non-zero indicates the task is runnable, the special
* ON_RQ_MIGRATING state is used for migration without holding both
* rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
*
* p->on_cpu <- { 0, 1 }:
*
* is set by prepare_task() and cleared by finish_task() such that it will be
* set before p is scheduled-in and cleared after p is scheduled-out, both
* under rq->lock. Non-zero indicates the task is running on its CPU.
*
* [ The astute reader will observe that it is possible for two tasks on one
* CPU to have ->on_cpu = 1 at the same time. ]
*
* task_cpu(p): is changed by set_task_cpu(), the rules are:
*
* - Don't call set_task_cpu() on a blocked task:
*
* We don't care what CPU we're not running on, this simplifies hotplug,
* the CPU assignment of blocked tasks isn't required to be valid.
*
* - for try_to_wake_up(), called under p->pi_lock:
*
* This allows try_to_wake_up() to only take one rq->lock, see its comment.
*
* - for migration called under rq->lock:
* [ see task_on_rq_migrating() in task_rq_lock() ]
*
* o move_queued_task()
* o detach_task()
*
* - for migration called under double_rq_lock():
*
* o __migrate_swap_task()
* o push_rt_task() / pull_rt_task()
* o push_dl_task() / pull_dl_task()
* o dl_task_offline_migration()
*
*/
void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
{
raw_spinlock_t *lock;
/* Matches synchronize_rcu() in __sched_core_enable() */
preempt_disable();
if (sched_core_disabled()) {
raw_spin_lock_nested(&rq->__lock, subclass);
/* preempt_count *MUST* be > 1 */
preempt_enable_no_resched();
return;
}
for (;;) {
lock = __rq_lockp(rq);
raw_spin_lock_nested(lock, subclass);
if (likely(lock == __rq_lockp(rq))) {
/* preempt_count *MUST* be > 1 */
preempt_enable_no_resched();
return;
}
raw_spin_unlock(lock);
}
}
bool raw_spin_rq_trylock(struct rq *rq)
{
raw_spinlock_t *lock;
bool ret;
/* Matches synchronize_rcu() in __sched_core_enable() */
preempt_disable();
if (sched_core_disabled()) {
ret = raw_spin_trylock(&rq->__lock);
preempt_enable();
return ret;
}
for (;;) {
lock = __rq_lockp(rq);
ret = raw_spin_trylock(lock);
if (!ret || (likely(lock == __rq_lockp(rq)))) {
preempt_enable();
return ret;
}
raw_spin_unlock(lock);
}
}
void raw_spin_rq_unlock(struct rq *rq)
{
raw_spin_unlock(rq_lockp(rq));
}
#ifdef CONFIG_SMP
/*
* double_rq_lock - safely lock two runqueues
*/
void double_rq_lock(struct rq *rq1, struct rq *rq2)
{
lockdep_assert_irqs_disabled();
if (rq_order_less(rq2, rq1))
swap(rq1, rq2);
raw_spin_rq_lock(rq1);
if (__rq_lockp(rq1) != __rq_lockp(rq2))
raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
double_rq_clock_clear_update(rq1, rq2);
}
#endif
/*
* __task_rq_lock - lock the rq @p resides on.
*/
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(rq->lock)
{
struct rq *rq;
lockdep_assert_held(&p->pi_lock);
for (;;) {
rq = task_rq(p);
raw_spin_rq_lock(rq);
if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
rq_pin_lock(rq, rf);
return rq;
}
raw_spin_rq_unlock(rq);
while (unlikely(task_on_rq_migrating(p)))
cpu_relax();
}
}
/*
* task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
*/
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(p->pi_lock)
__acquires(rq->lock)
{
struct rq *rq;
for (;;) {
raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
rq = task_rq(p);
raw_spin_rq_lock(rq);
/*
* move_queued_task() task_rq_lock()
*
* ACQUIRE (rq->lock)
* [S] ->on_rq = MIGRATING [L] rq = task_rq()
* WMB (__set_task_cpu()) ACQUIRE (rq->lock);
* [S] ->cpu = new_cpu [L] task_rq()
* [L] ->on_rq
* RELEASE (rq->lock)
*
* If we observe the old CPU in task_rq_lock(), the acquire of
* the old rq->lock will fully serialize against the stores.
*
* If we observe the new CPU in task_rq_lock(), the address
* dependency headed by '[L] rq = task_rq()' and the acquire
* will pair with the WMB to ensure we then also see migrating.
*/
if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
rq_pin_lock(rq, rf);
return rq;
}
raw_spin_rq_unlock(rq);
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
while (unlikely(task_on_rq_migrating(p)))
cpu_relax();
}
}
/*
* RQ-clock updating methods:
*/
static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
* In theory, the compile should just see 0 here, and optimize out the call
* to sched_rt_avg_update. But I don't trust it...
*/
s64 __maybe_unused steal = 0, irq_delta = 0;
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
/*
* Since irq_time is only updated on {soft,}irq_exit, we might run into
* this case when a previous update_rq_clock() happened inside a
* {soft,}irq region.
*
* When this happens, we stop ->clock_task and only update the
* prev_irq_time stamp to account for the part that fit, so that a next
* update will consume the rest. This ensures ->clock_task is
* monotonic.
*
* It does however cause some slight miss-attribution of {soft,}irq
* time, a more accurate solution would be to update the irq_time using
* the current rq->clock timestamp, except that would require using
* atomic ops.
*/
if (irq_delta > delta)
irq_delta = delta;
rq->prev_irq_time += irq_delta;
delta -= irq_delta;
psi_account_irqtime(rq->curr, irq_delta);
delayacct_irq(rq->curr, irq_delta);
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
if (static_key_false((&paravirt_steal_rq_enabled))) {
steal = paravirt_steal_clock(cpu_of(rq));
steal -= rq->prev_steal_time_rq;
if (unlikely(steal > delta))
steal = delta;
rq->prev_steal_time_rq += steal;
delta -= steal;
}
#endif
rq->clock_task += delta;
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
update_irq_load_avg(rq, irq_delta + steal);
#endif
update_rq_clock_pelt(rq, delta);
}
void update_rq_clock(struct rq *rq)
{
s64 delta;
lockdep_assert_rq_held(rq);
if (rq->clock_update_flags & RQCF_ACT_SKIP)
return;
#ifdef CONFIG_SCHED_DEBUG
if (sched_feat(WARN_DOUBLE_CLOCK))
SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
rq->clock_update_flags |= RQCF_UPDATED;
#endif
delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
if (delta < 0)
return;
rq->clock += delta;
update_rq_clock_task(rq, delta);
}
#ifdef CONFIG_SCHED_HRTICK
/*
* Use HR-timers to deliver accurate preemption points.
*/
static void hrtick_clear(struct rq *rq)
{
if (hrtimer_active(&rq->hrtick_timer))
hrtimer_cancel(&rq->hrtick_timer);
}
/*
* High-resolution timer tick.
* Runs from hardirq context with interrupts disabled.
*/
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
struct rq *rq = container_of(timer, struct rq, hrtick_timer);
struct rq_flags rf;
WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
rq_lock(rq, &rf);
update_rq_clock(rq);
rq->curr->sched_class->task_tick(rq, rq->curr, 1);
rq_unlock(rq, &rf);
return HRTIMER_NORESTART;
}
#ifdef CONFIG_SMP
static void __hrtick_restart(struct rq *rq)
{
struct hrtimer *timer = &rq->hrtick_timer;
ktime_t time = rq->hrtick_time;
hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
}
/*
* called from hardirq (IPI) context
*/
static void __hrtick_start(void *arg)
{
struct rq *rq = arg;
struct rq_flags rf;
rq_lock(rq, &rf);
__hrtick_restart(rq);
rq_unlock(rq, &rf);
}
/*
* Called to set the hrtick timer state.
*
* called with rq->lock held and irqs disabled
*/
void hrtick_start(struct rq *rq, u64 delay)
{
struct hrtimer *timer = &rq->hrtick_timer;
s64 delta;
/*
* Don't schedule slices shorter than 10000ns, that just
* doesn't make sense and can cause timer DoS.
*/
delta = max_t(s64, delay, 10000LL);
rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
if (rq == this_rq())
__hrtick_restart(rq);
else
smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
}
#else
/*
* Called to set the hrtick timer state.
*
* called with rq->lock held and irqs disabled
*/
void hrtick_start(struct rq *rq, u64 delay)
{
/*
* Don't schedule slices shorter than 10000ns, that just
* doesn't make sense. Rely on vruntime for fairness.
*/
delay = max_t(u64, delay, 10000LL);
hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
HRTIMER_MODE_REL_PINNED_HARD);
}
#endif /* CONFIG_SMP */
static void hrtick_rq_init(struct rq *rq)
{
#ifdef CONFIG_SMP
INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
#endif
hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
rq->hrtick_timer.function = hrtick;
}
#else /* CONFIG_SCHED_HRTICK */
static inline void hrtick_clear(struct rq *rq)
{
}
static inline void hrtick_rq_init(struct rq *rq)
{
}
#endif /* CONFIG_SCHED_HRTICK */
/*
* cmpxchg based fetch_or, macro so it works for different integer types
*/
#define fetch_or(ptr, mask) \
({ \
typeof(ptr) _ptr = (ptr); \
typeof(mask) _mask = (mask); \
typeof(*_ptr) _val = *_ptr; \
\
do { \
} while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
_val; \
})
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
/*
* Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
* this avoids any races wrt polling state changes and thereby avoids
* spurious IPIs.
*/
static inline bool set_nr_and_not_polling(struct task_struct *p)
{
struct thread_info *ti = task_thread_info(p);
return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
/*
* Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
*
* If this returns true, then the idle task promises to call
* sched_ttwu_pending() and reschedule soon.
*/
static bool set_nr_if_polling(struct task_struct *p)
{
struct thread_info *ti = task_thread_info(p);
typeof(ti->flags) val = READ_ONCE(ti->flags);
for (;;) {
if (!(val & _TIF_POLLING_NRFLAG))
return false;
if (val & _TIF_NEED_RESCHED)
return true;
if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
break;
}
return true;
}
#else
static inline bool set_nr_and_not_polling(struct task_struct *p)
{
set_tsk_need_resched(p);
return true;
}
#ifdef CONFIG_SMP
static inline bool set_nr_if_polling(struct task_struct *p)
{
return false;
}
#endif
#endif
static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
struct wake_q_node *node = &task->wake_q;
/*
* Atomically grab the task, if ->wake_q is !nil already it means
* it's already queued (either by us or someone else) and will get the
* wakeup due to that.
*
* In order to ensure that a pending wakeup will observe our pending
* state, even in the failed case, an explicit smp_mb() must be used.
*/
smp_mb__before_atomic();
if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
return false;
/*
* The head is context local, there can be no concurrency.
*/
*head->lastp = node;
head->lastp = &node->next;
return true;
}
/**
* wake_q_add() - queue a wakeup for 'later' waking.
* @head: the wake_q_head to add @task to
* @task: the task to queue for 'later' wakeup
*
* Queue a task for later wakeup, most likely by the wake_up_q() call in the
* same context, _HOWEVER_ this is not guaranteed, the wakeup can come
* instantly.
*
* This function must be used as-if it were wake_up_process(); IOW the task
* must be ready to be woken at this location.
*/
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
if (__wake_q_add(head, task))
get_task_struct(task);
}
/**
* wake_q_add_safe() - safely queue a wakeup for 'later' waking.
* @head: the wake_q_head to add @task to
* @task: the task to queue for 'later' wakeup
*
* Queue a task for later wakeup, most likely by the wake_up_q() call in the
* same context, _HOWEVER_ this is not guaranteed, the wakeup can come
* instantly.
*
* This function must be used as-if it were wake_up_process(); IOW the task
* must be ready to be woken at this location.
*
* This function is essentially a task-safe equivalent to wake_q_add(). Callers
* that already hold reference to @task can call the 'safe' version and trust
* wake_q to do the right thing depending whether or not the @task is already
* queued for wakeup.
*/
void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
{
if (!__wake_q_add(head, task))
put_task_struct(task);
}
void wake_up_q(struct wake_q_head *head)
{
struct wake_q_node *node = head->first;
while (node != WAKE_Q_TAIL) {
struct task_struct *task;
task = container_of(node, struct task_struct, wake_q);
/* Task can safely be re-inserted now: */
node = node->next;
task->wake_q.next = NULL;
/*
* wake_up_process() executes a full barrier, which pairs with
* the queueing in wake_q_add() so as not to miss wakeups.
*/
wake_up_process(task);
put_task_struct(task);
}
}
/*
* resched_curr - mark rq's current task 'to be rescheduled now'.
*
* On UP this means the setting of the need_resched flag, on SMP it
* might also involve a cross-CPU call to trigger the scheduler on
* the target CPU.
*/
void resched_curr(struct rq *rq)
{
struct task_struct *curr = rq->curr;
int cpu;
lockdep_assert_rq_held(rq);
if (test_tsk_need_resched(curr))
return;
cpu = cpu_of(rq);
if (cpu == smp_processor_id()) {
set_tsk_need_resched(curr);
set_preempt_need_resched();
return;
}
if (set_nr_and_not_polling(curr))
smp_send_reschedule(cpu);
else
trace_sched_wake_idle_without_ipi(cpu);
}
void resched_cpu(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
raw_spin_rq_lock_irqsave(rq, flags);
if (cpu_online(cpu) || cpu == smp_processor_id())
resched_curr(rq);
raw_spin_rq_unlock_irqrestore(rq, flags);
}
#ifdef CONFIG_SMP
#ifdef CONFIG_NO_HZ_COMMON
/*
* In the semi idle case, use the nearest busy CPU for migrating timers
* from an idle CPU. This is good for power-savings.
*
* We don't do similar optimization for completely idle system, as
* selecting an idle CPU will add more delays to the timers than intended
* (as that CPU's timer base may not be uptodate wrt jiffies etc).
*/
int get_nohz_timer_target(void)
{
int i, cpu = smp_processor_id(), default_cpu = -1;
struct sched_domain *sd;
const struct cpumask *hk_mask;
if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
if (!idle_cpu(cpu))
return cpu;
default_cpu = cpu;
}
hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
rcu_read_lock();
for_each_domain(cpu, sd) {
for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
if (cpu == i)
continue;
if (!idle_cpu(i)) {
cpu = i;
goto unlock;
}
}
}
if (default_cpu == -1)
default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
cpu = default_cpu;
unlock:
rcu_read_unlock();
return cpu;
}
/*
* When add_timer_on() enqueues a timer into the timer wheel of an
* idle CPU then this timer might expire before the next timer event
* which is scheduled to wake up that CPU. In case of a completely
* idle system the next event might even be infinite time into the
* future. wake_up_idle_cpu() ensures that the CPU is woken up and
* leaves the inner idle loop so the newly added timer is taken into
* account when the CPU goes back to idle and evaluates the timer
* wheel for the next timer event.
*/
static void wake_up_idle_cpu(int cpu)
{
struct rq *rq = cpu_rq(cpu);
if (cpu == smp_processor_id())
return;
if (set_nr_and_not_polling(rq->idle))
smp_send_reschedule(cpu);
else
trace_sched_wake_idle_without_ipi(cpu);
}
static bool wake_up_full_nohz_cpu(int cpu)
{
/*
* We just need the target to call irq_exit() and re-evaluate
* the next tick. The nohz full kick at least implies that.
* If needed we can still optimize that later with an
* empty IRQ.
*/
if (cpu_is_offline(cpu))
return true; /* Don't try to wake offline CPUs. */
if (tick_nohz_full_cpu(cpu)) {
if (cpu != smp_processor_id() ||
tick_nohz_tick_stopped())
tick_nohz_full_kick_cpu(cpu);
return true;
}
return false;
}
/*
* Wake up the specified CPU. If the CPU is going offline, it is the
* caller's responsibility to deal with the lost wakeup, for example,
* by hooking into the CPU_DEAD notifier like timers and hrtimers do.
*/
void wake_up_nohz_cpu(int cpu)
{
if (!wake_up_full_nohz_cpu(cpu))
wake_up_idle_cpu(cpu);
}
static void nohz_csd_func(void *info)
{
struct rq *rq = info;
int cpu = cpu_of(rq);
unsigned int flags;
/*
* Release the rq::nohz_csd.
*/
flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
WARN_ON(!(flags & NOHZ_KICK_MASK));
rq->idle_balance = idle_cpu(cpu);
if (rq->idle_balance && !need_resched()) {
rq->nohz_idle_balance = flags;
raise_softirq_irqoff(SCHED_SOFTIRQ);
}
}
#endif /* CONFIG_NO_HZ_COMMON */
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(struct rq *rq)
{
int fifo_nr_running;
/* Deadline tasks, even if single, need the tick */
if (rq->dl.dl_nr_running)
return false;
/*
* If there are more than one RR tasks, we need the tick to affect the
* actual RR behaviour.
*/
if (rq->rt.rr_nr_running) {
if (rq->rt.rr_nr_running == 1)
return true;
else
return false;
}
/*
* If there's no RR tasks, but FIFO tasks, we can skip the tick, no
* forced preemption between FIFO tasks.
*/
fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
if (fifo_nr_running)
return true;
/*
* If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
* if there's more than one we need the tick for involuntary
* preemption.
*/
if (rq->nr_running > 1)
return false;
return true;
}
#endif /* CONFIG_NO_HZ_FULL */
#endif /* CONFIG_SMP */
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
/*
* Iterate task_group tree rooted at *from, calling @down when first entering a
* node and @up when leaving it for the final time.
*
* Caller must hold rcu_lock or sufficient equivalent.
*/
int walk_tg_tree_from(struct task_group *from,
tg_visitor down, tg_visitor up, void *data)
{
struct task_group *parent, *child;
int ret;
parent = from;
down:
ret = (*down)(parent, data);
if (ret)
goto out;
list_for_each_entry_rcu(child, &parent->children, siblings) {
parent = child;
goto down;
up:
continue;
}
ret = (*up)(parent, data);
if (ret || parent == from)
goto out;
child = parent;
parent = parent->parent;
if (parent)
goto up;
out:
return ret;
}
int tg_nop(struct task_group *tg, void *data)
{
return 0;
}
#endif
static void set_load_weight(struct task_struct *p, bool update_load)
{
int prio = p->static_prio - MAX_RT_PRIO;
struct load_weight *load = &p->se.load;
/*
* SCHED_IDLE tasks get minimal weight:
*/
if (task_has_idle_policy(p)) {
load->weight = scale_load(WEIGHT_IDLEPRIO);
load->inv_weight = WMULT_IDLEPRIO;
return;
}
/*
* SCHED_OTHER tasks have to update their load when changing their
* weight
*/
if (update_load && p->sched_class == &fair_sched_class) {
reweight_task(p, prio);
} else {
load->weight = scale_load(sched_prio_to_weight[prio]);
load->inv_weight = sched_prio_to_wmult[prio];
}
}
#ifdef CONFIG_UCLAMP_TASK
/*
* Serializes updates of utilization clamp values
*
* The (slow-path) user-space triggers utilization clamp value updates which
* can require updates on (fast-path) scheduler's data structures used to
* support enqueue/dequeue operations.
* While the per-CPU rq lock protects fast-path update operations, user-space
* requests are serialized using a mutex to reduce the risk of conflicting
* updates or API abuses.
*/
static DEFINE_MUTEX(uclamp_mutex);
/* Max allowed minimum utilization */
static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
/* Max allowed maximum utilization */
static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
/*
* By default RT tasks run at the maximum performance point/capacity of the
* system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
* SCHED_CAPACITY_SCALE.
*
* This knob allows admins to change the default behavior when uclamp is being
* used. In battery powered devices, particularly, running at the maximum
* capacity and frequency will increase energy consumption and shorten the
* battery life.
*
* This knob only affects RT tasks that their uclamp_se->user_defined == false.
*
* This knob will not override the system default sched_util_clamp_min defined
* above.
*/
static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
/* All clamps are required to be less or equal than these values */
static struct uclamp_se uclamp_default[UCLAMP_CNT];
/*
* This static key is used to reduce the uclamp overhead in the fast path. It
* primarily disables the call to uclamp_rq_{inc, dec}() in
* enqueue/dequeue_task().
*
* This allows users to continue to enable uclamp in their kernel config with
* minimum uclamp overhead in the fast path.
*
* As soon as userspace modifies any of the uclamp knobs, the static key is
* enabled, since we have an actual users that make use of uclamp
* functionality.
*
* The knobs that would enable this static key are:
*
* * A task modifying its uclamp value with sched_setattr().
* * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
* * An admin modifying the cgroup cpu.uclamp.{min, max}
*/
DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
/* Integer rounded range for each bucket */
#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
#define for_each_clamp_id(clamp_id) \
for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
{
return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
}
static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
{
if (clamp_id == UCLAMP_MIN)
return 0;
return SCHED_CAPACITY_SCALE;
}
static inline void uclamp_se_set(struct uclamp_se *uc_se,
unsigned int value, bool user_defined)
{
uc_se->value = value;
uc_se->bucket_id = uclamp_bucket_id(value);
uc_se->user_defined = user_defined;
}
static inline unsigned int
uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
unsigned int clamp_value)
{
/*
* Avoid blocked utilization pushing up the frequency when we go
* idle (which drops the max-clamp) by retaining the last known
* max-clamp.
*/
if (clamp_id == UCLAMP_MAX) {
rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
return clamp_value;
}
return uclamp_none(UCLAMP_MIN);
}
static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
unsigned int clamp_value)
{
/* Reset max-clamp retention only on idle exit */
if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
return;
uclamp_rq_set(rq, clamp_id, clamp_value);
}
static inline
unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
unsigned int clamp_value)
{
struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
int bucket_id = UCLAMP_BUCKETS - 1;
/*
* Since both min and max clamps are max aggregated, find the
* top most bucket with tasks in.
*/
for ( ; bucket_id >= 0; bucket_id--) {
if (!bucket[bucket_id].tasks)
continue;
return bucket[bucket_id].value;
}
/* No tasks -- default clamp values */
return uclamp_idle_value(rq, clamp_id, clamp_value);
}
static void __uclamp_update_util_min_rt_default(struct task_struct *p)
{
unsigned int default_util_min;
struct uclamp_se *uc_se;
lockdep_assert_held(&p->pi_lock);
uc_se = &p->uclamp_req[UCLAMP_MIN];
/* Only sync if user didn't override the default */
if (uc_se->user_defined)
return;
default_util_min = sysctl_sched_uclamp_util_min_rt_default;
uclamp_se_set(uc_se, default_util_min, false);
}
static void uclamp_update_util_min_rt_default(struct task_struct *p)
{
struct rq_flags rf;
struct rq *rq;
if (!rt_task(p))
return;
/* Protect updates to p->uclamp_* */
rq = task_rq_lock(p, &rf);
__uclamp_update_util_min_rt_default(p);
task_rq_unlock(rq, p, &rf);
}
static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
{
/* Copy by value as we could modify it */
struct uclamp_se uc_req = p->uclamp_req[clamp_id];
#ifdef CONFIG_UCLAMP_TASK_GROUP
unsigned int tg_min, tg_max, value;
/*
* Tasks in autogroups or root task group will be
* restricted by system defaults.
*/
if (task_group_is_autogroup(task_group(p)))
return uc_req;
if (task_group(p) == &root_task_group)
return uc_req;
tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
value = uc_req.value;
value = clamp(value, tg_min, tg_max);
uclamp_se_set(&uc_req, value, false);
#endif
return uc_req;
}
/*
* The effective clamp bucket index of a task depends on, by increasing
* priority:
* - the task specific clamp value, when explicitly requested from userspace
* - the task group effective clamp value, for tasks not either in the root
* group or in an autogroup
* - the system default clamp value, defined by the sysadmin
*/
static inline struct uclamp_se
uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
{
struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
struct uclamp_se uc_max = uclamp_default[clamp_id];
/* System default restrictions always apply */
if (unlikely(uc_req.value > uc_max.value))
return uc_max;
return uc_req;
}
unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
{
struct uclamp_se uc_eff;
/* Task currently refcounted: use back-annotated (effective) value */
if (p->uclamp[clamp_id].active)
return (unsigned long)p->uclamp[clamp_id].value;
uc_eff = uclamp_eff_get(p, clamp_id);
return (unsigned long)uc_eff.value;
}
/*
* When a task is enqueued on a rq, the clamp bucket currently defined by the
* task's uclamp::bucket_id is refcounted on that rq. This also immediately
* updates the rq's clamp value if required.
*
* Tasks can have a task-specific value requested from user-space, track
* within each bucket the maximum value for tasks refcounted in it.
* This "local max aggregation" allows to track the exact "requested" value
* for each bucket when all its RUNNABLE tasks require the same clamp.
*/
static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
enum uclamp_id clamp_id)
{
struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
struct uclamp_se *uc_se = &p->uclamp[clamp_id];
struct uclamp_bucket *bucket;
lockdep_assert_rq_held(rq);
/* Update task effective clamp */
p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
bucket = &uc_rq->bucket[uc_se->bucket_id];
bucket->tasks++;
uc_se->active = true;
uclamp_idle_reset(rq, clamp_id, uc_se->value);
/*
* Local max aggregation: rq buckets always track the max
* "requested" clamp value of its RUNNABLE tasks.
*/
if (bucket->tasks == 1 || uc_se->value > bucket->value)
bucket->value = uc_se->value;
if (uc_se->value > uclamp_rq_get(rq, clamp_id))
uclamp_rq_set(rq, clamp_id, uc_se->value);
}
/*
* When a task is dequeued from a rq, the clamp bucket refcounted by the task
* is released. If this is the last task reference counting the rq's max
* active clamp value, then the rq's clamp value is updated.
*
* Both refcounted tasks and rq's cached clamp values are expected to be
* always valid. If it's detected they are not, as defensive programming,
* enforce the expected state and warn.
*/
static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
enum uclamp_id clamp_id)
{
struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
struct uclamp_se *uc_se = &p->uclamp[clamp_id];
struct uclamp_bucket *bucket;
unsigned int bkt_clamp;
unsigned int rq_clamp;
lockdep_assert_rq_held(rq);
/*
* If sched_uclamp_used was enabled after task @p was enqueued,
* we could end up with unbalanced call to uclamp_rq_dec_id().
*
* In this case the uc_se->active flag should be false since no uclamp
* accounting was performed at enqueue time and we can just return
* here.
*
* Need to be careful of the following enqueue/dequeue ordering
* problem too
*
* enqueue(taskA)
* // sched_uclamp_used gets enabled
* enqueue(taskB)
* dequeue(taskA)
* // Must not decrement bucket->tasks here
* dequeue(taskB)
*
* where we could end up with stale data in uc_se and
* bucket[uc_se->bucket_id].
*
* The following check here eliminates the possibility of such race.
*/
if (unlikely(!uc_se->active))
return;
bucket = &uc_rq->bucket[uc_se->bucket_id];
SCHED_WARN_ON(!bucket->tasks);
if (likely(bucket->tasks))
bucket->tasks--;
uc_se->active = false;
/*
* Keep "local max aggregation" simple and accept to (possibly)
* overboost some RUNNABLE tasks in the same bucket.
* The rq clamp bucket value is reset to its base value whenever
* there are no more RUNNABLE tasks refcounting it.
*/
if (likely(bucket->tasks))
return;
rq_clamp = uclamp_rq_get(rq, clamp_id);
/*
* Defensive programming: this should never happen. If it happens,
* e.g. due to future modification, warn and fixup the expected value.
*/
SCHED_WARN_ON(bucket->value > rq_clamp);
if (bucket->value >= rq_clamp) {
bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
uclamp_rq_set(rq, clamp_id, bkt_clamp);
}
}
static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
{
enum uclamp_id clamp_id;
/*
* Avoid any overhead until uclamp is actually used by the userspace.
*
* The condition is constructed such that a NOP is generated when
* sched_uclamp_used is disabled.
*/
if (!static_branch_unlikely(&sched_uclamp_used))
return;
if (unlikely(!p->sched_class->uclamp_enabled))
return;
for_each_clamp_id(clamp_id)
uclamp_rq_inc_id(rq, p, clamp_id);
/* Reset clamp idle holding when there is one RUNNABLE task */
if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
}
static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
{
enum uclamp_id clamp_id;
/*
* Avoid any overhead until uclamp is actually used by the userspace.
*
* The condition is constructed such that a NOP is generated when
* sched_uclamp_used is disabled.
*/
if (!static_branch_unlikely(&sched_uclamp_used))
return;
if (unlikely(!p->sched_class->uclamp_enabled))
return;
for_each_clamp_id(clamp_id)
uclamp_rq_dec_id(rq, p, clamp_id);
}
static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
enum uclamp_id clamp_id)
{
if (!p->uclamp[clamp_id].active)
return;
uclamp_rq_dec_id(rq, p, clamp_id);
uclamp_rq_inc_id(rq, p, clamp_id);
/*
* Make sure to clear the idle flag if we've transiently reached 0
* active tasks on rq.
*/
if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
}
static inline void
uclamp_update_active(struct task_struct *p)
{
enum uclamp_id clamp_id;
struct rq_flags rf;
struct rq *rq;
/*
* Lock the task and the rq where the task is (or was) queued.
*
* We might lock the (previous) rq of a !RUNNABLE task, but that's the
* price to pay to safely serialize util_{min,max} updates with
* enqueues, dequeues and migration operations.
* This is the same locking schema used by __set_cpus_allowed_ptr().
*/
rq = task_rq_lock(p, &rf);
/*
* Setting the clamp bucket is serialized by task_rq_lock().
* If the task is not yet RUNNABLE and its task_struct is not
* affecting a valid clamp bucket, the next time it's enqueued,
* it will already see the updated clamp bucket value.
*/
for_each_clamp_id(clamp_id)
uclamp_rq_reinc_id(rq, p, clamp_id);
task_rq_unlock(rq, p, &rf);
}
#ifdef CONFIG_UCLAMP_TASK_GROUP
static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state *css)
{
struct css_task_iter it;
struct task_struct *p;
css_task_iter_start(css, 0, &it);
while ((p = css_task_iter_next(&it)))
uclamp_update_active(p);
css_task_iter_end(&it);
}
static void cpu_util_update_eff(struct cgroup_subsys_state *css);
#endif
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_UCLAMP_TASK
#ifdef CONFIG_UCLAMP_TASK_GROUP
static void uclamp_update_root_tg(void)
{
struct task_group *tg = &root_task_group;
uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
sysctl_sched_uclamp_util_min, false);
uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
sysctl_sched_uclamp_util_max, false);
rcu_read_lock();
cpu_util_update_eff(&root_task_group.css);
rcu_read_unlock();
}
#else
static void uclamp_update_root_tg(void) { }
#endif
static void uclamp_sync_util_min_rt_default(void)
{
struct task_struct *g, *p;
/*
* copy_process() sysctl_uclamp
* uclamp_min_rt = X;
* write_lock(&tasklist_lock) read_lock(&tasklist_lock)
* // link thread smp_mb__after_spinlock()
* write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
* sched_post_fork() for_each_process_thread()
* __uclamp_sync_rt() __uclamp_sync_rt()
*
* Ensures that either sched_post_fork() will observe the new
* uclamp_min_rt or for_each_process_thread() will observe the new
* task.
*/
read_lock(&tasklist_lock);
smp_mb__after_spinlock();
read_unlock(&tasklist_lock);
rcu_read_lock();
for_each_process_thread(g, p)
uclamp_update_util_min_rt_default(p);
rcu_read_unlock();
}
static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
bool update_root_tg = false;
int old_min, old_max, old_min_rt;
int result;
mutex_lock(&uclamp_mutex);
old_min = sysctl_sched_uclamp_util_min;
old_max = sysctl_sched_uclamp_util_max;
old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
result = proc_dointvec(table, write, buffer, lenp, ppos);
if (result)
goto undo;
if (!write)
goto done;
if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
result = -EINVAL;
goto undo;
}
if (old_min != sysctl_sched_uclamp_util_min) {
uclamp_se_set(&uclamp_default[UCLAMP_MIN],
sysctl_sched_uclamp_util_min, false);
update_root_tg = true;
}
if (old_max != sysctl_sched_uclamp_util_max) {
uclamp_se_set(&uclamp_default[UCLAMP_MAX],
sysctl_sched_uclamp_util_max, false);
update_root_tg = true;
}
if (update_root_tg) {
static_branch_enable(&sched_uclamp_used);
uclamp_update_root_tg();
}
if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
static_branch_enable(&sched_uclamp_used);
uclamp_sync_util_min_rt_default();
}
/*
* We update all RUNNABLE tasks only when task groups are in use.
* Otherwise, keep it simple and do just a lazy update at each next
* task enqueue time.
*/
goto done;
undo:
sysctl_sched_uclamp_util_min = old_min;
sysctl_sched_uclamp_util_max = old_max;
sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
done:
mutex_unlock(&uclamp_mutex);
return result;
}
#endif
#endif
static int uclamp_validate(struct task_struct *p,
const struct sched_attr *attr)
{
int util_min = p->uclamp_req[UCLAMP_MIN].value;
int util_max = p->uclamp_req[UCLAMP_MAX].value;
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
util_min = attr->sched_util_min;
if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
return -EINVAL;
}
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
util_max = attr->sched_util_max;
if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
return -EINVAL;
}
if (util_min != -1 && util_max != -1 && util_min > util_max)
return -EINVAL;
/*
* We have valid uclamp attributes; make sure uclamp is enabled.
*
* We need to do that here, because enabling static branches is a
* blocking operation which obviously cannot be done while holding
* scheduler locks.
*/
static_branch_enable(&sched_uclamp_used);
return 0;
}
static bool uclamp_reset(const struct sched_attr *attr,
enum uclamp_id clamp_id,
struct uclamp_se *uc_se)
{
/* Reset on sched class change for a non user-defined clamp value. */
if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
!uc_se->user_defined)
return true;
/* Reset on sched_util_{min,max} == -1. */
if (clamp_id == UCLAMP_MIN &&
attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
attr->sched_util_min == -1) {
return true;
}
if (clamp_id == UCLAMP_MAX &&
attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
attr->sched_util_max == -1) {
return true;
}
return false;
}
static void __setscheduler_uclamp(struct task_struct *p,
const struct sched_attr *attr)
{
enum uclamp_id clamp_id;
for_each_clamp_id(clamp_id) {
struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
unsigned int value;
if (!uclamp_reset(attr, clamp_id, uc_se))
continue;
/*
* RT by default have a 100% boost value that could be modified
* at runtime.
*/
if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
value = sysctl_sched_uclamp_util_min_rt_default;
else
value = uclamp_none(clamp_id);
uclamp_se_set(uc_se, value, false);
}
if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
return;
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
attr->sched_util_min != -1) {
uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
attr->sched_util_min, true);
}
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
attr->sched_util_max != -1) {
uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
attr->sched_util_max, true);
}
}
static void uclamp_fork(struct task_struct *p)
{
enum uclamp_id clamp_id;
/*
* We don't need to hold task_rq_lock() when updating p->uclamp_* here
* as the task is still at its early fork stages.
*/
for_each_clamp_id(clamp_id)
p->uclamp[clamp_id].active = false;
if (likely(!p->sched_reset_on_fork))
return;
for_each_clamp_id(clamp_id) {
uclamp_se_set(&p->uclamp_req[clamp_id],
uclamp_none(clamp_id), false);
}
}
static void uclamp_post_fork(struct task_struct *p)
{
uclamp_update_util_min_rt_default(p);
}
static void __init init_uclamp_rq(struct rq *rq)
{
enum uclamp_id clamp_id;
struct uclamp_rq *uc_rq = rq->uclamp;
for_each_clamp_id(clamp_id) {
uc_rq[clamp_id] = (struct uclamp_rq) {
.value = uclamp_none(clamp_id)
};
}
rq->uclamp_flags = UCLAMP_FLAG_IDLE;
}
static void __init init_uclamp(void)
{
struct uclamp_se uc_max = {};
enum uclamp_id clamp_id;
int cpu;
for_each_possible_cpu(cpu)
init_uclamp_rq(cpu_rq(cpu));
for_each_clamp_id(clamp_id) {
uclamp_se_set(&init_task.uclamp_req[clamp_id],
uclamp_none(clamp_id), false);
}
/* System defaults allow max clamp values for both indexes */
uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
for_each_clamp_id(clamp_id) {
uclamp_default[clamp_id] = uc_max;
#ifdef CONFIG_UCLAMP_TASK_GROUP
root_task_group.uclamp_req[clamp_id] = uc_max;
root_task_group.uclamp[clamp_id] = uc_max;
#endif
}
}
#else /* CONFIG_UCLAMP_TASK */
static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
static inline int uclamp_validate(struct task_struct *p,
const struct sched_attr *attr)
{
return -EOPNOTSUPP;
}
static void __setscheduler_uclamp(struct task_struct *p,
const struct sched_attr *attr) { }
static inline void uclamp_fork(struct task_struct *p) { }
static inline void uclamp_post_fork(struct task_struct *p) { }
static inline void init_uclamp(void) { }
#endif /* CONFIG_UCLAMP_TASK */
bool sched_task_on_rq(struct task_struct *p)
{
return task_on_rq_queued(p);
}
unsigned long get_wchan(struct task_struct *p)
{
unsigned long ip = 0;
unsigned int state;
if (!p || p == current)
return 0;
/* Only get wchan if task is blocked and we can keep it that way. */
raw_spin_lock_irq(&p->pi_lock);
state = READ_ONCE(p->__state);
smp_rmb(); /* see try_to_wake_up() */
if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
ip = __get_wchan(p);
raw_spin_unlock_irq(&p->pi_lock);
return ip;
}
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
{
if (!(flags & ENQUEUE_NOCLOCK))
update_rq_clock(rq);
if (!(flags & ENQUEUE_RESTORE)) {
sched_info_enqueue(rq, p);
psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
}
uclamp_rq_inc(rq, p);
p->sched_class->enqueue_task(rq, p, flags);
if (sched_core_enabled(rq))
sched_core_enqueue(rq, p);
}
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
{
if (sched_core_enabled(rq))
sched_core_dequeue(rq, p, flags);
if (!(flags & DEQUEUE_NOCLOCK))
update_rq_clock(rq);
if (!(flags & DEQUEUE_SAVE)) {
sched_info_dequeue(rq, p);
psi_dequeue(p, flags & DEQUEUE_SLEEP);
}
uclamp_rq_dec(rq, p);
p->sched_class->dequeue_task(rq, p, flags);
}
void activate_task(struct rq *rq, struct task_struct *p, int flags)
{
if (task_on_rq_migrating(p))
flags |= ENQUEUE_MIGRATED;
if (flags & ENQUEUE_MIGRATED)
sched_mm_cid_migrate_to(rq, p);
enqueue_task(rq, p, flags);
p->on_rq = TASK_ON_RQ_QUEUED;
}
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
{
p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
dequeue_task(rq, p, flags);
}
static inline int __normal_prio(int policy, int rt_prio, int nice)
{
int prio;
if (dl_policy(policy))
prio = MAX_DL_PRIO - 1;
else if (rt_policy(policy))
prio = MAX_RT_PRIO - 1 - rt_prio;
else
prio = NICE_TO_PRIO(nice);
return prio;
}
/*
* Calculate the expected normal priority: i.e. priority
* without taking RT-inheritance into account. Might be
* boosted by interactivity modifiers. Changes upon fork,
* setprio syscalls, and whenever the interactivity
* estimator recalculates.
*/
static inline int normal_prio(struct task_struct *p)
{
return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
}
/*
* Calculate the current priority, i.e. the priority
* taken into account by the scheduler. This value might
* be boosted by RT tasks, or might be boosted by
* interactivity modifiers. Will be RT if the task got
* RT-boosted. If not then it returns p->normal_prio.
*/
static int effective_prio(struct task_struct *p)
{
p->normal_prio = normal_prio(p);
/*
* If we are RT tasks or we were boosted to RT priority,
* keep the priority unchanged. Otherwise, update priority
* to the normal priority:
*/
if (!rt_prio(p->prio))
return p->normal_prio;
return p->prio;
}
/**
* task_curr - is this task currently executing on a CPU?
* @p: the task in question.
*
* Return: 1 if the task is currently executing. 0 otherwise.
*/
inline int task_curr(const struct task_struct *p)
{
return cpu_curr(task_cpu(p)) == p;
}
/*
* switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
* use the balance_callback list if you want balancing.
*
* this means any call to check_class_changed() must be followed by a call to
* balance_callback().
*/
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
const struct sched_class *prev_class,
int oldprio)
{
if (prev_class != p->sched_class) {
if (prev_class->switched_from)
prev_class->switched_from(rq, p);
p->sched_class->switched_to(rq, p);
} else if (oldprio != p->prio || dl_task(p))
p->sched_class->prio_changed(rq, p, oldprio);
}
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
if (p->sched_class == rq->curr->sched_class)
rq->curr->sched_class->check_preempt_curr(rq, p, flags);
else if (sched_class_above(p->sched_class, rq->curr->sched_class))
resched_curr(rq);
/*
* A queue event has occurred, and we're going to schedule. In
* this case, we can save a useless back to back clock update.
*/
if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
rq_clock_skip_update(rq);
}
static __always_inline
int __task_state_match(struct task_struct *p, unsigned int state)
{
if (READ_ONCE(p->__state) & state)
return 1;
#ifdef CONFIG_PREEMPT_RT
if (READ_ONCE(p->saved_state) & state)
return -1;
#endif
return 0;
}
static __always_inline
int task_state_match(struct task_struct *p, unsigned int state)
{
#ifdef CONFIG_PREEMPT_RT
int match;
/*
* Serialize against current_save_and_set_rtlock_wait_state() and
* current_restore_rtlock_saved_state().
*/
raw_spin_lock_irq(&p->pi_lock);
match = __task_state_match(p, state);
raw_spin_unlock_irq(&p->pi_lock);
return match;
#else
return __task_state_match(p, state);
#endif
}
/*
* wait_task_inactive - wait for a thread to unschedule.
*
* Wait for the thread to block in any of the states set in @match_state.
* If it changes, i.e. @p might have woken up, then return zero. When we
* succeed in waiting for @p to be off its CPU, we return a positive number
* (its total switch count). If a second call a short while later returns the
* same number, the caller can be sure that @p has remained unscheduled the
* whole time.
*
* The caller must ensure that the task *will* unschedule sometime soon,
* else this function might spin for a *long* time. This function can't
* be called with interrupts off, or it may introduce deadlock with
* smp_call_function() if an IPI is sent by the same process we are
* waiting to become inactive.
*/
unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
{
int running, queued, match;
struct rq_flags rf;
unsigned long ncsw;
struct rq *rq;
for (;;) {
/*
* We do the initial early heuristics without holding
* any task-queue locks at all. We'll only try to get
* the runqueue lock when things look like they will
* work out!
*/
rq = task_rq(p);
/*
* If the task is actively running on another CPU
* still, just relax and busy-wait without holding
* any locks.
*
* NOTE! Since we don't hold any locks, it's not
* even sure that "rq" stays as the right runqueue!
* But we don't care, since "task_on_cpu()" will
* return false if the runqueue has changed and p
* is actually now running somewhere else!
*/
while (task_on_cpu(rq, p)) {
if (!task_state_match(p, match_state))
return 0;
cpu_relax();
}
/*
* Ok, time to look more closely! We need the rq
* lock now, to be *sure*. If we're wrong, we'll
* just go back and repeat.
*/
rq = task_rq_lock(p, &rf);
trace_sched_wait_task(p);
running = task_on_cpu(rq, p);
queued = task_on_rq_queued(p);
ncsw = 0;
if ((match = __task_state_match(p, match_state))) {
/*
* When matching on p->saved_state, consider this task
* still queued so it will wait.
*/
if (match < 0)
queued = 1;
ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
}
task_rq_unlock(rq, p, &rf);
/*
* If it changed from the expected state, bail out now.
*/
if (unlikely(!ncsw))
break;
/*
* Was it really running after all now that we
* checked with the proper locks actually held?
*
* Oops. Go back and try again..
*/
if (unlikely(running)) {
cpu_relax();
continue;
}
/*
* It's not enough that it's not actively running,
* it must be off the runqueue _entirely_, and not
* preempted!
*
* So if it was still runnable (but just not actively
* running right now), it's preempted, and we should
* yield - it could be a while.
*/
if (unlikely(queued)) {
ktime_t to = NSEC_PER_SEC / HZ;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
continue;
}
/*
* Ahh, all good. It wasn't running, and it wasn't
* runnable, which means that it will never become
* running in the future either. We're all done!
*/
break;
}
return ncsw;
}
#ifdef CONFIG_SMP
static void
__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
static int __set_cpus_allowed_ptr(struct task_struct *p,
struct affinity_context *ctx);
static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
{
struct affinity_context ac = {
.new_mask = cpumask_of(rq->cpu),
.flags = SCA_MIGRATE_DISABLE,
};
if (likely(!p->migration_disabled))
return;
if (p->cpus_ptr != &p->cpus_mask)
return;
/*
* Violates locking rules! see comment in __do_set_cpus_allowed().
*/
__do_set_cpus_allowed(p, &ac);
}
void migrate_disable(void)
{
struct task_struct *p = current;
if (p->migration_disabled) {
p->migration_disabled++;
return;
}
preempt_disable();
this_rq()->nr_pinned++;
p->migration_disabled = 1;
preempt_enable();
}
EXPORT_SYMBOL_GPL(migrate_disable);
void migrate_enable(void)
{
struct task_struct *p = current;
struct affinity_context ac = {
.new_mask = &p->cpus_mask,
.flags = SCA_MIGRATE_ENABLE,
};
if (p->migration_disabled > 1) {
p->migration_disabled--;
return;
}
if (WARN_ON_ONCE(!p->migration_disabled))
return;
/*
* Ensure stop_task runs either before or after this, and that
* __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
*/
preempt_disable();
if (p->cpus_ptr != &p->cpus_mask)
__set_cpus_allowed_ptr(p, &ac);
/*
* Mustn't clear migration_disabled() until cpus_ptr points back at the
* regular cpus_mask, otherwise things that race (eg.
* select_fallback_rq) get confused.
*/
barrier();
p->migration_disabled = 0;
this_rq()->nr_pinned--;
preempt_enable();
}
EXPORT_SYMBOL_GPL(migrate_enable);
static inline bool rq_has_pinned_tasks(struct rq *rq)
{
return rq->nr_pinned;
}
/*
* Per-CPU kthreads are allowed to run on !active && online CPUs, see
* __set_cpus_allowed_ptr() and select_fallback_rq().
*/
static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
{
/* When not in the task's cpumask, no point in looking further. */
if (!cpumask_test_cpu(cpu, p->cpus_ptr))
return false;
/* migrate_disabled() must be allowed to finish. */
if (is_migration_disabled(p))
return cpu_online(cpu);
/* Non kernel threads are not allowed during either online or offline. */
if (!(p->flags & PF_KTHREAD))
return cpu_active(cpu) && task_cpu_possible(cpu, p);
/* KTHREAD_IS_PER_CPU is always allowed. */
if (kthread_is_per_cpu(p))
return cpu_online(cpu);
/* Regular kernel threads don't get to stay during offline. */
if (cpu_dying(cpu))
return false;
/* But are allowed during online. */
return cpu_online(cpu);
}
/*
* This is how migration works:
*
* 1) we invoke migration_cpu_stop() on the target CPU using
* stop_one_cpu().
* 2) stopper starts to run (implicitly forcing the migrated thread
* off the CPU)
* 3) it checks whether the migrated task is still in the wrong runqueue.
* 4) if it's in the wrong runqueue then the migration thread removes
* it and puts it into the right queue.
* 5) stopper completes and stop_one_cpu() returns and the migration
* is done.
*/
/*
* move_queued_task - move a queued task to new rq.
*
* Returns (locked) new rq. Old rq's lock is released.
*/
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
struct task_struct *p, int new_cpu)
{
lockdep_assert_rq_held(rq);
deactivate_task(rq, p, DEQUEUE_NOCLOCK);
set_task_cpu(p, new_cpu);
rq_unlock(rq, rf);
rq = cpu_rq(new_cpu);
rq_lock(rq, rf);
WARN_ON_ONCE(task_cpu(p) != new_cpu);
activate_task(rq, p, 0);
check_preempt_curr(rq, p, 0);
return rq;
}
struct migration_arg {
struct task_struct *task;
int dest_cpu;
struct set_affinity_pending *pending;
};
/*
* @refs: number of wait_for_completion()
* @stop_pending: is @stop_work in use
*/
struct set_affinity_pending {
refcount_t refs;
unsigned int stop_pending;
struct completion done;
struct cpu_stop_work stop_work;
struct migration_arg arg;
};
/*
* Move (not current) task off this CPU, onto the destination CPU. We're doing
* this because either it can't run here any more (set_cpus_allowed()
* away from this CPU, or CPU going down), or because we're
* attempting to rebalance this task on exec (sched_exec).
*
* So we race with normal scheduler movements, but that's OK, as long
* as the task is no longer on this CPU.
*/
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
struct task_struct *p, int dest_cpu)
{
/* Affinity changed (again). */
if (!is_cpu_allowed(p, dest_cpu))
return rq;
rq = move_queued_task(rq, rf, p, dest_cpu);
return rq;
}
/*
* migration_cpu_stop - this will be executed by a highprio stopper thread
* and performs thread migration by bumping thread off CPU then
* 'pushing' onto another runqueue.
*/
static int migration_cpu_stop(void *data)
{
struct migration_arg *arg = data;
struct set_affinity_pending *pending = arg->pending;
struct task_struct *p = arg->task;
struct rq *rq = this_rq();
bool complete = false;
struct rq_flags rf;
/*
* The original target CPU might have gone down and we might
* be on another CPU but it doesn't matter.
*/
local_irq_save(rf.flags);
/*
* We need to explicitly wake pending tasks before running
* __migrate_task() such that we will not miss enforcing cpus_ptr
* during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
*/
flush_smp_call_function_queue();
raw_spin_lock(&p->pi_lock);
rq_lock(rq, &rf);
/*
* If we were passed a pending, then ->stop_pending was set, thus
* p->migration_pending must have remained stable.
*/
WARN_ON_ONCE(pending && pending != p->migration_pending);
/*
* If task_rq(p) != rq, it cannot be migrated here, because we're
* holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
* we're holding p->pi_lock.
*/
if (task_rq(p) == rq) {
if (is_migration_disabled(p))
goto out;
if (pending) {
p->migration_pending = NULL;
complete = true;
if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
goto out;
}
if (task_on_rq_queued(p)) {
update_rq_clock(rq);
rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
} else {
p->wake_cpu = arg->dest_cpu;
}
/*
* XXX __migrate_task() can fail, at which point we might end
* up running on a dodgy CPU, AFAICT this can only happen
* during CPU hotplug, at which point we'll get pushed out
* anyway, so it's probably not a big deal.
*/
} else if (pending) {
/*
* This happens when we get migrated between migrate_enable()'s
* preempt_enable() and scheduling the stopper task. At that
* point we're a regular task again and not current anymore.
*
* A !PREEMPT kernel has a giant hole here, which makes it far
* more likely.
*/
/*
* The task moved before the stopper got to run. We're holding
* ->pi_lock, so the allowed mask is stable - if it got
* somewhere allowed, we're done.
*/
if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
p->migration_pending = NULL;
complete = true;
goto out;
}
/*
* When migrate_enable() hits a rq mis-match we can't reliably
* determine is_migration_disabled() and so have to chase after
* it.
*/
WARN_ON_ONCE(!pending->stop_pending);
task_rq_unlock(rq, p, &rf);
stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
&pending->arg, &pending->stop_work);
return 0;
}
out:
if (pending)
pending->stop_pending = false;
task_rq_unlock(rq, p, &rf);
if (complete)
complete_all(&pending->done);
return 0;
}
int push_cpu_stop(void *arg)
{
struct rq *lowest_rq = NULL, *rq = this_rq();
struct task_struct *p = arg;
raw_spin_lock_irq(&p->pi_lock);
raw_spin_rq_lock(rq);
if (task_rq(p) != rq)
goto out_unlock;
if (is_migration_disabled(p)) {
p->migration_flags |= MDF_PUSH;
goto out_unlock;
}
p->migration_flags &= ~MDF_PUSH;
if (p->sched_class->find_lock_rq)
lowest_rq = p->sched_class->find_lock_rq(p, rq);
if (!lowest_rq)
goto out_unlock;
// XXX validate p is still the highest prio task
if (task_rq(p) == rq) {
deactivate_task(rq, p, 0);
set_task_cpu(p, lowest_rq->cpu);
activate_task(lowest_rq, p, 0);
resched_curr(lowest_rq);
}
double_unlock_balance(rq, lowest_rq);
out_unlock:
rq->push_busy = false;
raw_spin_rq_unlock(rq);
raw_spin_unlock_irq(&p->pi_lock);
put_task_struct(p);
return 0;
}
/*
* sched_class::set_cpus_allowed must do the below, but is not required to
* actually call this function.
*/
void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
{
if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
p->cpus_ptr = ctx->new_mask;
return;
}
cpumask_copy(&p->cpus_mask, ctx->new_mask);
p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
/*
* Swap in a new user_cpus_ptr if SCA_USER flag set
*/
if (ctx->flags & SCA_USER)
swap(p->user_cpus_ptr, ctx->user_mask);
}
static void
__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
{
struct rq *rq = task_rq(p);
bool queued, running;
/*
* This here violates the locking rules for affinity, since we're only
* supposed to change these variables while holding both rq->lock and
* p->pi_lock.
*
* HOWEVER, it magically works, because ttwu() is the only code that
* accesses these variables under p->pi_lock and only does so after
* smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
* before finish_task().
*
* XXX do further audits, this smells like something putrid.
*/
if (ctx->flags & SCA_MIGRATE_DISABLE)
SCHED_WARN_ON(!p->on_cpu);
else
lockdep_assert_held(&p->pi_lock);
queued = task_on_rq_queued(p);
running = task_current(rq, p);
if (queued) {
/*
* Because __kthread_bind() calls this on blocked tasks without
* holding rq->lock.
*/
lockdep_assert_rq_held(rq);
dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
}
if (running)
put_prev_task(rq, p);
p->sched_class->set_cpus_allowed(p, ctx);
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
if (running)
set_next_task(rq, p);
}
/*
* Used for kthread_bind() and select_fallback_rq(), in both cases the user
* affinity (if any) should be destroyed too.
*/
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
struct affinity_context ac = {
.new_mask = new_mask,
.user_mask = NULL,
.flags = SCA_USER, /* clear the user requested mask */
};
union cpumask_rcuhead {
cpumask_t cpumask;
struct rcu_head rcu;
};
__do_set_cpus_allowed(p, &ac);
/*
* Because this is called with p->pi_lock held, it is not possible
* to use kfree() here (when PREEMPT_RT=y), therefore punt to using
* kfree_rcu().
*/
kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
}
static cpumask_t *alloc_user_cpus_ptr(int node)
{
/*
* See do_set_cpus_allowed() above for the rcu_head usage.
*/
int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
return kmalloc_node(size, GFP_KERNEL, node);
}
int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
int node)
{
cpumask_t *user_mask;
unsigned long flags;
/*
* Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
* may differ by now due to racing.
*/
dst->user_cpus_ptr = NULL;
/*
* This check is racy and losing the race is a valid situation.
* It is not worth the extra overhead of taking the pi_lock on
* every fork/clone.
*/
if (data_race(!src->user_cpus_ptr))
return 0;
user_mask = alloc_user_cpus_ptr(node);
if (!user_mask)
return -ENOMEM;
/*
* Use pi_lock to protect content of user_cpus_ptr
*
* Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
* do_set_cpus_allowed().
*/
raw_spin_lock_irqsave(&src->pi_lock, flags);
if (src->user_cpus_ptr) {
swap(dst->user_cpus_ptr, user_mask);
cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
}
raw_spin_unlock_irqrestore(&src->pi_lock, flags);
if (unlikely(user_mask))
kfree(user_mask);
return 0;
}
static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
{
struct cpumask *user_mask = NULL;
swap(p->user_cpus_ptr, user_mask);
return user_mask;
}
void release_user_cpus_ptr(struct task_struct *p)
{
kfree(clear_user_cpus_ptr(p));
}
/*
* This function is wildly self concurrent; here be dragons.
*
*
* When given a valid mask, __set_cpus_allowed_ptr() must block until the
* designated task is enqueued on an allowed CPU. If that task is currently
* running, we have to kick it out using the CPU stopper.
*
* Migrate-Disable comes along and tramples all over our nice sandcastle.
* Consider:
*
* Initial conditions: P0->cpus_mask = [0, 1]
*
* P0@CPU0 P1
*
* migrate_disable();
* <preempted>
* set_cpus_allowed_ptr(P0, [1]);
*
* P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
* its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
* This means we need the following scheme:
*
* P0@CPU0 P1
*
* migrate_disable();
* <preempted>
* set_cpus_allowed_ptr(P0, [1]);
* <blocks>
* <resumes>
* migrate_enable();
* __set_cpus_allowed_ptr();
* <wakes local stopper>
* `--> <woken on migration completion>
*
* Now the fun stuff: there may be several P1-like tasks, i.e. multiple
* concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
* task p are serialized by p->pi_lock, which we can leverage: the one that
* should come into effect at the end of the Migrate-Disable region is the last
* one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
* but we still need to properly signal those waiting tasks at the appropriate
* moment.
*
* This is implemented using struct set_affinity_pending. The first
* __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
* setup an instance of that struct and install it on the targeted task_struct.
* Any and all further callers will reuse that instance. Those then wait for
* a completion signaled at the tail of the CPU stopper callback (1), triggered
* on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
*
*
* (1) In the cases covered above. There is one more where the completion is
* signaled within affine_move_task() itself: when a subsequent affinity request
* occurs after the stopper bailed out due to the targeted task still being
* Migrate-Disable. Consider:
*
* Initial conditions: P0->cpus_mask = [0, 1]
*
* CPU0 P1 P2
* <P0>
* migrate_disable();
* <preempted>
* set_cpus_allowed_ptr(P0, [1]);
* <blocks>
* <migration/0>
* migration_cpu_stop()
* is_migration_disabled()
* <bails>
* set_cpus_allowed_ptr(P0, [0, 1]);
* <signal completion>
* <awakes>
*
* Note that the above is safe vs a concurrent migrate_enable(), as any
* pending affinity completion is preceded by an uninstallation of
* p->migration_pending done with p->pi_lock held.
*/
static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
int dest_cpu, unsigned int flags)
__releases(rq->lock)
__releases(p->pi_lock)
{
struct set_affinity_pending my_pending = { }, *pending = NULL;
bool stop_pending, complete = false;
/* Can the task run on the task's current CPU? If so, we're done */
if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
struct task_struct *push_task = NULL;
if ((flags & SCA_MIGRATE_ENABLE) &&
(p->migration_flags & MDF_PUSH) && !rq->push_busy) {
rq->push_busy = true;
push_task = get_task_struct(p);
}
/*
* If there are pending waiters, but no pending stop_work,
* then complete now.
*/
pending = p->migration_pending;
if (pending && !pending->stop_pending) {
p->migration_pending = NULL;
complete = true;
}
task_rq_unlock(rq, p, rf);
if (push_task) {
stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
p, &rq->push_work);
}
if (complete)
complete_all(&pending->done);
return 0;
}
if (!(flags & SCA_MIGRATE_ENABLE)) {
/* serialized by p->pi_lock */
if (!p->migration_pending) {
/* Install the request */
refcount_set(&my_pending.refs, 1);
init_completion(&my_pending.done);
my_pending.arg = (struct migration_arg) {
.task = p,
.dest_cpu = dest_cpu,
.pending = &my_pending,
};
p->migration_pending = &my_pending;
} else {
pending = p->migration_pending;
refcount_inc(&pending->refs);
/*
* Affinity has changed, but we've already installed a
* pending. migration_cpu_stop() *must* see this, else
* we risk a completion of the pending despite having a
* task on a disallowed CPU.
*
* Serialized by p->pi_lock, so this is safe.
*/
pending->arg.dest_cpu = dest_cpu;
}
}
pending = p->migration_pending;
/*
* - !MIGRATE_ENABLE:
* we'll have installed a pending if there wasn't one already.
*
* - MIGRATE_ENABLE:
* we're here because the current CPU isn't matching anymore,
* the only way that can happen is because of a concurrent
* set_cpus_allowed_ptr() call, which should then still be
* pending completion.
*
* Either way, we really should have a @pending here.
*/
if (WARN_ON_ONCE(!pending)) {
task_rq_unlock(rq, p, rf);
return -EINVAL;
}
if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
/*
* MIGRATE_ENABLE gets here because 'p == current', but for
* anything else we cannot do is_migration_disabled(), punt
* and have the stopper function handle it all race-free.
*/
stop_pending = pending->stop_pending;
if (!stop_pending)
pending->stop_pending = true;
if (flags & SCA_MIGRATE_ENABLE)
p->migration_flags &= ~MDF_PUSH;
task_rq_unlock(rq, p, rf);
if (!stop_pending) {
stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
&pending->arg, &pending->stop_work);
}
if (flags & SCA_MIGRATE_ENABLE)
return 0;
} else {
if (!is_migration_disabled(p)) {
if (task_on_rq_queued(p))
rq = move_queued_task(rq, rf, p, dest_cpu);
if (!pending->stop_pending) {
p->migration_pending = NULL;
complete = true;
}
}
task_rq_unlock(rq, p, rf);
if (complete)
complete_all(&pending->done);
}
wait_for_completion(&pending->done);
if (refcount_dec_and_test(&pending->refs))
wake_up_var(&pending->refs); /* No UaF, just an address */
/*
* Block the original owner of &pending until all subsequent callers
* have seen the completion and decremented the refcount
*/
wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
/* ARGH */
WARN_ON_ONCE(my_pending.stop_pending);
return 0;
}
/*
* Called with both p->pi_lock and rq->lock held; drops both before returning.
*/
static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
struct affinity_context *ctx,
struct rq *rq,
struct rq_flags *rf)
__releases(rq->lock)
__releases(p->pi_lock)
{
const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
const struct cpumask *cpu_valid_mask = cpu_active_mask;
bool kthread = p->flags & PF_KTHREAD;
unsigned int dest_cpu;
int ret = 0;
update_rq_clock(rq);
if (kthread || is_migration_disabled(p)) {
/*
* Kernel threads are allowed on online && !active CPUs,
* however, during cpu-hot-unplug, even these might get pushed
* away if not KTHREAD_IS_PER_CPU.
*
* Specifically, migration_disabled() tasks must not fail the
* cpumask_any_and_distribute() pick below, esp. so on
* SCA_MIGRATE_ENABLE, otherwise we'll not call
* set_cpus_allowed_common() and actually reset p->cpus_ptr.
*/
cpu_valid_mask = cpu_online_mask;
}
if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
ret = -EINVAL;
goto out;
}
/*
* Must re-check here, to close a race against __kthread_bind(),
* sched_setaffinity() is not guaranteed to observe the flag.
*/
if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
ret = -EINVAL;
goto out;
}
if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
if (ctx->flags & SCA_USER)
swap(p->user_cpus_ptr, ctx->user_mask);
goto out;
}
if (WARN_ON_ONCE(p == current &&
is_migration_disabled(p) &&
!cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
ret = -EBUSY;
goto out;
}
}
/*
* Picking a ~random cpu helps in cases where we are changing affinity
* for groups of tasks (ie. cpuset), so that load balancing is not
* immediately required to distribute the tasks within their new mask.
*/
dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
if (dest_cpu >= nr_cpu_ids) {
ret = -EINVAL;
goto out;
}
__do_set_cpus_allowed(p, ctx);
return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
out:
task_rq_unlock(rq, p, rf);
return ret;
}
/*
* Change a given task's CPU affinity. Migrate the thread to a
* proper CPU and schedule it away if the CPU it's executing on
* is removed from the allowed bitmask.
*
* NOTE: the caller must have a valid reference to the task, the
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
static int __set_cpus_allowed_ptr(struct task_struct *p,
struct affinity_context *ctx)
{
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(p, &rf);
/*
* Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
* flags are set.
*/
if (p->user_cpus_ptr &&
!(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
ctx->new_mask = rq->scratch_mask;
return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
}
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
struct affinity_context ac = {
.new_mask = new_mask,
.flags = 0,
};
return __set_cpus_allowed_ptr(p, &ac);
}
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
/*
* Change a given task's CPU affinity to the intersection of its current
* affinity mask and @subset_mask, writing the resulting mask to @new_mask.
* If user_cpus_ptr is defined, use it as the basis for restricting CPU
* affinity or use cpu_online_mask instead.
*
* If the resulting mask is empty, leave the affinity unchanged and return
* -EINVAL.
*/
static int restrict_cpus_allowed_ptr(struct task_struct *p,
struct cpumask *new_mask,
const struct cpumask *subset_mask)
{
struct affinity_context ac = {
.new_mask = new_mask,
.flags = 0,
};
struct rq_flags rf;
struct rq *rq;
int err;
rq = task_rq_lock(p, &rf);
/*
* Forcefully restricting the affinity of a deadline task is
* likely to cause problems, so fail and noisily override the
* mask entirely.
*/
if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
err = -EPERM;
goto err_unlock;
}
if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
err = -EINVAL;
goto err_unlock;
}
return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
err_unlock:
task_rq_unlock(rq, p, &rf);
return err;
}
/*
* Restrict the CPU affinity of task @p so that it is a subset of
* task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
* old affinity mask. If the resulting mask is empty, we warn and walk
* up the cpuset hierarchy until we find a suitable mask.
*/
void force_compatible_cpus_allowed_ptr(struct task_struct *p)
{
cpumask_var_t new_mask;
const struct cpumask *override_mask = task_cpu_possible_mask(p);
alloc_cpumask_var(&new_mask, GFP_KERNEL);
/*
* __migrate_task() can fail silently in the face of concurrent
* offlining of the chosen destination CPU, so take the hotplug
* lock to ensure that the migration succeeds.
*/
cpus_read_lock();
if (!cpumask_available(new_mask))
goto out_set_mask;
if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
goto out_free_mask;
/*
* We failed to find a valid subset of the affinity mask for the
* task, so override it based on its cpuset hierarchy.
*/
cpuset_cpus_allowed(p, new_mask);
override_mask = new_mask;
out_set_mask:
if (printk_ratelimit()) {
printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
task_pid_nr(p), p->comm,
cpumask_pr_args(override_mask));
}
WARN_ON(set_cpus_allowed_ptr(p, override_mask));
out_free_mask:
cpus_read_unlock();
free_cpumask_var(new_mask);
}
static int
__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
/*
* Restore the affinity of a task @p which was previously restricted by a
* call to force_compatible_cpus_allowed_ptr().
*
* It is the caller's responsibility to serialise this with any calls to
* force_compatible_cpus_allowed_ptr(@p).
*/
void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
{
struct affinity_context ac = {
.new_mask = task_user_cpus(p),
.flags = 0,
};
int ret;
/*
* Try to restore the old affinity mask with __sched_setaffinity().
* Cpuset masking will be done there too.
*/
ret = __sched_setaffinity(p, &ac);
WARN_ON_ONCE(ret);
}
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
{
#ifdef CONFIG_SCHED_DEBUG
unsigned int state = READ_ONCE(p->__state);
/*
* We should never call set_task_cpu() on a blocked task,
* ttwu() will sort out the placement.
*/
WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
/*
* Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
* because schedstat_wait_{start,end} rebase migrating task's wait_start
* time relying on p->on_rq.
*/
WARN_ON_ONCE(state == TASK_RUNNING &&
p->sched_class == &fair_sched_class &&
(p->on_rq && !task_on_rq_migrating(p)));
#ifdef CONFIG_LOCKDEP
/*
* The caller should hold either p->pi_lock or rq->lock, when changing
* a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
*
* sched_move_task() holds both and thus holding either pins the cgroup,
* see task_group().
*
* Furthermore, all task_rq users should acquire both locks, see
* task_rq_lock().
*/
WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
lockdep_is_held(__rq_lockp(task_rq(p)))));
#endif
/*
* Clearly, migrating tasks to offline CPUs is a fairly daft thing.
*/
WARN_ON_ONCE(!cpu_online(new_cpu));
WARN_ON_ONCE(is_migration_disabled(p));
#endif
trace_sched_migrate_task(p, new_cpu);
if (task_cpu(p) != new_cpu) {
if (p->sched_class->migrate_task_rq)
p->sched_class->migrate_task_rq(p, new_cpu);
p->se.nr_migrations++;
rseq_migrate(p);
sched_mm_cid_migrate_from(p);
perf_event_task_migrate(p);
}
__set_task_cpu(p, new_cpu);
}
#ifdef CONFIG_NUMA_BALANCING
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
if (task_on_rq_queued(p)) {
struct rq *src_rq, *dst_rq;
struct rq_flags srf, drf;
src_rq = task_rq(p);
dst_rq = cpu_rq(cpu);
rq_pin_lock(src_rq, &srf);
rq_pin_lock(dst_rq, &drf);
deactivate_task(src_rq, p, 0);
set_task_cpu(p, cpu);
activate_task(dst_rq, p, 0);
check_preempt_curr(dst_rq, p, 0);
rq_unpin_lock(dst_rq, &drf);
rq_unpin_lock(src_rq, &srf);
} else {
/*
* Task isn't running anymore; make it appear like we migrated
* it before it went to sleep. This means on wakeup we make the
* previous CPU our target instead of where it really is.
*/
p->wake_cpu = cpu;
}
}
struct migration_swap_arg {
struct task_struct *src_task, *dst_task;
int src_cpu, dst_cpu;
};
static int migrate_swap_stop(void *data)
{
struct migration_swap_arg *arg = data;
struct rq *src_rq, *dst_rq;
int ret = -EAGAIN;
if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
return -EAGAIN;
src_rq = cpu_rq(arg->src_cpu);
dst_rq = cpu_rq(arg->dst_cpu);
double_raw_lock(&arg->src_task->pi_lock,
&arg->dst_task->pi_lock);
double_rq_lock(src_rq, dst_rq);
if (task_cpu(arg->dst_task) != arg->dst_cpu)
goto unlock;
if (task_cpu(arg->src_task) != arg->src_cpu)
goto unlock;
if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
goto unlock;
if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
goto unlock;
__migrate_swap_task(arg->src_task, arg->dst_cpu);
__migrate_swap_task(arg->dst_task, arg->src_cpu);
ret = 0;
unlock:
double_rq_unlock(src_rq, dst_rq);
raw_spin_unlock(&arg->dst_task->pi_lock);
raw_spin_unlock(&arg->src_task->pi_lock);
return ret;
}
/*
* Cross migrate two tasks
*/
int migrate_swap(struct task_struct *cur, struct task_struct *p,
int target_cpu, int curr_cpu)
{
struct migration_swap_arg arg;
int ret = -EINVAL;
arg = (struct migration_swap_arg){
.src_task = cur,
.src_cpu = curr_cpu,
.dst_task = p,
.dst_cpu = target_cpu,
};
if (arg.src_cpu == arg.dst_cpu)
goto out;
/*
* These three tests are all lockless; this is OK since all of them
* will be re-checked with proper locks held further down the line.
*/
if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
goto out;
if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
goto out;
if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
goto out;
trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
out:
return ret;
}
#endif /* CONFIG_NUMA_BALANCING */
/***
* kick_process - kick a running thread to enter/exit the kernel
* @p: the to-be-kicked thread
*
* Cause a process which is running on another CPU to enter
* kernel-mode, without any delay. (to get signals handled.)
*
* NOTE: this function doesn't have to take the runqueue lock,
* because all it wants to ensure is that the remote task enters
* the kernel. If the IPI races and the task has been migrated
* to another CPU then no harm is done and the purpose has been
* achieved as well.
*/
void kick_process(struct task_struct *p)
{
int cpu;
preempt_disable();
cpu = task_cpu(p);
if ((cpu != smp_processor_id()) && task_curr(p))
smp_send_reschedule(cpu);
preempt_enable();
}
EXPORT_SYMBOL_GPL(kick_process);
/*
* ->cpus_ptr is protected by both rq->lock and p->pi_lock
*
* A few notes on cpu_active vs cpu_online:
*
* - cpu_active must be a subset of cpu_online
*
* - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
* see __set_cpus_allowed_ptr(). At this point the newly online
* CPU isn't yet part of the sched domains, and balancing will not
* see it.
*
* - on CPU-down we clear cpu_active() to mask the sched domains and
* avoid the load balancer to place new tasks on the to be removed
* CPU. Existing tasks will remain running there and will be taken
* off.
*
* This means that fallback selection must not select !active CPUs.
* And can assume that any active CPU must be online. Conversely
* select_task_rq() below may allow selection of !active CPUs in order
* to satisfy the above rules.
*/
static int select_fallback_rq(int cpu, struct task_struct *p)
{
int nid = cpu_to_node(cpu);
const struct cpumask *nodemask = NULL;
enum { cpuset, possible, fail } state = cpuset;
int dest_cpu;
/*
* If the node that the CPU is on has been offlined, cpu_to_node()
* will return -1. There is no CPU on the node, and we should
* select the CPU on the other node.
*/
if (nid != -1) {
nodemask = cpumask_of_node(nid);
/* Look for allowed, online CPU in same node. */
for_each_cpu(dest_cpu, nodemask) {
if (is_cpu_allowed(p, dest_cpu))
return dest_cpu;
}
}
for (;;) {
/* Any allowed, online CPU? */
for_each_cpu(dest_cpu, p->cpus_ptr) {
if (!is_cpu_allowed(p, dest_cpu))
continue;
goto out;
}
/* No more Mr. Nice Guy. */
switch (state) {
case cpuset:
if (cpuset_cpus_allowed_fallback(p)) {
state = possible;
break;
}
fallthrough;
case possible:
/*
* XXX When called from select_task_rq() we only
* hold p->pi_lock and again violate locking order.
*
* More yuck to audit.
*/
do_set_cpus_allowed(p, task_cpu_possible_mask(p));
state = fail;
break;
case fail:
BUG();
break;
}
}
out:
if (state != cpuset) {
/*
* Don't tell them about moving exiting tasks or
* kernel threads (both mm NULL), since they never
* leave kernel.
*/
if (p->mm && printk_ratelimit()) {
printk_deferred("process %d (%s) no longer affine to cpu%d\n",
task_pid_nr(p), p->comm, cpu);
}
}
return dest_cpu;
}
/*
* The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
*/
static inline
int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
{
lockdep_assert_held(&p->pi_lock);
if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
else
cpu = cpumask_any(p->cpus_ptr);
/*
* In order not to call set_task_cpu() on a blocking task we need
* to rely on ttwu() to place the task on a valid ->cpus_ptr
* CPU.
*
* Since this is common to all placement strategies, this lives here.
*
* [ this allows ->select_task() to simply return task_cpu(p) and
* not worry about this generic constraint ]
*/
if (unlikely(!is_cpu_allowed(p, cpu)))
cpu = select_fallback_rq(task_cpu(p), p);
return cpu;
}
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
static struct lock_class_key stop_pi_lock;
struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
struct task_struct *old_stop = cpu_rq(cpu)->stop;
if (stop) {
/*
* Make it appear like a SCHED_FIFO task, its something
* userspace knows about and won't get confused about.
*
* Also, it will make PI more or less work without too
* much confusion -- but then, stop work should not
* rely on PI working anyway.
*/
sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
stop->sched_class = &stop_sched_class;
/*
* The PI code calls rt_mutex_setprio() with ->pi_lock held to
* adjust the effective priority of a task. As a result,
* rt_mutex_setprio() can trigger (RT) balancing operations,
* which can then trigger wakeups of the stop thread to push
* around the current task.
*
* The stop task itself will never be part of the PI-chain, it
* never blocks, therefore that ->pi_lock recursion is safe.
* Tell lockdep about this by placing the stop->pi_lock in its
* own class.
*/
lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
}
cpu_rq(cpu)->stop = stop;
if (old_stop) {
/*
* Reset it back to a normal scheduling class so that
* it can die in pieces.
*/
old_stop->sched_class = &rt_sched_class;
}
}
#else /* CONFIG_SMP */
static inline int __set_cpus_allowed_ptr(struct task_struct *p,
struct affinity_context *ctx)
{
return set_cpus_allowed_ptr(p, ctx->new_mask);
}
static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
static inline bool rq_has_pinned_tasks(struct rq *rq)
{
return false;
}
static inline cpumask_t *alloc_user_cpus_ptr(int node)
{
return NULL;
}
#endif /* !CONFIG_SMP */
static void
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
{
struct rq *rq;
if (!schedstat_enabled())
return;
rq = this_rq();
#ifdef CONFIG_SMP
if (cpu == rq->cpu) {
__schedstat_inc(rq->ttwu_local);
__schedstat_inc(p->stats.nr_wakeups_local);
} else {
struct sched_domain *sd;
__schedstat_inc(p->stats.nr_wakeups_remote);
rcu_read_lock();
for_each_domain(rq->cpu, sd) {
if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
__schedstat_inc(sd->ttwu_wake_remote);
break;
}
}
rcu_read_unlock();
}
if (wake_flags & WF_MIGRATED)
__schedstat_inc(p->stats.nr_wakeups_migrate);
#endif /* CONFIG_SMP */
__schedstat_inc(rq->ttwu_count);
__schedstat_inc(p->stats.nr_wakeups);
if (wake_flags & WF_SYNC)
__schedstat_inc(p->stats.nr_wakeups_sync);
}
/*
* Mark the task runnable.
*/
static inline void ttwu_do_wakeup(struct task_struct *p)
{
WRITE_ONCE(p->__state, TASK_RUNNING);
trace_sched_wakeup(p);
}
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
struct rq_flags *rf)
{
int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
lockdep_assert_rq_held(rq);
if (p->sched_contributes_to_load)
rq->nr_uninterruptible--;
#ifdef CONFIG_SMP
if (wake_flags & WF_MIGRATED)
en_flags |= ENQUEUE_MIGRATED;
else
#endif
if (p->in_iowait) {
delayacct_blkio_end(p);
atomic_dec(&task_rq(p)->nr_iowait);
}
activate_task(rq, p, en_flags);
check_preempt_curr(rq, p, wake_flags);
ttwu_do_wakeup(p);
#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
* Our task @p is fully woken up and running; so it's safe to
* drop the rq->lock, hereafter rq is only used for statistics.
*/
rq_unpin_lock(rq, rf);
p->sched_class->task_woken(rq, p);
rq_repin_lock(rq, rf);
}
if (rq->idle_stamp) {
u64 delta = rq_clock(rq) - rq->idle_stamp;
u64 max = 2*rq->max_idle_balance_cost;
update_avg(&rq->avg_idle, delta);
if (rq->avg_idle > max)
rq->avg_idle = max;
rq->wake_stamp = jiffies;
rq->wake_avg_idle = rq->avg_idle / 2;
rq->idle_stamp = 0;
}
#endif
}
/*
* Consider @p being inside a wait loop:
*
* for (;;) {
* set_current_state(TASK_UNINTERRUPTIBLE);
*
* if (CONDITION)
* break;
*
* schedule();
* }
* __set_current_state(TASK_RUNNING);
*
* between set_current_state() and schedule(). In this case @p is still
* runnable, so all that needs doing is change p->state back to TASK_RUNNING in
* an atomic manner.
*
* By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
* then schedule() must still happen and p->state can be changed to
* TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
* need to do a full wakeup with enqueue.
*
* Returns: %true when the wakeup is done,
* %false otherwise.
*/
static int ttwu_runnable(struct task_struct *p, int wake_flags)
{
struct rq_flags rf;
struct rq *rq;
int ret = 0;
rq = __task_rq_lock(p, &rf);
if (task_on_rq_queued(p)) {
if (!task_on_cpu(rq, p)) {
/*
* When on_rq && !on_cpu the task is preempted, see if
* it should preempt the task that is current now.
*/
update_rq_clock(rq);
check_preempt_curr(rq, p, wake_flags);
}
ttwu_do_wakeup(p);
ret = 1;
}
__task_rq_unlock(rq, &rf);
return ret;
}
#ifdef CONFIG_SMP
void sched_ttwu_pending(void *arg)
{
struct llist_node *llist = arg;
struct rq *rq = this_rq();
struct task_struct *p, *t;
struct rq_flags rf;
if (!llist)
return;
rq_lock_irqsave(rq, &rf);
update_rq_clock(rq);
llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
if (WARN_ON_ONCE(p->on_cpu))
smp_cond_load_acquire(&p->on_cpu, !VAL);
if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
set_task_cpu(p, cpu_of(rq));
ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
}
/*
* Must be after enqueueing at least once task such that
* idle_cpu() does not observe a false-negative -- if it does,
* it is possible for select_idle_siblings() to stack a number
* of tasks on this CPU during that window.
*
* It is ok to clear ttwu_pending when another task pending.
* We will receive IPI after local irq enabled and then enqueue it.
* Since now nr_running > 0, idle_cpu() will always get correct result.
*/
WRITE_ONCE(rq->ttwu_pending, 0);
rq_unlock_irqrestore(rq, &rf);
}
/*
* Prepare the scene for sending an IPI for a remote smp_call
*
* Returns true if the caller can proceed with sending the IPI.
* Returns false otherwise.
*/
bool call_function_single_prep_ipi(int cpu)
{
if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
trace_sched_wake_idle_without_ipi(cpu);
return false;
}
return true;
}
/*
* Queue a task on the target CPUs wake_list and wake the CPU via IPI if
* necessary. The wakee CPU on receipt of the IPI will queue the task
* via sched_ttwu_wakeup() for activation so the wakee incurs the cost
* of the wakeup instead of the waker.
*/
static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
{
struct rq *rq = cpu_rq(cpu);
p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
WRITE_ONCE(rq->ttwu_pending, 1);
__smp_call_single_queue(cpu, &p->wake_entry.llist);
}
void wake_up_if_idle(int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
rcu_read_lock();
if (!is_idle_task(rcu_dereference(rq->curr)))
goto out;
rq_lock_irqsave(rq, &rf);
if (is_idle_task(rq->curr))
resched_curr(rq);
/* Else CPU is not idle, do nothing here: */
rq_unlock_irqrestore(rq, &rf);
out:
rcu_read_unlock();
}
bool cpus_share_cache(int this_cpu, int that_cpu)
{
if (this_cpu == that_cpu)
return true;
return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
{
/*
* Do not complicate things with the async wake_list while the CPU is
* in hotplug state.
*/
if (!cpu_active(cpu))
return false;
/* Ensure the task will still be allowed to run on the CPU. */
if (!cpumask_test_cpu(cpu, p->cpus_ptr))
return false;
/*
* If the CPU does not share cache, then queue the task on the
* remote rqs wakelist to avoid accessing remote data.
*/
if (!cpus_share_cache(smp_processor_id(), cpu))
return true;
if (cpu == smp_processor_id())
return false;
/*
* If the wakee cpu is idle, or the task is descheduling and the
* only running task on the CPU, then use the wakelist to offload
* the task activation to the idle (or soon-to-be-idle) CPU as
* the current CPU is likely busy. nr_running is checked to
* avoid unnecessary task stacking.
*
* Note that we can only get here with (wakee) p->on_rq=0,
* p->on_cpu can be whatever, we've done the dequeue, so
* the wakee has been accounted out of ->nr_running.
*/
if (!cpu_rq(cpu)->nr_running)
return true;
return false;
}
static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
{
if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
sched_clock_cpu(cpu); /* Sync clocks across CPUs */
__ttwu_queue_wakelist(p, cpu, wake_flags);
return true;
}
return false;
}
#else /* !CONFIG_SMP */
static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
{
return false;
}
#endif /* CONFIG_SMP */
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
{
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
if (ttwu_queue_wakelist(p, cpu, wake_flags))
return;
rq_lock(rq, &rf);
update_rq_clock(rq);
ttwu_do_activate(rq, p, wake_flags, &rf);
rq_unlock(rq, &rf);
}
/*
* Invoked from try_to_wake_up() to check whether the task can be woken up.
*
* The caller holds p::pi_lock if p != current or has preemption
* disabled when p == current.
*
* The rules of PREEMPT_RT saved_state:
*
* The related locking code always holds p::pi_lock when updating
* p::saved_state, which means the code is fully serialized in both cases.
*
* The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
* bits set. This allows to distinguish all wakeup scenarios.
*/
static __always_inline
bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
{
int match;
if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
state != TASK_RTLOCK_WAIT);
}
*success = !!(match = __task_state_match(p, state));
#ifdef CONFIG_PREEMPT_RT
/*
* Saved state preserves the task state across blocking on
* an RT lock. If the state matches, set p::saved_state to
* TASK_RUNNING, but do not wake the task because it waits
* for a lock wakeup. Also indicate success because from
* the regular waker's point of view this has succeeded.
*
* After acquiring the lock the task will restore p::__state
* from p::saved_state which ensures that the regular
* wakeup is not lost. The restore will also set
* p::saved_state to TASK_RUNNING so any further tests will
* not result in false positives vs. @success
*/
if (match < 0)
p->saved_state = TASK_RUNNING;
#endif
return match > 0;
}
/*
* Notes on Program-Order guarantees on SMP systems.
*
* MIGRATION
*
* The basic program-order guarantee on SMP systems is that when a task [t]
* migrates, all its activity on its old CPU [c0] happens-before any subsequent
* execution on its new CPU [c1].
*
* For migration (of runnable tasks) this is provided by the following means:
*
* A) UNLOCK of the rq(c0)->lock scheduling out task t
* B) migration for t is required to synchronize *both* rq(c0)->lock and
* rq(c1)->lock (if not at the same time, then in that order).
* C) LOCK of the rq(c1)->lock scheduling in task
*
* Release/acquire chaining guarantees that B happens after A and C after B.
* Note: the CPU doing B need not be c0 or c1
*
* Example:
*
* CPU0 CPU1 CPU2
*
* LOCK rq(0)->lock
* sched-out X
* sched-in Y
* UNLOCK rq(0)->lock
*
* LOCK rq(0)->lock // orders against CPU0
* dequeue X
* UNLOCK rq(0)->lock
*
* LOCK rq(1)->lock
* enqueue X
* UNLOCK rq(1)->lock
*
* LOCK rq(1)->lock // orders against CPU2
* sched-out Z
* sched-in X
* UNLOCK rq(1)->lock
*
*
* BLOCKING -- aka. SLEEP + WAKEUP
*
* For blocking we (obviously) need to provide the same guarantee as for
* migration. However the means are completely different as there is no lock
* chain to provide order. Instead we do:
*
* 1) smp_store_release(X->on_cpu, 0) -- finish_task()
* 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
*
* Example:
*
* CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
*
* LOCK rq(0)->lock LOCK X->pi_lock
* dequeue X
* sched-out X
* smp_store_release(X->on_cpu, 0);
*
* smp_cond_load_acquire(&X->on_cpu, !VAL);
* X->state = WAKING
* set_task_cpu(X,2)
*
* LOCK rq(2)->lock
* enqueue X
* X->state = RUNNING
* UNLOCK rq(2)->lock
*
* LOCK rq(2)->lock // orders against CPU1
* sched-out Z
* sched-in X
* UNLOCK rq(2)->lock
*
* UNLOCK X->pi_lock
* UNLOCK rq(0)->lock
*
*
* However, for wakeups there is a second guarantee we must provide, namely we
* must ensure that CONDITION=1 done by the caller can not be reordered with
* accesses to the task state; see try_to_wake_up() and set_current_state().
*/
/**
* try_to_wake_up - wake up a thread
* @p: the thread to be awakened
* @state: the mask of task states that can be woken
* @wake_flags: wake modifier flags (WF_*)
*
* Conceptually does:
*
* If (@state & @p->state) @p->state = TASK_RUNNING.
*
* If the task was not queued/runnable, also place it back on a runqueue.
*
* This function is atomic against schedule() which would dequeue the task.
*
* It issues a full memory barrier before accessing @p->state, see the comment
* with set_current_state().
*
* Uses p->pi_lock to serialize against concurrent wake-ups.
*
* Relies on p->pi_lock stabilizing:
* - p->sched_class
* - p->cpus_ptr
* - p->sched_task_group
* in order to do migration, see its use of select_task_rq()/set_task_cpu().
*
* Tries really hard to only take one task_rq(p)->lock for performance.
* Takes rq->lock in:
* - ttwu_runnable() -- old rq, unavoidable, see comment there;
* - ttwu_queue() -- new rq, for enqueue of the task;
* - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
*
* As a consequence we race really badly with just about everything. See the
* many memory barriers and their comments for details.
*
* Return: %true if @p->state changes (an actual wakeup was done),
* %false otherwise.
*/
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
{
unsigned long flags;
int cpu, success = 0;
preempt_disable();
if (p == current) {
/*
* We're waking current, this means 'p->on_rq' and 'task_cpu(p)
* == smp_processor_id()'. Together this means we can special
* case the whole 'p->on_rq && ttwu_runnable()' case below
* without taking any locks.
*
* In particular:
* - we rely on Program-Order guarantees for all the ordering,
* - we're serialized against set_special_state() by virtue of
* it disabling IRQs (this allows not taking ->pi_lock).
*/
if (!ttwu_state_match(p, state, &success))
goto out;
trace_sched_waking(p);
ttwu_do_wakeup(p);
goto out;
}
/*
* If we are going to wake up a thread waiting for CONDITION we
* need to ensure that CONDITION=1 done by the caller can not be
* reordered with p->state check below. This pairs with smp_store_mb()
* in set_current_state() that the waiting thread does.
*/
raw_spin_lock_irqsave(&p->pi_lock, flags);
smp_mb__after_spinlock();
if (!ttwu_state_match(p, state, &success))
goto unlock;
trace_sched_waking(p);
/*
* Ensure we load p->on_rq _after_ p->state, otherwise it would
* be possible to, falsely, observe p->on_rq == 0 and get stuck
* in smp_cond_load_acquire() below.
*
* sched_ttwu_pending() try_to_wake_up()
* STORE p->on_rq = 1 LOAD p->state
* UNLOCK rq->lock
*
* __schedule() (switch to task 'p')
* LOCK rq->lock smp_rmb();
* smp_mb__after_spinlock();
* UNLOCK rq->lock
*
* [task p]
* STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
*
* Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
* __schedule(). See the comment for smp_mb__after_spinlock().
*
* A similar smb_rmb() lives in try_invoke_on_locked_down_task().
*/
smp_rmb();
if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
goto unlock;
#ifdef CONFIG_SMP
/*
* Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
* possible to, falsely, observe p->on_cpu == 0.
*
* One must be running (->on_cpu == 1) in order to remove oneself
* from the runqueue.
*
* __schedule() (switch to task 'p') try_to_wake_up()
* STORE p->on_cpu = 1 LOAD p->on_rq
* UNLOCK rq->lock
*
* __schedule() (put 'p' to sleep)
* LOCK rq->lock smp_rmb();
* smp_mb__after_spinlock();
* STORE p->on_rq = 0 LOAD p->on_cpu
*
* Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
* __schedule(). See the comment for smp_mb__after_spinlock().
*
* Form a control-dep-acquire with p->on_rq == 0 above, to ensure
* schedule()'s deactivate_task() has 'happened' and p will no longer
* care about it's own p->state. See the comment in __schedule().
*/
smp_acquire__after_ctrl_dep();
/*
* We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
* == 0), which means we need to do an enqueue, change p->state to
* TASK_WAKING such that we can unlock p->pi_lock before doing the
* enqueue, such as ttwu_queue_wakelist().
*/
WRITE_ONCE(p->__state, TASK_WAKING);
/*
* If the owning (remote) CPU is still in the middle of schedule() with
* this task as prev, considering queueing p on the remote CPUs wake_list
* which potentially sends an IPI instead of spinning on p->on_cpu to
* let the waker make forward progress. This is safe because IRQs are
* disabled and the IPI will deliver after on_cpu is cleared.
*
* Ensure we load task_cpu(p) after p->on_cpu:
*
* set_task_cpu(p, cpu);
* STORE p->cpu = @cpu
* __schedule() (switch to task 'p')
* LOCK rq->lock
* smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
* STORE p->on_cpu = 1 LOAD p->cpu
*
* to ensure we observe the correct CPU on which the task is currently
* scheduling.
*/
if (smp_load_acquire(&p->on_cpu) &&
ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
goto unlock;
/*
* If the owning (remote) CPU is still in the middle of schedule() with
* this task as prev, wait until it's done referencing the task.
*
* Pairs with the smp_store_release() in finish_task().
*
* This ensures that tasks getting woken will be fully ordered against
* their previous state and preserve Program Order.
*/
smp_cond_load_acquire(&p->on_cpu, !VAL);
cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
if (task_cpu(p) != cpu) {
if (p->in_iowait) {
delayacct_blkio_end(p);
atomic_dec(&task_rq(p)->nr_iowait);
}
wake_flags |= WF_MIGRATED;
psi_ttwu_dequeue(p);
set_task_cpu(p, cpu);
}
#else
cpu = task_cpu(p);
#endif /* CONFIG_SMP */
ttwu_queue(p, cpu, wake_flags);
unlock:
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
out:
if (success)
ttwu_stat(p, task_cpu(p), wake_flags);
preempt_enable();
return success;
}
static bool __task_needs_rq_lock(struct task_struct *p)
{
unsigned int state = READ_ONCE(p->__state);
/*
* Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
* the task is blocked. Make sure to check @state since ttwu() can drop
* locks at the end, see ttwu_queue_wakelist().
*/
if (state == TASK_RUNNING || state == TASK_WAKING)
return true;
/*
* Ensure we load p->on_rq after p->__state, otherwise it would be
* possible to, falsely, observe p->on_rq == 0.
*
* See try_to_wake_up() for a longer comment.
*/
smp_rmb();
if (p->on_rq)
return true;
#ifdef CONFIG_SMP
/*
* Ensure the task has finished __schedule() and will not be referenced
* anymore. Again, see try_to_wake_up() for a longer comment.
*/
smp_rmb();
smp_cond_load_acquire(&p->on_cpu, !VAL);
#endif
return false;
}
/**
* task_call_func - Invoke a function on task in fixed state
* @p: Process for which the function is to be invoked, can be @current.
* @func: Function to invoke.
* @arg: Argument to function.
*
* Fix the task in it's current state by avoiding wakeups and or rq operations
* and call @func(@arg) on it. This function can use ->on_rq and task_curr()
* to work out what the state is, if required. Given that @func can be invoked
* with a runqueue lock held, it had better be quite lightweight.
*
* Returns:
* Whatever @func returns
*/
int task_call_func(struct task_struct *p, task_call_f func, void *arg)
{
struct rq *rq = NULL;
struct rq_flags rf;
int ret;
raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
if (__task_needs_rq_lock(p))
rq = __task_rq_lock(p, &rf);
/*
* At this point the task is pinned; either:
* - blocked and we're holding off wakeups (pi->lock)
* - woken, and we're holding off enqueue (rq->lock)
* - queued, and we're holding off schedule (rq->lock)
* - running, and we're holding off de-schedule (rq->lock)
*
* The called function (@func) can use: task_curr(), p->on_rq and
* p->__state to differentiate between these states.
*/
ret = func(p, arg);
if (rq)
rq_unlock(rq, &rf);
raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
return ret;
}
/**
* cpu_curr_snapshot - Return a snapshot of the currently running task
* @cpu: The CPU on which to snapshot the task.
*
* Returns the task_struct pointer of the task "currently" running on
* the specified CPU. If the same task is running on that CPU throughout,
* the return value will be a pointer to that task's task_struct structure.
* If the CPU did any context switches even vaguely concurrently with the
* execution of this function, the return value will be a pointer to the
* task_struct structure of a randomly chosen task that was running on
* that CPU somewhere around the time that this function was executing.
*
* If the specified CPU was offline, the return value is whatever it
* is, perhaps a pointer to the task_struct structure of that CPU's idle
* task, but there is no guarantee. Callers wishing a useful return
* value must take some action to ensure that the specified CPU remains
* online throughout.
*
* This function executes full memory barriers before and after fetching
* the pointer, which permits the caller to confine this function's fetch
* with respect to the caller's accesses to other shared variables.
*/
struct task_struct *cpu_curr_snapshot(int cpu)
{
struct task_struct *t;
smp_mb(); /* Pairing determined by caller's synchronization design. */
t = rcu_dereference(cpu_curr(cpu));
smp_mb(); /* Pairing determined by caller's synchronization design. */
return t;
}
/**
* wake_up_process - Wake up a specific process
* @p: The process to be woken up.
*
* Attempt to wake up the nominated process and move it to the set of runnable
* processes.
*
* Return: 1 if the process was woken up, 0 if it was already running.
*
* This function executes a full memory barrier before accessing the task state.
*/
int wake_up_process(struct task_struct *p)
{
return try_to_wake_up(p, TASK_NORMAL, 0);
}
EXPORT_SYMBOL(wake_up_process);
int wake_up_state(struct task_struct *p, unsigned int state)
{
return try_to_wake_up(p, state, 0);
}
/*
* Perform scheduler related setup for a newly forked process p.
* p is forked by current.
*
* __sched_fork() is basic setup used by init_idle() too:
*/
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
{
p->on_rq = 0;
p->se.on_rq = 0;
p->se.exec_start = 0;
p->se.sum_exec_runtime = 0;
p->se.prev_sum_exec_runtime = 0;
p->se.nr_migrations = 0;
p->se.vruntime = 0;
INIT_LIST_HEAD(&p->se.group_node);
#ifdef CONFIG_FAIR_GROUP_SCHED
p->se.cfs_rq = NULL;
#endif
#ifdef CONFIG_SCHEDSTATS
/* Even if schedstat is disabled, there should not be garbage */
memset(&p->stats, 0, sizeof(p->stats));
#endif
RB_CLEAR_NODE(&p->dl.rb_node);
init_dl_task_timer(&p->dl);
init_dl_inactive_task_timer(&p->dl);
__dl_clear_params(p);
INIT_LIST_HEAD(&p->rt.run_list);
p->rt.timeout = 0;
p->rt.time_slice = sched_rr_timeslice;
p->rt.on_rq = 0;
p->rt.on_list = 0;
#ifdef CONFIG_PREEMPT_NOTIFIERS
INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
#ifdef CONFIG_COMPACTION
p->capture_control = NULL;
#endif
init_numa_balancing(clone_flags, p);
#ifdef CONFIG_SMP
p->wake_entry.u_flags = CSD_TYPE_TTWU;
p->migration_pending = NULL;
#endif
init_sched_mm_cid(p);
}
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
#ifdef CONFIG_NUMA_BALANCING
int sysctl_numa_balancing_mode;
static void __set_numabalancing_state(bool enabled)
{
if (enabled)
static_branch_enable(&sched_numa_balancing);
else
static_branch_disable(&sched_numa_balancing);
}
void set_numabalancing_state(bool enabled)
{
if (enabled)
sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
else
sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
__set_numabalancing_state(enabled);
}
#ifdef CONFIG_PROC_SYSCTL
static void reset_memory_tiering(void)
{
struct pglist_data *pgdat;
for_each_online_pgdat(pgdat) {
pgdat->nbp_threshold = 0;
pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
}
}
static int sysctl_numa_balancing(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
struct ctl_table t;
int err;
int state = sysctl_numa_balancing_mode;
if (write && !capable(CAP_SYS_ADMIN))
return -EPERM;
t = *table;
t.data = &state;
err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
if (err < 0)
return err;
if (write) {
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
(state & NUMA_BALANCING_MEMORY_TIERING))
reset_memory_tiering();
sysctl_numa_balancing_mode = state;
__set_numabalancing_state(state);
}
return err;
}
#endif
#endif
#ifdef CONFIG_SCHEDSTATS
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
static void set_schedstats(bool enabled)
{
if (enabled)
static_branch_enable(&sched_schedstats);
else
static_branch_disable(&sched_schedstats);
}
void force_schedstat_enabled(void)
{
if (!schedstat_enabled()) {
pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
static_branch_enable(&sched_schedstats);
}
}
static int __init setup_schedstats(char *str)
{
int ret = 0;
if (!str)
goto out;
if (!strcmp(str, "enable")) {
set_schedstats(true);
ret = 1;
} else if (!strcmp(str, "disable")) {
set_schedstats(false);
ret = 1;
}
out:
if (!ret)
pr_warn("Unable to parse schedstats=\n");
return ret;
}
__setup("schedstats=", setup_schedstats);
#ifdef CONFIG_PROC_SYSCTL
static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
struct ctl_table t;
int err;
int state = static_branch_likely(&sched_schedstats);
if (write && !capable(CAP_SYS_ADMIN))
return -EPERM;
t = *table;
t.data = &state;
err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
if (err < 0)
return err;
if (write)
set_schedstats(state);
return err;
}
#endif /* CONFIG_PROC_SYSCTL */
#endif /* CONFIG_SCHEDSTATS */
#ifdef CONFIG_SYSCTL
static struct ctl_table sched_core_sysctls[] = {
#ifdef CONFIG_SCHEDSTATS
{
.procname = "sched_schedstats",
.data = NULL,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = sysctl_schedstats,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
#endif /* CONFIG_SCHEDSTATS */
#ifdef CONFIG_UCLAMP_TASK
{
.procname = "sched_util_clamp_min",
.data = &sysctl_sched_uclamp_util_min,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = sysctl_sched_uclamp_handler,
},
{
.procname = "sched_util_clamp_max",
.data = &sysctl_sched_uclamp_util_max,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = sysctl_sched_uclamp_handler,
},
{
.procname = "sched_util_clamp_min_rt_default",
.data = &sysctl_sched_uclamp_util_min_rt_default,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = sysctl_sched_uclamp_handler,
},
#endif /* CONFIG_UCLAMP_TASK */
#ifdef CONFIG_NUMA_BALANCING
{
.procname = "numa_balancing",
.data = NULL, /* filled in by handler */
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = sysctl_numa_balancing,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_FOUR,
},
#endif /* CONFIG_NUMA_BALANCING */
{}
};
static int __init sched_core_sysctl_init(void)
{
register_sysctl_init("kernel", sched_core_sysctls);
return 0;
}
late_initcall(sched_core_sysctl_init);
#endif /* CONFIG_SYSCTL */
/*
* fork()/clone()-time setup:
*/
int sched_fork(unsigned long clone_flags, struct task_struct *p)
{
__sched_fork(clone_flags, p);
/*
* We mark the process as NEW here. This guarantees that
* nobody will actually run it, and a signal or other external
* event cannot wake it up and insert it on the runqueue either.
*/
p->__state = TASK_NEW;
/*
* Make sure we do not leak PI boosting priority to the child.
*/
p->prio = current->normal_prio;
uclamp_fork(p);
/*
* Revert to default priority/policy on fork if requested.
*/
if (unlikely(p->sched_reset_on_fork)) {
if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
p->policy = SCHED_NORMAL;
p->static_prio = NICE_TO_PRIO(0);
p->rt_priority = 0;
} else if (PRIO_TO_NICE(p->static_prio) < 0)
p->static_prio = NICE_TO_PRIO(0);
p->prio = p->normal_prio = p->static_prio;
set_load_weight(p, false);
/*
* We don't need the reset flag anymore after the fork. It has
* fulfilled its duty:
*/
p->sched_reset_on_fork = 0;
}
if (dl_prio(p->prio))
return -EAGAIN;
else if (rt_prio(p->prio))
p->sched_class = &rt_sched_class;
else
p->sched_class = &fair_sched_class;
init_entity_runnable_average(&p->se);
#ifdef CONFIG_SCHED_INFO
if (likely(sched_info_on()))
memset(&p->sched_info, 0, sizeof(p->sched_info));
#endif
#if defined(CONFIG_SMP)
p->on_cpu = 0;
#endif
init_task_preempt_count(p);
#ifdef CONFIG_SMP
plist_node_init(&p->pushable_tasks, MAX_PRIO);
RB_CLEAR_NODE(&p->pushable_dl_tasks);
#endif
return 0;
}
void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
{
unsigned long flags;
/*
* Because we're not yet on the pid-hash, p->pi_lock isn't strictly
* required yet, but lockdep gets upset if rules are violated.
*/
raw_spin_lock_irqsave(&p->pi_lock, flags);
#ifdef CONFIG_CGROUP_SCHED
if (1) {
struct task_group *tg;
tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
struct task_group, css);
tg = autogroup_task_group(p, tg);
p->sched_task_group = tg;
}
#endif
rseq_migrate(p);
/*
* We're setting the CPU for the first time, we don't migrate,
* so use __set_task_cpu().
*/
__set_task_cpu(p, smp_processor_id());
if (p->sched_class->task_fork)
p->sched_class->task_fork(p);
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
}
void sched_post_fork(struct task_struct *p)
{
uclamp_post_fork(p);
}
unsigned long to_ratio(u64 period, u64 runtime)
{
if (runtime == RUNTIME_INF)
return BW_UNIT;
/*
* Doing this here saves a lot of checks in all
* the calling paths, and returning zero seems
* safe for them anyway.
*/
if (period == 0)
return 0;
return div64_u64(runtime << BW_SHIFT, period);
}
/*
* wake_up_new_task - wake up a newly created task for the first time.
*
* This function will do some initial scheduler statistics housekeeping
* that must be done for every newly created context, then puts the task
* on the runqueue and wakes it.
*/
void wake_up_new_task(struct task_struct *p)
{
struct rq_flags rf;
struct rq *rq;
raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
WRITE_ONCE(p->__state, TASK_RUNNING);
#ifdef CONFIG_SMP
/*
* Fork balancing, do it here and not earlier because:
* - cpus_ptr can change in the fork path
* - any previously selected CPU might disappear through hotplug
*
* Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
* as we're not fully set-up yet.
*/
p->recent_used_cpu = task_cpu(p);
rseq_migrate(p);
__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
#endif
rq = __task_rq_lock(p, &rf);
update_rq_clock(rq);
post_init_entity_util_avg(p);
activate_task(rq, p, ENQUEUE_NOCLOCK);
trace_sched_wakeup_new(p);
check_preempt_curr(rq, p, WF_FORK);
#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
* Nothing relies on rq->lock after this, so it's fine to
* drop it.
*/
rq_unpin_lock(rq, &rf);
p->sched_class->task_woken(rq, p);
rq_repin_lock(rq, &rf);
}
#endif
task_rq_unlock(rq, p, &rf);
}
#ifdef CONFIG_PREEMPT_NOTIFIERS
static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
void preempt_notifier_inc(void)
{
static_branch_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);
void preempt_notifier_dec(void)
{
static_branch_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);
/**
* preempt_notifier_register - tell me when current is being preempted & rescheduled
* @notifier: notifier struct to register
*/
void preempt_notifier_register(struct preempt_notifier *notifier)
{
if (!static_branch_unlikely(&preempt_notifier_key))
WARN(1, "registering preempt_notifier while notifiers disabled\n");
hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);
/**
* preempt_notifier_unregister - no longer interested in preemption notifications
* @notifier: notifier struct to unregister
*
* This is *not* safe to call from within a preemption notifier.
*/
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
struct preempt_notifier *notifier;
hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
notifier->ops->sched_in(notifier, raw_smp_processor_id());
}
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
if (static_branch_unlikely(&preempt_notifier_key))
__fire_sched_in_preempt_notifiers(curr);
}
static void
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
struct task_struct *next)
{
struct preempt_notifier *notifier;
hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
notifier->ops->sched_out(notifier, next);
}
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
struct task_struct *next)
{
if (static_branch_unlikely(&preempt_notifier_key))
__fire_sched_out_preempt_notifiers(curr, next);
}
#else /* !CONFIG_PREEMPT_NOTIFIERS */
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}
static inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
struct task_struct *next)
{
}
#endif /* CONFIG_PREEMPT_NOTIFIERS */
static inline void prepare_task(struct task_struct *next)
{
#ifdef CONFIG_SMP
/*
* Claim the task as running, we do this before switching to it
* such that any running task will have this set.
*
* See the smp_load_acquire(&p->on_cpu) case in ttwu() and
* its ordering comment.
*/
WRITE_ONCE(next->on_cpu, 1);
#endif
}
static inline void finish_task(struct task_struct *prev)
{
#ifdef CONFIG_SMP
/*
* This must be the very last reference to @prev from this CPU. After
* p->on_cpu is cleared, the task can be moved to a different CPU. We
* must ensure this doesn't happen until the switch is completely
* finished.
*
* In particular, the load of prev->state in finish_task_switch() must
* happen before this.
*
* Pairs with the smp_cond_load_acquire() in try_to_wake_up().
*/
smp_store_release(&prev->on_cpu, 0);
#endif
}
#ifdef CONFIG_SMP
static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
{
void (*func)(struct rq *rq);
struct balance_callback *next;
lockdep_assert_rq_held(rq);
while (head) {
func = (void (*)(struct rq *))head->func;
next = head->next;
head->next = NULL;
head = next;
func(rq);
}
}
static void balance_push(struct rq *rq);
/*
* balance_push_callback is a right abuse of the callback interface and plays
* by significantly different rules.
*
* Where the normal balance_callback's purpose is to be ran in the same context
* that queued it (only later, when it's safe to drop rq->lock again),
* balance_push_callback is specifically targeted at __schedule().
*
* This abuse is tolerated because it places all the unlikely/odd cases behind
* a single test, namely: rq->balance_callback == NULL.
*/
struct balance_callback balance_push_callback = {
.next = NULL,
.func = balance_push,
};
static inline struct balance_callback *
__splice_balance_callbacks(struct rq *rq, bool split)
{
struct balance_callback *head = rq->balance_callback;
if (likely(!head))
return NULL;
lockdep_assert_rq_held(rq);
/*
* Must not take balance_push_callback off the list when
* splice_balance_callbacks() and balance_callbacks() are not
* in the same rq->lock section.
*
* In that case it would be possible for __schedule() to interleave
* and observe the list empty.
*/
if (split && head == &balance_push_callback)
head = NULL;
else
rq->balance_callback = NULL;
return head;
}
static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
{
return __splice_balance_callbacks(rq, true);
}
static void __balance_callbacks(struct rq *rq)
{
do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
}
static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
{
unsigned long flags;
if (unlikely(head)) {
raw_spin_rq_lock_irqsave(rq, flags);
do_balance_callbacks(rq, head);
raw_spin_rq_unlock_irqrestore(rq, flags);
}
}
#else
static inline void __balance_callbacks(struct rq *rq)
{
}
static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
{
return NULL;
}
static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
{
}
#endif
static inline void
prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
{
/*
* Since the runqueue lock will be released by the next
* task (which is an invalid locking op but in the case
* of the scheduler it's an obvious special-case), so we
* do an early lockdep release here:
*/
rq_unpin_lock(rq, rf);
spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
#ifdef CONFIG_DEBUG_SPINLOCK
/* this is a valid case when another task releases the spinlock */
rq_lockp(rq)->owner = next;
#endif
}
static inline void finish_lock_switch(struct rq *rq)
{
/*
* If we are tracking spinlock dependencies then we have to
* fix up the runqueue lock - which gets 'carried over' from
* prev into current:
*/
spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
__balance_callbacks(rq);
raw_spin_rq_unlock_irq(rq);
}
/*
* NOP if the arch has not defined these:
*/
#ifndef prepare_arch_switch
# define prepare_arch_switch(next) do { } while (0)
#endif
#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch() do { } while (0)
#endif
static inline void kmap_local_sched_out(void)
{
#ifdef CONFIG_KMAP_LOCAL
if (unlikely(current->kmap_ctrl.idx))
__kmap_local_sched_out();
#endif
}
static inline void kmap_local_sched_in(void)
{
#ifdef CONFIG_KMAP_LOCAL
if (unlikely(current->kmap_ctrl.idx))
__kmap_local_sched_in();
#endif
}
/**
* prepare_task_switch - prepare to switch tasks
* @rq: the runqueue preparing to switch
* @prev: the current task that is being switched out
* @next: the task we are going to switch to.
*
* This is called with the rq lock held and interrupts off. It must
* be paired with a subsequent finish_task_switch after the context
* switch.
*
* prepare_task_switch sets up locking and calls architecture specific
* hooks.
*/
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
struct task_struct *next)
{
kcov_prepare_switch(prev);
sched_info_switch(rq, prev, next);
perf_event_task_sched_out(prev, next);
rseq_preempt(prev);
fire_sched_out_preempt_notifiers(prev, next);
kmap_local_sched_out();
prepare_task(next);
prepare_arch_switch(next);
}
/**
* finish_task_switch - clean up after a task-switch
* @prev: the thread we just switched away from.
*
* finish_task_switch must be called after the context switch, paired
* with a prepare_task_switch call before the context switch.
* finish_task_switch will reconcile locking set up by prepare_task_switch,
* and do any other architecture-specific cleanup actions.
*
* Note that we may have delayed dropping an mm in context_switch(). If
* so, we finish that here outside of the runqueue lock. (Doing it
* with the lock held can cause deadlocks; see schedule() for
* details.)
*
* The context switch have flipped the stack from under us and restored the
* local variables which were saved when this task called schedule() in the
* past. prev == current is still correct but we need to recalculate this_rq
* because prev may have moved to another CPU.
*/
static struct rq *finish_task_switch(struct task_struct *prev)
__releases(rq->lock)
{
struct rq *rq = this_rq();
struct mm_struct *mm = rq->prev_mm;
unsigned int prev_state;
/*
* The previous task will have left us with a preempt_count of 2
* because it left us after:
*
* schedule()
* preempt_disable(); // 1
* __schedule()
* raw_spin_lock_irq(&rq->lock) // 2
*
* Also, see FORK_PREEMPT_COUNT.
*/
if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
"corrupted preempt_count: %s/%d/0x%x\n",
current->comm, current->pid, preempt_count()))
preempt_count_set(FORK_PREEMPT_COUNT);
rq->prev_mm = NULL;
/*
* A task struct has one reference for the use as "current".
* If a task dies, then it sets TASK_DEAD in tsk->state and calls
* schedule one last time. The schedule call will never return, and
* the scheduled task must drop that reference.
*
* We must observe prev->state before clearing prev->on_cpu (in
* finish_task), otherwise a concurrent wakeup can get prev
* running on another CPU and we could rave with its RUNNING -> DEAD
* transition, resulting in a double drop.
*/
prev_state = READ_ONCE(prev->__state);
vtime_task_switch(prev);
perf_event_task_sched_in(prev, current);
finish_task(prev);
tick_nohz_task_switch();
finish_lock_switch(rq);
finish_arch_post_lock_switch();
kcov_finish_switch(current);
/*
* kmap_local_sched_out() is invoked with rq::lock held and
* interrupts disabled. There is no requirement for that, but the
* sched out code does not have an interrupt enabled section.
* Restoring the maps on sched in does not require interrupts being
* disabled either.
*/
kmap_local_sched_in();
fire_sched_in_preempt_notifiers(current);
/*
* When switching through a kernel thread, the loop in
* membarrier_{private,global}_expedited() may have observed that
* kernel thread and not issued an IPI. It is therefore possible to
* schedule between user->kernel->user threads without passing though
* switch_mm(). Membarrier requires a barrier after storing to
* rq->curr, before returning to userspace, so provide them here:
*
* - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
* provided by mmdrop_lazy_tlb(),
* - a sync_core for SYNC_CORE.
*/
if (mm) {
membarrier_mm_sync_core_before_usermode(mm);
mmdrop_lazy_tlb_sched(mm);
}
if (unlikely(prev_state == TASK_DEAD)) {
if (prev->sched_class->task_dead)
prev->sched_class->task_dead(prev);
/* Task is done with its stack. */
put_task_stack(prev);
put_task_struct_rcu_user(prev);
}
return rq;
}
/**
* schedule_tail - first thing a freshly forked thread must call.
* @prev: the thread we just switched away from.
*/
asmlinkage __visible void schedule_tail(struct task_struct *prev)
__releases(rq->lock)
{
/*
* New tasks start with FORK_PREEMPT_COUNT, see there and
* finish_task_switch() for details.
*
* finish_task_switch() will drop rq->lock() and lower preempt_count
* and the preempt_enable() will end up enabling preemption (on
* PREEMPT_COUNT kernels).
*/
finish_task_switch(prev);
preempt_enable();
if (current->set_child_tid)
put_user(task_pid_vnr(current), current->set_child_tid);
calculate_sigpending();
}
/*
* context_switch - switch to the new MM and the new thread's register state.
*/
static __always_inline struct rq *
context_switch(struct rq *rq, struct task_struct *prev,
struct task_struct *next, struct rq_flags *rf)
{
prepare_task_switch(rq, prev, next);
/*
* For paravirt, this is coupled with an exit in switch_to to
* combine the page table reload and the switch backend into
* one hypercall.
*/
arch_start_context_switch(prev);
/*
* kernel -> kernel lazy + transfer active
* user -> kernel lazy + mmgrab_lazy_tlb() active
*
* kernel -> user switch + mmdrop_lazy_tlb() active
* user -> user switch
*
* switch_mm_cid() needs to be updated if the barriers provided
* by context_switch() are modified.
*/
if (!next->mm) { // to kernel
enter_lazy_tlb(prev->active_mm, next);
next->active_mm = prev->active_mm;
if (prev->mm) // from user
mmgrab_lazy_tlb(prev->active_mm);
else
prev->active_mm = NULL;
} else { // to user
membarrier_switch_mm(rq, prev->active_mm, next->mm);
/*
* sys_membarrier() requires an smp_mb() between setting
* rq->curr / membarrier_switch_mm() and returning to userspace.
*
* The below provides this either through switch_mm(), or in
* case 'prev->active_mm == next->mm' through
* finish_task_switch()'s mmdrop().
*/
switch_mm_irqs_off(prev->active_mm, next->mm, next);
lru_gen_use_mm(next->mm);
if (!prev->mm) { // from kernel
/* will mmdrop_lazy_tlb() in finish_task_switch(). */
rq->prev_mm = prev->active_mm;
prev->active_mm = NULL;
}
}
/* switch_mm_cid() requires the memory barriers above. */
switch_mm_cid(rq, prev, next);
rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
prepare_lock_switch(rq, next, rf);
/* Here we just switch the register state and the stack. */
switch_to(prev, next, prev);
barrier();
return finish_task_switch(prev);
}
/*
* nr_running and nr_context_switches:
*
* externally visible scheduler statistics: current number of runnable
* threads, total number of context switches performed since bootup.
*/
unsigned int nr_running(void)
{
unsigned int i, sum = 0;
for_each_online_cpu(i)
sum += cpu_rq(i)->nr_running;
return sum;
}
/*
* Check if only the current task is running on the CPU.
*
* Caution: this function does not check that the caller has disabled
* preemption, thus the result might have a time-of-check-to-time-of-use
* race. The caller is responsible to use it correctly, for example:
*
* - from a non-preemptible section (of course)
*
* - from a thread that is bound to a single CPU
*
* - in a loop with very short iterations (e.g. a polling loop)
*/
bool single_task_running(void)
{
return raw_rq()->nr_running == 1;
}
EXPORT_SYMBOL(single_task_running);
unsigned long long nr_context_switches_cpu(int cpu)
{
return cpu_rq(cpu)->nr_switches;
}
unsigned long long nr_context_switches(void)
{
int i;
unsigned long long sum = 0;
for_each_possible_cpu(i)
sum += cpu_rq(i)->nr_switches;
return sum;
}
/*
* Consumers of these two interfaces, like for example the cpuidle menu
* governor, are using nonsensical data. Preferring shallow idle state selection
* for a CPU that has IO-wait which might not even end up running the task when
* it does become runnable.
*/
unsigned int nr_iowait_cpu(int cpu)
{
return atomic_read(&cpu_rq(cpu)->nr_iowait);
}
/*
* IO-wait accounting, and how it's mostly bollocks (on SMP).
*
* The idea behind IO-wait account is to account the idle time that we could
* have spend running if it were not for IO. That is, if we were to improve the
* storage performance, we'd have a proportional reduction in IO-wait time.
*
* This all works nicely on UP, where, when a task blocks on IO, we account
* idle time as IO-wait, because if the storage were faster, it could've been
* running and we'd not be idle.
*
* This has been extended to SMP, by doing the same for each CPU. This however
* is broken.
*
* Imagine for instance the case where two tasks block on one CPU, only the one
* CPU will have IO-wait accounted, while the other has regular idle. Even
* though, if the storage were faster, both could've ran at the same time,
* utilising both CPUs.
*
* This means, that when looking globally, the current IO-wait accounting on
* SMP is a lower bound, by reason of under accounting.
*
* Worse, since the numbers are provided per CPU, they are sometimes
* interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
* associated with any one particular CPU, it can wake to another CPU than it
* blocked on. This means the per CPU IO-wait number is meaningless.
*
* Task CPU affinities can make all that even more 'interesting'.
*/
unsigned int nr_iowait(void)
{
unsigned int i, sum = 0;
for_each_possible_cpu(i)
sum += nr_iowait_cpu(i);
return sum;
}
#ifdef CONFIG_SMP
/*
* sched_exec - execve() is a valuable balancing opportunity, because at
* this point the task has the smallest effective memory and cache footprint.
*/
void sched_exec(void)
{
struct task_struct *p = current;
unsigned long flags;
int dest_cpu;
raw_spin_lock_irqsave(&p->pi_lock, flags);
dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
if (dest_cpu == smp_processor_id())
goto unlock;
if (likely(cpu_active(dest_cpu))) {
struct migration_arg arg = { p, dest_cpu };
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
return;
}
unlock:
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
}
#endif
DEFINE_PER_CPU(struct kernel_stat, kstat);
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
EXPORT_PER_CPU_SYMBOL(kstat);
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
/*
* The function fair_sched_class.update_curr accesses the struct curr
* and its field curr->exec_start; when called from task_sched_runtime(),
* we observe a high rate of cache misses in practice.
* Prefetching this data results in improved performance.
*/
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
prefetch(curr);
prefetch(&curr->exec_start);
}
/*
* Return accounted runtime for the task.
* In case the task is currently running, return the runtime plus current's
* pending runtime that have not been accounted yet.
*/
unsigned long long task_sched_runtime(struct task_struct *p)
{
struct rq_flags rf;
struct rq *rq;
u64 ns;
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
/*
* 64-bit doesn't need locks to atomically read a 64-bit value.
* So we have a optimization chance when the task's delta_exec is 0.
* Reading ->on_cpu is racy, but this is ok.
*
* If we race with it leaving CPU, we'll take a lock. So we're correct.
* If we race with it entering CPU, unaccounted time is 0. This is
* indistinguishable from the read occurring a few cycles earlier.
* If we see ->on_cpu without ->on_rq, the task is leaving, and has
* been accounted, so we're correct here as well.
*/
if (!p->on_cpu || !task_on_rq_queued(p))
return p->se.sum_exec_runtime;
#endif
rq = task_rq_lock(p, &rf);
/*
* Must be ->curr _and_ ->on_rq. If dequeued, we would
* project cycles that may never be accounted to this
* thread, breaking clock_gettime().
*/
if (task_current(rq, p) && task_on_rq_queued(p)) {
prefetch_curr_exec_start(p);
update_rq_clock(rq);
p->sched_class->update_curr(rq);
}
ns = p->se.sum_exec_runtime;
task_rq_unlock(rq, p, &rf);
return ns;
}
#ifdef CONFIG_SCHED_DEBUG
static u64 cpu_resched_latency(struct rq *rq)
{
int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
u64 resched_latency, now = rq_clock(rq);
static bool warned_once;
if (sysctl_resched_latency_warn_once && warned_once)
return 0;
if (!need_resched() || !latency_warn_ms)
return 0;
if (system_state == SYSTEM_BOOTING)
return 0;
if (!rq->last_seen_need_resched_ns) {
rq->last_seen_need_resched_ns = now;
rq->ticks_without_resched = 0;
return 0;
}
rq->ticks_without_resched++;
resched_latency = now - rq->last_seen_need_resched_ns;
if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
return 0;
warned_once = true;
return resched_latency;
}
static int __init setup_resched_latency_warn_ms(char *str)
{
long val;
if ((kstrtol(str, 0, &val))) {
pr_warn("Unable to set resched_latency_warn_ms\n");
return 1;
}
sysctl_resched_latency_warn_ms = val;
return 1;
}
__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
#else
static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
#endif /* CONFIG_SCHED_DEBUG */
/*
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*/
void scheduler_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr = rq->curr;
struct rq_flags rf;
unsigned long thermal_pressure;
u64 resched_latency;
if (housekeeping_cpu(cpu, HK_TYPE_TICK))
arch_scale_freq_tick();
sched_clock_tick();
rq_lock(rq, &rf);
update_rq_clock(rq);
thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
curr->sched_class->task_tick(rq, curr, 0);
if (sched_feat(LATENCY_WARN))
resched_latency = cpu_resched_latency(rq);
calc_global_load_tick(rq);
sched_core_tick(rq);
task_tick_mm_cid(rq, curr);
rq_unlock(rq, &rf);
if (sched_feat(LATENCY_WARN) && resched_latency)
resched_latency_warn(cpu, resched_latency);
perf_event_task_tick();
if (curr->flags & PF_WQ_WORKER)
wq_worker_tick(curr);
#ifdef CONFIG_SMP
rq->idle_balance = idle_cpu(cpu);
trigger_load_balance(rq);
#endif
}
#ifdef CONFIG_NO_HZ_FULL
struct tick_work {
int cpu;
atomic_t state;
struct delayed_work work;
};
/* Values for ->state, see diagram below. */
#define TICK_SCHED_REMOTE_OFFLINE 0
#define TICK_SCHED_REMOTE_OFFLINING 1
#define TICK_SCHED_REMOTE_RUNNING 2
/*
* State diagram for ->state:
*
*
* TICK_SCHED_REMOTE_OFFLINE
* | ^
* | |
* | | sched_tick_remote()
* | |
* | |
* +--TICK_SCHED_REMOTE_OFFLINING
* | ^
* | |
* sched_tick_start() | | sched_tick_stop()
* | |
* V |
* TICK_SCHED_REMOTE_RUNNING
*
*
* Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
* and sched_tick_start() are happy to leave the state in RUNNING.
*/
static struct tick_work __percpu *tick_work_cpu;
static void sched_tick_remote(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct tick_work *twork = container_of(dwork, struct tick_work, work);
int cpu = twork->cpu;
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr;
struct rq_flags rf;
u64 delta;
int os;
/*
* Handle the tick only if it appears the remote CPU is running in full
* dynticks mode. The check is racy by nature, but missing a tick or
* having one too much is no big deal because the scheduler tick updates
* statistics and checks timeslices in a time-independent way, regardless
* of when exactly it is running.
*/
if (!tick_nohz_tick_stopped_cpu(cpu))
goto out_requeue;
rq_lock_irq(rq, &rf);
curr = rq->curr;
if (cpu_is_offline(cpu))
goto out_unlock;
update_rq_clock(rq);
if (!is_idle_task(curr)) {
/*
* Make sure the next tick runs within a reasonable
* amount of time.
*/
delta = rq_clock_task(rq) - curr->se.exec_start;
WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
}
curr->sched_class->task_tick(rq, curr, 0);
calc_load_nohz_remote(rq);
out_unlock:
rq_unlock_irq(rq, &rf);
out_requeue:
/*
* Run the remote tick once per second (1Hz). This arbitrary
* frequency is large enough to avoid overload but short enough
* to keep scheduler internal stats reasonably up to date. But
* first update state to reflect hotplug activity if required.
*/
os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
if (os == TICK_SCHED_REMOTE_RUNNING)
queue_delayed_work(system_unbound_wq, dwork, HZ);
}
static void sched_tick_start(int cpu)
{
int os;
struct tick_work *twork;
if (housekeeping_cpu(cpu, HK_TYPE_TICK))
return;
WARN_ON_ONCE(!tick_work_cpu);
twork = per_cpu_ptr(tick_work_cpu, cpu);
os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
if (os == TICK_SCHED_REMOTE_OFFLINE) {
twork->cpu = cpu;
INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
queue_delayed_work(system_unbound_wq, &twork->work, HZ);
}
}
#ifdef CONFIG_HOTPLUG_CPU
static void sched_tick_stop(int cpu)
{
struct tick_work *twork;
int os;
if (housekeeping_cpu(cpu, HK_TYPE_TICK))
return;
WARN_ON_ONCE(!tick_work_cpu);
twork = per_cpu_ptr(tick_work_cpu, cpu);
/* There cannot be competing actions, but don't rely on stop-machine. */
os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
/* Don't cancel, as this would mess up the state machine. */
}
#endif /* CONFIG_HOTPLUG_CPU */
int __init sched_tick_offload_init(void)
{
tick_work_cpu = alloc_percpu(struct tick_work);
BUG_ON(!tick_work_cpu);
return 0;
}
#else /* !CONFIG_NO_HZ_FULL */
static inline void sched_tick_start(int cpu) { }
static inline void sched_tick_stop(int cpu) { }
#endif
#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
defined(CONFIG_TRACE_PREEMPT_TOGGLE))
/*
* If the value passed in is equal to the current preempt count
* then we just disabled preemption. Start timing the latency.
*/
static inline void preempt_latency_start(int val)
{
if (preempt_count() == val) {
unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
current->preempt_disable_ip = ip;
#endif
trace_preempt_off(CALLER_ADDR0, ip);
}
}
void preempt_count_add(int val)
{
#ifdef CONFIG_DEBUG_PREEMPT
/*
* Underflow?
*/
if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
return;
#endif
__preempt_count_add(val);
#ifdef CONFIG_DEBUG_PREEMPT
/*
* Spinlock count overflowing soon?
*/
DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
PREEMPT_MASK - 10);
#endif
preempt_latency_start(val);
}
EXPORT_SYMBOL(preempt_count_add);
NOKPROBE_SYMBOL(preempt_count_add);
/*
* If the value passed in equals to the current preempt count
* then we just enabled preemption. Stop timing the latency.
*/
static inline void preempt_latency_stop(int val)
{
if (preempt_count() == val)
trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}
void preempt_count_sub(int val)
{
#ifdef CONFIG_DEBUG_PREEMPT
/*
* Underflow?
*/
if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
return;
/*
* Is the spinlock portion underflowing?
*/
if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
!(preempt_count() & PREEMPT_MASK)))
return;
#endif
preempt_latency_stop(val);
__preempt_count_sub(val);
}
EXPORT_SYMBOL(preempt_count_sub);
NOKPROBE_SYMBOL(preempt_count_sub);
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
#endif
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
return p->preempt_disable_ip;
#else
return 0;
#endif
}
/*
* Print scheduling while atomic bug:
*/
static noinline void __schedule_bug(struct task_struct *prev)
{
/* Save this before calling printk(), since that will clobber it */
unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
if (oops_in_progress)
return;
printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
prev->comm, prev->pid, preempt_count());
debug_show_held_locks(prev);
print_modules();
if (irqs_disabled())
print_irqtrace_events(prev);
if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
&& in_atomic_preempt_off()) {
pr_err("Preemption disabled at:");
print_ip_sym(KERN_ERR, preempt_disable_ip);
}
check_panic_on_warn("scheduling while atomic");
dump_stack();
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
}
/*
* Various schedule()-time debugging checks and statistics:
*/
static inline void schedule_debug(struct task_struct *prev, bool preempt)
{
#ifdef CONFIG_SCHED_STACK_END_CHECK
if (task_stack_end_corrupted(prev))
panic("corrupted stack end detected inside scheduler\n");
if (task_scs_end_corrupted(prev))
panic("corrupted shadow stack detected inside scheduler\n");
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
prev->comm, prev->pid, prev->non_block_count);
dump_stack();
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
}
#endif
if (unlikely(in_atomic_preempt_off())) {
__schedule_bug(prev);
preempt_count_set(PREEMPT_DISABLED);
}
rcu_sleep_check();
SCHED_WARN_ON(ct_state() == CONTEXT_USER);
profile_hit(SCHED_PROFILING, __builtin_return_address(0));
schedstat_inc(this_rq()->sched_count);
}
static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
struct rq_flags *rf)
{
#ifdef CONFIG_SMP
const struct sched_class *class;
/*
* We must do the balancing pass before put_prev_task(), such
* that when we release the rq->lock the task is in the same
* state as before we took rq->lock.
*
* We can terminate the balance pass as soon as we know there is
* a runnable task of @class priority or higher.
*/
for_class_range(class, prev->sched_class, &idle_sched_class) {
if (class->balance(rq, prev, rf))
break;
}
#endif
put_prev_task(rq, prev);
}
/*
* Pick up the highest-prio task:
*/
static inline struct task_struct *
__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
const struct sched_class *class;
struct task_struct *p;
/*
* Optimization: we know that if all tasks are in the fair class we can
* call that function directly, but only if the @prev task wasn't of a
* higher scheduling class, because otherwise those lose the
* opportunity to pull in more work from other CPUs.
*/
if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
rq->nr_running == rq->cfs.h_nr_running)) {
p = pick_next_task_fair(rq, prev, rf);
if (unlikely(p == RETRY_TASK))
goto restart;
/* Assume the next prioritized class is idle_sched_class */
if (!p) {
put_prev_task(rq, prev);
p = pick_next_task_idle(rq);
}
return p;
}
restart:
put_prev_task_balance(rq, prev, rf);
for_each_class(class) {
p = class->pick_next_task(rq);
if (p)
return p;
}
BUG(); /* The idle class should always have a runnable task. */
}
#ifdef CONFIG_SCHED_CORE
static inline bool is_task_rq_idle(struct task_struct *t)
{
return (task_rq(t)->idle == t);
}
static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
{
return is_task_rq_idle(a) || (a->core_cookie == cookie);
}
static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
{
if (is_task_rq_idle(a) || is_task_rq_idle(b))
return true;
return a->core_cookie == b->core_cookie;
}
static inline struct task_struct *pick_task(struct rq *rq)
{
const struct sched_class *class;
struct task_struct *p;
for_each_class(class) {
p = class->pick_task(rq);
if (p)
return p;
}
BUG(); /* The idle class should always have a runnable task. */
}
extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
static void queue_core_balance(struct rq *rq);
static struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct task_struct *next, *p, *max = NULL;
const struct cpumask *smt_mask;
bool fi_before = false;
bool core_clock_updated = (rq == rq->core);
unsigned long cookie;
int i, cpu, occ = 0;
struct rq *rq_i;
bool need_sync;
if (!sched_core_enabled(rq))
return __pick_next_task(rq, prev, rf);
cpu = cpu_of(rq);
/* Stopper task is switching into idle, no need core-wide selection. */
if (cpu_is_offline(cpu)) {
/*
* Reset core_pick so that we don't enter the fastpath when
* coming online. core_pick would already be migrated to
* another cpu during offline.
*/
rq->core_pick = NULL;
return __pick_next_task(rq, prev, rf);
}
/*
* If there were no {en,de}queues since we picked (IOW, the task
* pointers are all still valid), and we haven't scheduled the last
* pick yet, do so now.
*
* rq->core_pick can be NULL if no selection was made for a CPU because
* it was either offline or went offline during a sibling's core-wide
* selection. In this case, do a core-wide selection.
*/
if (rq->core->core_pick_seq == rq->core->core_task_seq &&
rq->core->core_pick_seq != rq->core_sched_seq &&
rq->core_pick) {
WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
next = rq->core_pick;
if (next != prev) {
put_prev_task(rq, prev);
set_next_task(rq, next);
}
rq->core_pick = NULL;
goto out;
}
put_prev_task_balance(rq, prev, rf);
smt_mask = cpu_smt_mask(cpu);
need_sync = !!rq->core->core_cookie;
/* reset state */
rq->core->core_cookie = 0UL;
if (rq->core->core_forceidle_count) {
if (!core_clock_updated) {
update_rq_clock(rq->core);
core_clock_updated = true;
}
sched_core_account_forceidle(rq);
/* reset after accounting force idle */
rq->core->core_forceidle_start = 0;
rq->core->core_forceidle_count = 0;
rq->core->core_forceidle_occupation = 0;
need_sync = true;
fi_before = true;
}
/*
* core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
*
* @task_seq guards the task state ({en,de}queues)
* @pick_seq is the @task_seq we did a selection on
* @sched_seq is the @pick_seq we scheduled
*
* However, preemptions can cause multiple picks on the same task set.
* 'Fix' this by also increasing @task_seq for every pick.
*/
rq->core->core_task_seq++;
/*
* Optimize for common case where this CPU has no cookies
* and there are no cookied tasks running on siblings.
*/
if (!need_sync) {
next = pick_task(rq);
if (!next->core_cookie) {
rq->core_pick = NULL;
/*
* For robustness, update the min_vruntime_fi for
* unconstrained picks as well.
*/
WARN_ON_ONCE(fi_before);
task_vruntime_update(rq, next, false);
goto out_set_next;
}
}
/*
* For each thread: do the regular task pick and find the max prio task
* amongst them.
*
* Tie-break prio towards the current CPU
*/
for_each_cpu_wrap(i, smt_mask, cpu) {
rq_i = cpu_rq(i);
/*
* Current cpu always has its clock updated on entrance to
* pick_next_task(). If the current cpu is not the core,
* the core may also have been updated above.
*/
if (i != cpu && (rq_i != rq->core || !core_clock_updated))
update_rq_clock(rq_i);
p = rq_i->core_pick = pick_task(rq_i);
if (!max || prio_less(max, p, fi_before))
max = p;
}
cookie = rq->core->core_cookie = max->core_cookie;
/*
* For each thread: try and find a runnable task that matches @max or
* force idle.
*/
for_each_cpu(i, smt_mask) {
rq_i = cpu_rq(i);
p = rq_i->core_pick;
if (!cookie_equals(p, cookie)) {
p = NULL;
if (cookie)
p = sched_core_find(rq_i, cookie);
if (!p)
p = idle_sched_class.pick_task(rq_i);
}
rq_i->core_pick = p;
if (p == rq_i->idle) {
if (rq_i->nr_running) {
rq->core->core_forceidle_count++;
if (!fi_before)
rq->core->core_forceidle_seq++;
}
} else {
occ++;
}
}
if (schedstat_enabled() && rq->core->core_forceidle_count) {
rq->core->core_forceidle_start = rq_clock(rq->core);
rq->core->core_forceidle_occupation = occ;
}
rq->core->core_pick_seq = rq->core->core_task_seq;
next = rq->core_pick;
rq->core_sched_seq = rq->core->core_pick_seq;
/* Something should have been selected for current CPU */
WARN_ON_ONCE(!next);
/*
* Reschedule siblings
*
* NOTE: L1TF -- at this point we're no longer running the old task and
* sending an IPI (below) ensures the sibling will no longer be running
* their task. This ensures there is no inter-sibling overlap between
* non-matching user state.
*/
for_each_cpu(i, smt_mask) {
rq_i = cpu_rq(i);
/*
* An online sibling might have gone offline before a task
* could be picked for it, or it might be offline but later
* happen to come online, but its too late and nothing was
* picked for it. That's Ok - it will pick tasks for itself,
* so ignore it.
*/
if (!rq_i->core_pick)
continue;
/*
* Update for new !FI->FI transitions, or if continuing to be in !FI:
* fi_before fi update?
* 0 0 1
* 0 1 1
* 1 0 1
* 1 1 0
*/
if (!(fi_before && rq->core->core_forceidle_count))
task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
rq_i->core_pick->core_occupation = occ;
if (i == cpu) {
rq_i->core_pick = NULL;
continue;
}
/* Did we break L1TF mitigation requirements? */
WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
if (rq_i->curr == rq_i->core_pick) {
rq_i->core_pick = NULL;
continue;
}
resched_curr(rq_i);
}
out_set_next:
set_next_task(rq, next);
out:
if (rq->core->core_forceidle_count && next == rq->idle)
queue_core_balance(rq);
return next;
}
static bool try_steal_cookie(int this, int that)
{
struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
struct task_struct *p;
unsigned long cookie;
bool success = false;
local_irq_disable();
double_rq_lock(dst, src);
cookie = dst->core->core_cookie;
if (!cookie)
goto unlock;
if (dst->curr != dst->idle)
goto unlock;
p = sched_core_find(src, cookie);
if (!p)
goto unlock;
do {
if (p == src->core_pick || p == src->curr)
goto next;
if (!is_cpu_allowed(p, this))
goto next;
if (p->core_occupation > dst->idle->core_occupation)
goto next;
/*
* sched_core_find() and sched_core_next() will ensure that task @p
* is not throttled now, we also need to check whether the runqueue
* of the destination CPU is being throttled.
*/
if (sched_task_is_throttled(p, this))
goto next;
deactivate_task(src, p, 0);
set_task_cpu(p, this);
activate_task(dst, p, 0);
resched_curr(dst);
success = true;
break;
next:
p = sched_core_next(p, cookie);
} while (p);
unlock:
double_rq_unlock(dst, src);
local_irq_enable();
return success;
}
static bool steal_cookie_task(int cpu, struct sched_domain *sd)
{
int i;
for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
if (i == cpu)
continue;
if (need_resched())
break;
if (try_steal_cookie(cpu, i))
return true;
}
return false;
}
static void sched_core_balance(struct rq *rq)
{
struct sched_domain *sd;
int cpu = cpu_of(rq);
preempt_disable();
rcu_read_lock();
raw_spin_rq_unlock_irq(rq);
for_each_domain(cpu, sd) {
if (need_resched())
break;
if (steal_cookie_task(cpu, sd))
break;
}
raw_spin_rq_lock_irq(rq);
rcu_read_unlock();
preempt_enable();
}
static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
static void queue_core_balance(struct rq *rq)
{
if (!sched_core_enabled(rq))
return;
if (!rq->core->core_cookie)
return;
if (!rq->nr_running) /* not forced idle */
return;
queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
}
static void sched_core_cpu_starting(unsigned int cpu)
{
const struct cpumask *smt_mask = cpu_smt_mask(cpu);
struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
unsigned long flags;
int t;
sched_core_lock(cpu, &flags);
WARN_ON_ONCE(rq->core != rq);
/* if we're the first, we'll be our own leader */
if (cpumask_weight(smt_mask) == 1)
goto unlock;
/* find the leader */
for_each_cpu(t, smt_mask) {
if (t == cpu)
continue;
rq = cpu_rq(t);
if (rq->core == rq) {
core_rq = rq;
break;
}
}
if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
goto unlock;
/* install and validate core_rq */
for_each_cpu(t, smt_mask) {
rq = cpu_rq(t);
if (t == cpu)
rq->core = core_rq;
WARN_ON_ONCE(rq->core != core_rq);
}
unlock:
sched_core_unlock(cpu, &flags);
}
static void sched_core_cpu_deactivate(unsigned int cpu)
{
const struct cpumask *smt_mask = cpu_smt_mask(cpu);
struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
unsigned long flags;
int t;
sched_core_lock(cpu, &flags);
/* if we're the last man standing, nothing to do */
if (cpumask_weight(smt_mask) == 1) {
WARN_ON_ONCE(rq->core != rq);
goto unlock;
}
/* if we're not the leader, nothing to do */
if (rq->core != rq)
goto unlock;
/* find a new leader */
for_each_cpu(t, smt_mask) {
if (t == cpu)
continue;
core_rq = cpu_rq(t);
break;
}
if (WARN_ON_ONCE(!core_rq)) /* impossible */
goto unlock;
/* copy the shared state to the new leader */
core_rq->core_task_seq = rq->core_task_seq;
core_rq->core_pick_seq = rq->core_pick_seq;
core_rq->core_cookie = rq->core_cookie;
core_rq->core_forceidle_count = rq->core_forceidle_count;
core_rq->core_forceidle_seq = rq->core_forceidle_seq;
core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
/*
* Accounting edge for forced idle is handled in pick_next_task().
* Don't need another one here, since the hotplug thread shouldn't
* have a cookie.
*/
core_rq->core_forceidle_start = 0;
/* install new leader */
for_each_cpu(t, smt_mask) {
rq = cpu_rq(t);
rq->core = core_rq;
}
unlock:
sched_core_unlock(cpu, &flags);
}
static inline void sched_core_cpu_dying(unsigned int cpu)
{
struct rq *rq = cpu_rq(cpu);
if (rq->core != rq)
rq->core = rq;
}
#else /* !CONFIG_SCHED_CORE */
static inline void sched_core_cpu_starting(unsigned int cpu) {}
static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
static inline void sched_core_cpu_dying(unsigned int cpu) {}
static struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
return __pick_next_task(rq, prev, rf);
}
#endif /* CONFIG_SCHED_CORE */
/*
* Constants for the sched_mode argument of __schedule().
*
* The mode argument allows RT enabled kernels to differentiate a
* preemption from blocking on an 'sleeping' spin/rwlock. Note that
* SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
* optimize the AND operation out and just check for zero.
*/
#define SM_NONE 0x0
#define SM_PREEMPT 0x1
#define SM_RTLOCK_WAIT 0x2
#ifndef CONFIG_PREEMPT_RT
# define SM_MASK_PREEMPT (~0U)
#else
# define SM_MASK_PREEMPT SM_PREEMPT
#endif
/*
* __schedule() is the main scheduler function.
*
* The main means of driving the scheduler and thus entering this function are:
*
* 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
*
* 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
* paths. For example, see arch/x86/entry_64.S.
*
* To drive preemption between tasks, the scheduler sets the flag in timer
* interrupt handler scheduler_tick().
*
* 3. Wakeups don't really cause entry into schedule(). They add a
* task to the run-queue and that's it.
*
* Now, if the new task added to the run-queue preempts the current
* task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
* called on the nearest possible occasion:
*
* - If the kernel is preemptible (CONFIG_PREEMPTION=y):
*
* - in syscall or exception context, at the next outmost
* preempt_enable(). (this might be as soon as the wake_up()'s
* spin_unlock()!)
*
* - in IRQ context, return from interrupt-handler to
* preemptible context
*
* - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
* then at the next:
*
* - cond_resched() call
* - explicit schedule() call
* - return from syscall or exception to user-space
* - return from interrupt-handler to user-space
*
* WARNING: must be called with preemption disabled!
*/
static void __sched notrace __schedule(unsigned int sched_mode)
{
struct task_struct *prev, *next;
unsigned long *switch_count;
unsigned long prev_state;
struct rq_flags rf;
struct rq *rq;
int cpu;
cpu = smp_processor_id();
rq = cpu_rq(cpu);
prev = rq->curr;
schedule_debug(prev, !!sched_mode);
if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
hrtick_clear(rq);
local_irq_disable();
rcu_note_context_switch(!!sched_mode);
/*
* Make sure that signal_pending_state()->signal_pending() below
* can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
* done by the caller to avoid the race with signal_wake_up():
*
* __set_current_state(@state) signal_wake_up()
* schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
* wake_up_state(p, state)
* LOCK rq->lock LOCK p->pi_state
* smp_mb__after_spinlock() smp_mb__after_spinlock()
* if (signal_pending_state()) if (p->state & @state)
*
* Also, the membarrier system call requires a full memory barrier
* after coming from user-space, before storing to rq->curr.
*/
rq_lock(rq, &rf);
smp_mb__after_spinlock();
/* Promote REQ to ACT */
rq->clock_update_flags <<= 1;
update_rq_clock(rq);
switch_count = &prev->nivcsw;
/*
* We must load prev->state once (task_struct::state is volatile), such
* that we form a control dependency vs deactivate_task() below.
*/
prev_state = READ_ONCE(prev->__state);
if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
if (signal_pending_state(prev_state, prev)) {
WRITE_ONCE(prev->__state, TASK_RUNNING);
} else {
prev->sched_contributes_to_load =
(prev_state & TASK_UNINTERRUPTIBLE) &&
!(prev_state & TASK_NOLOAD) &&
!(prev_state & TASK_FROZEN);
if (prev->sched_contributes_to_load)
rq->nr_uninterruptible++;
/*
* __schedule() ttwu()
* prev_state = prev->state; if (p->on_rq && ...)
* if (prev_state) goto out;
* p->on_rq = 0; smp_acquire__after_ctrl_dep();
* p->state = TASK_WAKING
*
* Where __schedule() and ttwu() have matching control dependencies.
*
* After this, schedule() must not care about p->state any more.
*/
deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
if (prev->in_iowait) {
atomic_inc(&rq->nr_iowait);
delayacct_blkio_start();
}
}
switch_count = &prev->nvcsw;
}
next = pick_next_task(rq, prev, &rf);
clear_tsk_need_resched(prev);
clear_preempt_need_resched();
#ifdef CONFIG_SCHED_DEBUG
rq->last_seen_need_resched_ns = 0;
#endif
if (likely(prev != next)) {
rq->nr_switches++;
/*
* RCU users of rcu_dereference(rq->curr) may not see
* changes to task_struct made by pick_next_task().
*/
RCU_INIT_POINTER(rq->curr, next);
/*
* The membarrier system call requires each architecture
* to have a full memory barrier after updating
* rq->curr, before returning to user-space.
*
* Here are the schemes providing that barrier on the
* various architectures:
* - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
* switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
* - finish_lock_switch() for weakly-ordered
* architectures where spin_unlock is a full barrier,
* - switch_to() for arm64 (weakly-ordered, spin_unlock
* is a RELEASE barrier),
*/
++*switch_count;
migrate_disable_switch(rq, prev);
psi_sched_switch(prev, next, !task_on_rq_queued(prev));
trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
/* Also unlocks the rq: */
rq = context_switch(rq, prev, next, &rf);
} else {
rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
rq_unpin_lock(rq, &rf);
__balance_callbacks(rq);
raw_spin_rq_unlock_irq(rq);
}
}
void __noreturn do_task_dead(void)
{
/* Causes final put_task_struct in finish_task_switch(): */
set_special_state(TASK_DEAD);
/* Tell freezer to ignore us: */
current->flags |= PF_NOFREEZE;
__schedule(SM_NONE);
BUG();
/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
for (;;)
cpu_relax();
}
static inline void sched_submit_work(struct task_struct *tsk)
{
unsigned int task_flags;
if (task_is_running(tsk))
return;
task_flags = tsk->flags;
/*
* If a worker goes to sleep, notify and ask workqueue whether it
* wants to wake up a task to maintain concurrency.
*/
if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
if (task_flags & PF_WQ_WORKER)
wq_worker_sleeping(tsk);
else
io_wq_worker_sleeping(tsk);
}
/*
* spinlock and rwlock must not flush block requests. This will
* deadlock if the callback attempts to acquire a lock which is
* already acquired.
*/
SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
/*
* If we are going to sleep and we have plugged IO queued,
* make sure to submit it to avoid deadlocks.
*/
blk_flush_plug(tsk->plug, true);
}
static void sched_update_worker(struct task_struct *tsk)
{
if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
if (tsk->flags & PF_WQ_WORKER)
wq_worker_running(tsk);
else
io_wq_worker_running(tsk);
}
}
asmlinkage __visible void __sched schedule(void)
{
struct task_struct *tsk = current;
sched_submit_work(tsk);
do {
preempt_disable();
__schedule(SM_NONE);
sched_preempt_enable_no_resched();
} while (need_resched());
sched_update_worker(tsk);
}
EXPORT_SYMBOL(schedule);
/*
* synchronize_rcu_tasks() makes sure that no task is stuck in preempted
* state (have scheduled out non-voluntarily) by making sure that all
* tasks have either left the run queue or have gone into user space.
* As idle tasks do not do either, they must not ever be preempted
* (schedule out non-voluntarily).
*
* schedule_idle() is similar to schedule_preempt_disable() except that it
* never enables preemption because it does not call sched_submit_work().
*/
void __sched schedule_idle(void)
{
/*
* As this skips calling sched_submit_work(), which the idle task does
* regardless because that function is a nop when the task is in a
* TASK_RUNNING state, make sure this isn't used someplace that the
* current task can be in any other state. Note, idle is always in the
* TASK_RUNNING state.
*/
WARN_ON_ONCE(current->__state);
do {
__schedule(SM_NONE);
} while (need_resched());
}
#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
asmlinkage __visible void __sched schedule_user(void)
{
/*
* If we come here after a random call to set_need_resched(),
* or we have been woken up remotely but the IPI has not yet arrived,
* we haven't yet exited the RCU idle mode. Do it here manually until
* we find a better solution.
*
* NB: There are buggy callers of this function. Ideally we
* should warn if prev_state != CONTEXT_USER, but that will trigger
* too frequently to make sense yet.
*/
enum ctx_state prev_state = exception_enter();
schedule();
exception_exit(prev_state);
}
#endif
/**
* schedule_preempt_disabled - called with preemption disabled
*
* Returns with preemption disabled. Note: preempt_count must be 1
*/
void __sched schedule_preempt_disabled(void)
{
sched_preempt_enable_no_resched();
schedule();
preempt_disable();
}
#ifdef CONFIG_PREEMPT_RT
void __sched notrace schedule_rtlock(void)
{
do {
preempt_disable();
__schedule(SM_RTLOCK_WAIT);
sched_preempt_enable_no_resched();
} while (need_resched());
}
NOKPROBE_SYMBOL(schedule_rtlock);
#endif
static void __sched notrace preempt_schedule_common(void)
{
do {
/*
* Because the function tracer can trace preempt_count_sub()
* and it also uses preempt_enable/disable_notrace(), if
* NEED_RESCHED is set, the preempt_enable_notrace() called
* by the function tracer will call this function again and
* cause infinite recursion.
*
* Preemption must be disabled here before the function
* tracer can trace. Break up preempt_disable() into two
* calls. One to disable preemption without fear of being
* traced. The other to still record the preemption latency,
* which can also be traced by the function tracer.
*/
preempt_disable_notrace();
preempt_latency_start(1);
__schedule(SM_PREEMPT);
preempt_latency_stop(1);
preempt_enable_no_resched_notrace();
/*
* Check again in case we missed a preemption opportunity
* between schedule and now.
*/
} while (need_resched());
}
#ifdef CONFIG_PREEMPTION
/*
* This is the entry point to schedule() from in-kernel preemption
* off of preempt_enable.
*/
asmlinkage __visible void __sched notrace preempt_schedule(void)
{
/*
* If there is a non-zero preempt_count or interrupts are disabled,
* we do not want to preempt the current task. Just return..
*/
if (likely(!preemptible()))
return;
preempt_schedule_common();
}
NOKPROBE_SYMBOL(preempt_schedule);
EXPORT_SYMBOL(preempt_schedule);
#ifdef CONFIG_PREEMPT_DYNAMIC
#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
#ifndef preempt_schedule_dynamic_enabled
#define preempt_schedule_dynamic_enabled preempt_schedule
#define preempt_schedule_dynamic_disabled NULL
#endif
DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
void __sched notrace dynamic_preempt_schedule(void)
{
if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
return;
preempt_schedule();
}
NOKPROBE_SYMBOL(dynamic_preempt_schedule);
EXPORT_SYMBOL(dynamic_preempt_schedule);
#endif
#endif
/**
* preempt_schedule_notrace - preempt_schedule called by tracing
*
* The tracing infrastructure uses preempt_enable_notrace to prevent
* recursion and tracing preempt enabling caused by the tracing
* infrastructure itself. But as tracing can happen in areas coming
* from userspace or just about to enter userspace, a preempt enable
* can occur before user_exit() is called. This will cause the scheduler
* to be called when the system is still in usermode.
*
* To prevent this, the preempt_enable_notrace will use this function
* instead of preempt_schedule() to exit user context if needed before
* calling the scheduler.
*/
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
{
enum ctx_state prev_ctx;
if (likely(!preemptible()))
return;
do {
/*
* Because the function tracer can trace preempt_count_sub()
* and it also uses preempt_enable/disable_notrace(), if
* NEED_RESCHED is set, the preempt_enable_notrace() called
* by the function tracer will call this function again and
* cause infinite recursion.
*
* Preemption must be disabled here before the function
* tracer can trace. Break up preempt_disable() into two
* calls. One to disable preemption without fear of being
* traced. The other to still record the preemption latency,
* which can also be traced by the function tracer.
*/
preempt_disable_notrace();
preempt_latency_start(1);
/*
* Needs preempt disabled in case user_exit() is traced
* and the tracer calls preempt_enable_notrace() causing
* an infinite recursion.
*/
prev_ctx = exception_enter();
__schedule(SM_PREEMPT);
exception_exit(prev_ctx);
preempt_latency_stop(1);
preempt_enable_no_resched_notrace();
} while (need_resched());
}
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
#ifdef CONFIG_PREEMPT_DYNAMIC
#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
#ifndef preempt_schedule_notrace_dynamic_enabled
#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
#define preempt_schedule_notrace_dynamic_disabled NULL
#endif
DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
void __sched notrace dynamic_preempt_schedule_notrace(void)
{
if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
return;
preempt_schedule_notrace();
}
NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
#endif
#endif
#endif /* CONFIG_PREEMPTION */
/*
* This is the entry point to schedule() from kernel preemption
* off of irq context.
* Note, that this is called and return with irqs disabled. This will
* protect us against recursive calling from irq.
*/
asmlinkage __visible void __sched preempt_schedule_irq(void)
{
enum ctx_state prev_state;
/* Catch callers which need to be fixed */
BUG_ON(preempt_count() || !irqs_disabled());
prev_state = exception_enter();
do {
preempt_disable();
local_irq_enable();
__schedule(SM_PREEMPT);
local_irq_disable();
sched_preempt_enable_no_resched();
} while (need_resched());
exception_exit(prev_state);
}
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
void *key)
{
WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
return try_to_wake_up(curr->private, mode, wake_flags);
}
EXPORT_SYMBOL(default_wake_function);
static void __setscheduler_prio(struct task_struct *p, int prio)
{
if (dl_prio(prio))
p->sched_class = &dl_sched_class;
else if (rt_prio(prio))
p->sched_class = &rt_sched_class;
else
p->sched_class = &fair_sched_class;
p->prio = prio;
}
#ifdef CONFIG_RT_MUTEXES
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
if (pi_task)
prio = min(prio, pi_task->prio);
return prio;
}
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
struct task_struct *pi_task = rt_mutex_get_top_task(p);
return __rt_effective_prio(pi_task, prio);
}
/*
* rt_mutex_setprio - set the current priority of a task
* @p: task to boost
* @pi_task: donor task
*
* This function changes the 'effective' priority of a task. It does
* not touch ->normal_prio like __setscheduler().
*
* Used by the rt_mutex code to implement priority inheritance
* logic. Call site only calls if the priority of the task changed.
*/
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
{
int prio, oldprio, queued, running, queue_flag =
DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
const struct sched_class *prev_class;
struct rq_flags rf;
struct rq *rq;
/* XXX used to be waiter->prio, not waiter->task->prio */
prio = __rt_effective_prio(pi_task, p->normal_prio);
/*
* If nothing changed; bail early.
*/
if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
return;
rq = __task_rq_lock(p, &rf);
update_rq_clock(rq);
/*
* Set under pi_lock && rq->lock, such that the value can be used under
* either lock.
*
* Note that there is loads of tricky to make this pointer cache work
* right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
* ensure a task is de-boosted (pi_task is set to NULL) before the
* task is allowed to run again (and can exit). This ensures the pointer
* points to a blocked task -- which guarantees the task is present.
*/
p->pi_top_task = pi_task;
/*
* For FIFO/RR we only need to set prio, if that matches we're done.
*/
if (prio == p->prio && !dl_prio(prio))
goto out_unlock;
/*
* Idle task boosting is a nono in general. There is one
* exception, when PREEMPT_RT and NOHZ is active:
*
* The idle task calls get_next_timer_interrupt() and holds
* the timer wheel base->lock on the CPU and another CPU wants
* to access the timer (probably to cancel it). We can safely
* ignore the boosting request, as the idle CPU runs this code
* with interrupts disabled and will complete the lock
* protected section without being interrupted. So there is no
* real need to boost.
*/
if (unlikely(p == rq->idle)) {
WARN_ON(p != rq->curr);
WARN_ON(p->pi_blocked_on);
goto out_unlock;
}
trace_sched_pi_setprio(p, pi_task);
oldprio = p->prio;
if (oldprio == prio)
queue_flag &= ~DEQUEUE_MOVE;
prev_class = p->sched_class;
queued = task_on_rq_queued(p);
running = task_current(rq, p);
if (queued)
dequeue_task(rq, p, queue_flag);
if (running)
put_prev_task(rq, p);
/*
* Boosting condition are:
* 1. -rt task is running and holds mutex A
* --> -dl task blocks on mutex A
*
* 2. -dl task is running and holds mutex A
* --> -dl task blocks on mutex A and could preempt the
* running task
*/
if (dl_prio(prio)) {
if (!dl_prio(p->normal_prio) ||
(pi_task && dl_prio(pi_task->prio) &&
dl_entity_preempt(&pi_task->dl, &p->dl))) {
p->dl.pi_se = pi_task->dl.pi_se;
queue_flag |= ENQUEUE_REPLENISH;
} else {
p->dl.pi_se = &p->dl;
}
} else if (rt_prio(prio)) {
if (dl_prio(oldprio))
p->dl.pi_se = &p->dl;
if (oldprio < prio)
queue_flag |= ENQUEUE_HEAD;
} else {
if (dl_prio(oldprio))
p->dl.pi_se = &p->dl;
if (rt_prio(oldprio))
p->rt.timeout = 0;
}
__setscheduler_prio(p, prio);
if (queued)
enqueue_task(rq, p, queue_flag);
if (running)
set_next_task(rq, p);
check_class_changed(rq, p, prev_class, oldprio);
out_unlock:
/* Avoid rq from going away on us: */
preempt_disable();
rq_unpin_lock(rq, &rf);
__balance_callbacks(rq);
raw_spin_rq_unlock(rq);
preempt_enable();
}
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
return prio;
}
#endif
void set_user_nice(struct task_struct *p, long nice)
{
bool queued, running;
int old_prio;
struct rq_flags rf;
struct rq *rq;
if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
return;
/*
* We have to be careful, if called from sys_setpriority(),
* the task might be in the middle of scheduling on another CPU.
*/
rq = task_rq_lock(p, &rf);
update_rq_clock(rq);
/*
* The RT priorities are set via sched_setscheduler(), but we still
* allow the 'normal' nice value to be set - but as expected
* it won't have any effect on scheduling until the task is
* SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
*/
if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
p->static_prio = NICE_TO_PRIO(nice);
goto out_unlock;
}
queued = task_on_rq_queued(p);
running = task_current(rq, p);
if (queued)
dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
if (running)
put_prev_task(rq, p);
p->static_prio = NICE_TO_PRIO(nice);
set_load_weight(p, true);
old_prio = p->prio;
p->prio = effective_prio(p);
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
if (running)
set_next_task(rq, p);
/*
* If the task increased its priority or is running and
* lowered its priority, then reschedule its CPU:
*/
p->sched_class->prio_changed(rq, p, old_prio);
out_unlock:
task_rq_unlock(rq, p, &rf);
}
EXPORT_SYMBOL(set_user_nice);
/*
* is_nice_reduction - check if nice value is an actual reduction
*
* Similar to can_nice() but does not perform a capability check.
*
* @p: task
* @nice: nice value
*/
static bool is_nice_reduction(const struct task_struct *p, const int nice)
{
/* Convert nice value [19,-20] to rlimit style value [1,40]: */
int nice_rlim = nice_to_rlimit(nice);
return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
}
/*
* can_nice - check if a task can reduce its nice value
* @p: task
* @nice: nice value
*/
int can_nice(const struct task_struct *p, const int nice)
{
return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
}
#ifdef __ARCH_WANT_SYS_NICE
/*
* sys_nice - change the priority of the current process.
* @increment: priority increment
*
* sys_setpriority is a more generic, but much slower function that
* does similar things.
*/
SYSCALL_DEFINE1(nice, int, increment)
{
long nice, retval;
/*
* Setpriority might change our priority at the same moment.
* We don't have to worry. Conceptually one call occurs first
* and we have a single winner.
*/
increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
nice = task_nice(current) + increment;
nice = clamp_val(nice, MIN_NICE, MAX_NICE);
if (increment < 0 && !can_nice(current, nice))
return -EPERM;
retval = security_task_setnice(current, nice);
if (retval)
return retval;
set_user_nice(current, nice);
return 0;
}
#endif
/**
* task_prio - return the priority value of a given task.
* @p: the task in question.
*
* Return: The priority value as seen by users in /proc.
*
* sched policy return value kernel prio user prio/nice
*
* normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
* fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
* deadline -101 -1 0
*/
int task_prio(const struct task_struct *p)
{
return p->prio - MAX_RT_PRIO;
}
/**
* idle_cpu - is a given CPU idle currently?
* @cpu: the processor in question.
*
* Return: 1 if the CPU is currently idle. 0 otherwise.
*/
int idle_cpu(int cpu)
{
struct rq *rq = cpu_rq(cpu);
if (rq->curr != rq->idle)
return 0;
if (rq->nr_running)
return 0;
#ifdef CONFIG_SMP
if (rq->ttwu_pending)
return 0;
#endif
return 1;
}
/**
* available_idle_cpu - is a given CPU idle for enqueuing work.
* @cpu: the CPU in question.
*
* Return: 1 if the CPU is currently idle. 0 otherwise.
*/
int available_idle_cpu(int cpu)
{
if (!idle_cpu(cpu))
return 0;
if (vcpu_is_preempted(cpu))
return 0;
return 1;
}
/**
* idle_task - return the idle task for a given CPU.
* @cpu: the processor in question.
*
* Return: The idle task for the CPU @cpu.
*/
struct task_struct *idle_task(int cpu)
{
return cpu_rq(cpu)->idle;
}
#ifdef CONFIG_SMP
/*
* This function computes an effective utilization for the given CPU, to be
* used for frequency selection given the linear relation: f = u * f_max.
*
* The scheduler tracks the following metrics:
*
* cpu_util_{cfs,rt,dl,irq}()
* cpu_bw_dl()
*
* Where the cfs,rt and dl util numbers are tracked with the same metric and
* synchronized windows and are thus directly comparable.
*
* The cfs,rt,dl utilization are the running times measured with rq->clock_task
* which excludes things like IRQ and steal-time. These latter are then accrued
* in the irq utilization.
*
* The DL bandwidth number otoh is not a measured metric but a value computed
* based on the task model parameters and gives the minimal utilization
* required to meet deadlines.
*/
unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
enum cpu_util_type type,
struct task_struct *p)
{
unsigned long dl_util, util, irq, max;
struct rq *rq = cpu_rq(cpu);
max = arch_scale_cpu_capacity(cpu);
if (!uclamp_is_used() &&
type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
return max;
}
/*
* Early check to see if IRQ/steal time saturates the CPU, can be
* because of inaccuracies in how we track these -- see
* update_irq_load_avg().
*/
irq = cpu_util_irq(rq);
if (unlikely(irq >= max))
return max;
/*
* Because the time spend on RT/DL tasks is visible as 'lost' time to
* CFS tasks and we use the same metric to track the effective
* utilization (PELT windows are synchronized) we can directly add them
* to obtain the CPU's actual utilization.
*
* CFS and RT utilization can be boosted or capped, depending on
* utilization clamp constraints requested by currently RUNNABLE
* tasks.
* When there are no CFS RUNNABLE tasks, clamps are released and
* frequency will be gracefully reduced with the utilization decay.
*/
util = util_cfs + cpu_util_rt(rq);
if (type == FREQUENCY_UTIL)
util = uclamp_rq_util_with(rq, util, p);
dl_util = cpu_util_dl(rq);
/*
* For frequency selection we do not make cpu_util_dl() a permanent part
* of this sum because we want to use cpu_bw_dl() later on, but we need
* to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
* that we select f_max when there is no idle time.
*
* NOTE: numerical errors or stop class might cause us to not quite hit
* saturation when we should -- something for later.
*/
if (util + dl_util >= max)
return max;
/*
* OTOH, for energy computation we need the estimated running time, so
* include util_dl and ignore dl_bw.
*/
if (type == ENERGY_UTIL)
util += dl_util;
/*
* There is still idle time; further improve the number by using the
* irq metric. Because IRQ/steal time is hidden from the task clock we
* need to scale the task numbers:
*
* max - irq
* U' = irq + --------- * U
* max
*/
util = scale_irq_capacity(util, irq, max);
util += irq;
/*
* Bandwidth required by DEADLINE must always be granted while, for
* FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
* to gracefully reduce the frequency when no tasks show up for longer
* periods of time.
*
* Ideally we would like to set bw_dl as min/guaranteed freq and util +
* bw_dl as requested freq. However, cpufreq is not yet ready for such
* an interface. So, we only do the latter for now.
*/
if (type == FREQUENCY_UTIL)
util += cpu_bw_dl(rq);
return min(max, util);
}
unsigned long sched_cpu_util(int cpu)
{
return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
}
#endif /* CONFIG_SMP */
/**
* find_process_by_pid - find a process with a matching PID value.
* @pid: the pid in question.
*
* The task of @pid, if found. %NULL otherwise.
*/
static struct task_struct *find_process_by_pid(pid_t pid)
{
return pid ? find_task_by_vpid(pid) : current;
}
/*
* sched_setparam() passes in -1 for its policy, to let the functions
* it calls know not to change it.
*/
#define SETPARAM_POLICY -1
static void __setscheduler_params(struct task_struct *p,
const struct sched_attr *attr)
{
int policy = attr->sched_policy;
if (policy == SETPARAM_POLICY)
policy = p->policy;
p->policy = policy;
if (dl_policy(policy))
__setparam_dl(p, attr);
else if (fair_policy(policy))
p->static_prio = NICE_TO_PRIO(attr->sched_nice);
/*
* __sched_setscheduler() ensures attr->sched_priority == 0 when
* !rt_policy. Always setting this ensures that things like
* getparam()/getattr() don't report silly values for !rt tasks.
*/
p->rt_priority = attr->sched_priority;
p->normal_prio = normal_prio(p);
set_load_weight(p, true);
}
/*
* Check the target process has a UID that matches the current process's:
*/
static bool check_same_owner(struct task_struct *p)
{
const struct cred *cred = current_cred(), *pcred;
bool match;
rcu_read_lock();
pcred = __task_cred(p);
match = (uid_eq(cred->euid, pcred->euid) ||
uid_eq(cred->euid, pcred->uid));
rcu_read_unlock();
return match;
}
/*
* Allow unprivileged RT tasks to decrease priority.
* Only issue a capable test if needed and only once to avoid an audit
* event on permitted non-privileged operations:
*/
static int user_check_sched_setscheduler(struct task_struct *p,
const struct sched_attr *attr,
int policy, int reset_on_fork)
{
if (fair_policy(policy)) {
if (attr->sched_nice < task_nice(p) &&
!is_nice_reduction(p, attr->sched_nice))
goto req_priv;
}
if (rt_policy(policy)) {
unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
/* Can't set/change the rt policy: */
if (policy != p->policy && !rlim_rtprio)
goto req_priv;
/* Can't increase priority: */
if (attr->sched_priority > p->rt_priority &&
attr->sched_priority > rlim_rtprio)
goto req_priv;
}
/*
* Can't set/change SCHED_DEADLINE policy at all for now
* (safest behavior); in the future we would like to allow
* unprivileged DL tasks to increase their relative deadline
* or reduce their runtime (both ways reducing utilization)
*/
if (dl_policy(policy))
goto req_priv;
/*
* Treat SCHED_IDLE as nice 20. Only allow a switch to
* SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
*/
if (task_has_idle_policy(p) && !idle_policy(policy)) {
if (!is_nice_reduction(p, task_nice(p)))
goto req_priv;
}
/* Can't change other user's priorities: */
if (!check_same_owner(p))
goto req_priv;
/* Normal users shall not reset the sched_reset_on_fork flag: */
if (p->sched_reset_on_fork && !reset_on_fork)
goto req_priv;
return 0;
req_priv:
if (!capable(CAP_SYS_NICE))
return -EPERM;
return 0;
}
static int __sched_setscheduler(struct task_struct *p,
const struct sched_attr *attr,
bool user, bool pi)
{
int oldpolicy = -1, policy = attr->sched_policy;
int retval, oldprio, newprio, queued, running;
const struct sched_class *prev_class;
struct balance_callback *head;
struct rq_flags rf;
int reset_on_fork;
int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
struct rq *rq;
bool cpuset_locked = false;
/* The pi code expects interrupts enabled */
BUG_ON(pi && in_interrupt());
recheck:
/* Double check policy once rq lock held: */
if (policy < 0) {
reset_on_fork = p->sched_reset_on_fork;
policy = oldpolicy = p->policy;
} else {
reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
if (!valid_policy(policy))
return -EINVAL;
}
if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
return -EINVAL;
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are
* 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
* SCHED_BATCH and SCHED_IDLE is 0.
*/
if (attr->sched_priority > MAX_RT_PRIO-1)
return -EINVAL;
if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
(rt_policy(policy) != (attr->sched_priority != 0)))
return -EINVAL;
if (user) {
retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
if (retval)
return retval;
if (attr->sched_flags & SCHED_FLAG_SUGOV)
return -EINVAL;
retval = security_task_setscheduler(p);
if (retval)
return retval;
}
/* Update task specific "requested" clamps */
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
retval = uclamp_validate(p, attr);
if (retval)
return retval;
}
/*
* SCHED_DEADLINE bandwidth accounting relies on stable cpusets
* information.
*/
if (dl_policy(policy) || dl_policy(p->policy)) {
cpuset_locked = true;
cpuset_lock();
}
/*
* Make sure no PI-waiters arrive (or leave) while we are
* changing the priority of the task:
*
* To be able to change p->policy safely, the appropriate
* runqueue lock must be held.
*/
rq = task_rq_lock(p, &rf);
update_rq_clock(rq);
/*
* Changing the policy of the stop threads its a very bad idea:
*/
if (p == rq->stop) {
retval = -EINVAL;
goto unlock;
}
/*
* If not changing anything there's no need to proceed further,
* but store a possible modification of reset_on_fork.
*/
if (unlikely(policy == p->policy)) {
if (fair_policy(policy) && attr->sched_nice != task_nice(p))
goto change;
if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
goto change;
if (dl_policy(policy) && dl_param_changed(p, attr))
goto change;
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
goto change;
p->sched_reset_on_fork = reset_on_fork;
retval = 0;
goto unlock;
}
change:
if (user) {
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Do not allow realtime tasks into groups that have no runtime
* assigned.
*/
if (rt_bandwidth_enabled() && rt_policy(policy) &&
task_group(p)->rt_bandwidth.rt_runtime == 0 &&
!task_group_is_autogroup(task_group(p))) {
retval = -EPERM;
goto unlock;
}
#endif
#ifdef CONFIG_SMP
if (dl_bandwidth_enabled() && dl_policy(policy) &&
!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
cpumask_t *span = rq->rd->span;
/*
* Don't allow tasks with an affinity mask smaller than
* the entire root_domain to become SCHED_DEADLINE. We
* will also fail if there's no bandwidth available.
*/
if (!cpumask_subset(span, p->cpus_ptr) ||
rq->rd->dl_bw.bw == 0) {
retval = -EPERM;
goto unlock;
}
}
#endif
}
/* Re-check policy now with rq lock held: */
if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
policy = oldpolicy = -1;
task_rq_unlock(rq, p, &rf);
if (cpuset_locked)
cpuset_unlock();
goto recheck;
}
/*
* If setscheduling to SCHED_DEADLINE (or changing the parameters
* of a SCHED_DEADLINE task) we need to check if enough bandwidth
* is available.
*/
if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
retval = -EBUSY;
goto unlock;
}
p->sched_reset_on_fork = reset_on_fork;
oldprio = p->prio;
newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
if (pi) {
/*
* Take priority boosted tasks into account. If the new
* effective priority is unchanged, we just store the new
* normal parameters and do not touch the scheduler class and
* the runqueue. This will be done when the task deboost
* itself.
*/
newprio = rt_effective_prio(p, newprio);
if (newprio == oldprio)
queue_flags &= ~DEQUEUE_MOVE;
}
queued = task_on_rq_queued(p);
running = task_current(rq, p);
if (queued)
dequeue_task(rq, p, queue_flags);
if (running)
put_prev_task(rq, p);
prev_class = p->sched_class;
if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
__setscheduler_params(p, attr);
__setscheduler_prio(p, newprio);
}
__setscheduler_uclamp(p, attr);
if (queued) {
/*
* We enqueue to tail when the priority of a task is
* increased (user space view).
*/
if (oldprio < p->prio)
queue_flags |= ENQUEUE_HEAD;
enqueue_task(rq, p, queue_flags);
}
if (running)
set_next_task(rq, p);
check_class_changed(rq, p, prev_class, oldprio);
/* Avoid rq from going away on us: */
preempt_disable();
head = splice_balance_callbacks(rq);
task_rq_unlock(rq, p, &rf);
if (pi) {
if (cpuset_locked)
cpuset_unlock();
rt_mutex_adjust_pi(p);
}
/* Run balance callbacks after we've adjusted the PI chain: */
balance_callbacks(rq, head);
preempt_enable();
return 0;
unlock:
task_rq_unlock(rq, p, &rf);
if (cpuset_locked)
cpuset_unlock();
return retval;
}
static int _sched_setscheduler(struct task_struct *p, int policy,
const struct sched_param *param, bool check)
{
struct sched_attr attr = {
.sched_policy = policy,
.sched_priority = param->sched_priority,
.sched_nice = PRIO_TO_NICE(p->static_prio),
};
/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
policy &= ~SCHED_RESET_ON_FORK;
attr.sched_policy = policy;
}
return __sched_setscheduler(p, &attr, check, true);
}
/**
* sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
* @p: the task in question.
* @policy: new policy.
* @param: structure containing the new RT priority.
*
* Use sched_set_fifo(), read its comment.
*
* Return: 0 on success. An error code otherwise.
*
* NOTE that the task may be already dead.
*/
int sched_setscheduler(struct task_struct *p, int policy,
const struct sched_param *param)
{
return _sched_setscheduler(p, policy, param, true);
}
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
return __sched_setscheduler(p, attr, true, true);
}
int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
{
return __sched_setscheduler(p, attr, false, true);
}
EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
/**
* sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
* @p: the task in question.
* @policy: new policy.
* @param: structure containing the new RT priority.
*
* Just like sched_setscheduler, only don't bother checking if the
* current context has permission. For example, this is needed in
* stop_machine(): we create temporary high priority worker threads,
* but our caller might not have that capability.
*
* Return: 0 on success. An error code otherwise.
*/
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
const struct sched_param *param)
{
return _sched_setscheduler(p, policy, param, false);
}
/*
* SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
* incapable of resource management, which is the one thing an OS really should
* be doing.
*
* This is of course the reason it is limited to privileged users only.
*
* Worse still; it is fundamentally impossible to compose static priority
* workloads. You cannot take two correctly working static prio workloads
* and smash them together and still expect them to work.
*
* For this reason 'all' FIFO tasks the kernel creates are basically at:
*
* MAX_RT_PRIO / 2
*
* The administrator _MUST_ configure the system, the kernel simply doesn't
* know enough information to make a sensible choice.
*/
void sched_set_fifo(struct task_struct *p)
{
struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
}
EXPORT_SYMBOL_GPL(sched_set_fifo);
/*
* For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
*/
void sched_set_fifo_low(struct task_struct *p)
{
struct sched_param sp = { .sched_priority = 1 };
WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
}
EXPORT_SYMBOL_GPL(sched_set_fifo_low);
void sched_set_normal(struct task_struct *p, int nice)
{
struct sched_attr attr = {
.sched_policy = SCHED_NORMAL,
.sched_nice = nice,
};
WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
}
EXPORT_SYMBOL_GPL(sched_set_normal);
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
{
struct sched_param lparam;
struct task_struct *p;
int retval;
if (!param || pid < 0)
return -EINVAL;
if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
return -EFAULT;
rcu_read_lock();
retval = -ESRCH;
p = find_process_by_pid(pid);
if (likely(p))
get_task_struct(p);
rcu_read_unlock();
if (likely(p)) {
retval = sched_setscheduler(p, policy, &lparam);
put_task_struct(p);
}
return retval;
}
/*
* Mimics kernel/events/core.c perf_copy_attr().
*/
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
{
u32 size;
int ret;
/* Zero the full structure, so that a short copy will be nice: */
memset(attr, 0, sizeof(*attr));
ret = get_user(size, &uattr->size);
if (ret)
return ret;
/* ABI compatibility quirk: */
if (!size)
size = SCHED_ATTR_SIZE_VER0;
if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
goto err_size;
ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
if (ret) {
if (ret == -E2BIG)
goto err_size;
return ret;
}
if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
size < SCHED_ATTR_SIZE_VER1)
return -EINVAL;
/*
* XXX: Do we want to be lenient like existing syscalls; or do we want
* to be strict and return an error on out-of-bounds values?
*/
attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
return 0;
err_size:
put_user(sizeof(*attr), &uattr->size);
return -E2BIG;
}
static void get_params(struct task_struct *p, struct sched_attr *attr)
{
if (task_has_dl_policy(p))
__getparam_dl(p, attr);
else if (task_has_rt_policy(p))
attr->sched_priority = p->rt_priority;
else
attr->sched_nice = task_nice(p);
}
/**
* sys_sched_setscheduler - set/change the scheduler policy and RT priority
* @pid: the pid in question.
* @policy: new policy.
* @param: structure containing the new RT priority.
*
* Return: 0 on success. An error code otherwise.
*/
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
{
if (policy < 0)
return -EINVAL;
return do_sched_setscheduler(pid, policy, param);
}
/**
* sys_sched_setparam - set/change the RT priority of a thread
* @pid: the pid in question.
* @param: structure containing the new RT priority.
*
* Return: 0 on success. An error code otherwise.
*/
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
{
return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
}
/**
* sys_sched_setattr - same as above, but with extended sched_attr
* @pid: the pid in question.
* @uattr: structure containing the extended parameters.
* @flags: for future extension.
*/
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
unsigned int, flags)
{
struct sched_attr attr;
struct task_struct *p;
int retval;
if (!uattr || pid < 0 || flags)
return -EINVAL;
retval = sched_copy_attr(uattr, &attr);
if (retval)
return retval;
if ((int)attr.sched_policy < 0)
return -EINVAL;
if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
attr.sched_policy = SETPARAM_POLICY;
rcu_read_lock();
retval = -ESRCH;
p = find_process_by_pid(pid);
if (likely(p))
get_task_struct(p);
rcu_read_unlock();
if (likely(p)) {
if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
get_params(p, &attr);
retval = sched_setattr(p, &attr);
put_task_struct(p);
}
return retval;
}
/**
* sys_sched_getscheduler - get the policy (scheduling class) of a thread
* @pid: the pid in question.
*
* Return: On success, the policy of the thread. Otherwise, a negative error
* code.
*/
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
{
struct task_struct *p;
int retval;
if (pid < 0)
return -EINVAL;
retval = -ESRCH;
rcu_read_lock();
p = find_process_by_pid(pid);
if (p) {
retval = security_task_getscheduler(p);
if (!retval)
retval = p->policy
| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
}
rcu_read_unlock();
return retval;
}
/**
* sys_sched_getparam - get the RT priority of a thread
* @pid: the pid in question.
* @param: structure containing the RT priority.
*
* Return: On success, 0 and the RT priority is in @param. Otherwise, an error
* code.
*/
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
{
struct sched_param lp = { .sched_priority = 0 };
struct task_struct *p;
int retval;
if (!param || pid < 0)
return -EINVAL;
rcu_read_lock();
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
if (task_has_rt_policy(p))
lp.sched_priority = p->rt_priority;
rcu_read_unlock();
/*
* This one might sleep, we cannot do it with a spinlock held ...
*/
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
return retval;
out_unlock:
rcu_read_unlock();
return retval;
}
/*
* Copy the kernel size attribute structure (which might be larger
* than what user-space knows about) to user-space.
*
* Note that all cases are valid: user-space buffer can be larger or
* smaller than the kernel-space buffer. The usual case is that both
* have the same size.
*/
static int
sched_attr_copy_to_user(struct sched_attr __user *uattr,
struct sched_attr *kattr,
unsigned int usize)
{
unsigned int ksize = sizeof(*kattr);
if (!access_ok(uattr, usize))
return -EFAULT;
/*
* sched_getattr() ABI forwards and backwards compatibility:
*
* If usize == ksize then we just copy everything to user-space and all is good.
*
* If usize < ksize then we only copy as much as user-space has space for,
* this keeps ABI compatibility as well. We skip the rest.
*
* If usize > ksize then user-space is using a newer version of the ABI,
* which part the kernel doesn't know about. Just ignore it - tooling can
* detect the kernel's knowledge of attributes from the attr->size value
* which is set to ksize in this case.
*/
kattr->size = min(usize, ksize);
if (copy_to_user(uattr, kattr, kattr->size))
return -EFAULT;
return 0;
}
/**
* sys_sched_getattr - similar to sched_getparam, but with sched_attr
* @pid: the pid in question.
* @uattr: structure containing the extended parameters.
* @usize: sizeof(attr) for fwd/bwd comp.
* @flags: for future extension.
*/
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
unsigned int, usize, unsigned int, flags)
{
struct sched_attr kattr = { };
struct task_struct *p;
int retval;
if (!uattr || pid < 0 || usize > PAGE_SIZE ||
usize < SCHED_ATTR_SIZE_VER0 || flags)
return -EINVAL;
rcu_read_lock();
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
kattr.sched_policy = p->policy;
if (p->sched_reset_on_fork)
kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
get_params(p, &kattr);
kattr.sched_flags &= SCHED_FLAG_ALL;
#ifdef CONFIG_UCLAMP_TASK
/*
* This could race with another potential updater, but this is fine
* because it'll correctly read the old or the new value. We don't need
* to guarantee who wins the race as long as it doesn't return garbage.
*/
kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
#endif
rcu_read_unlock();
return sched_attr_copy_to_user(uattr, &kattr, usize);
out_unlock:
rcu_read_unlock();
return retval;
}
#ifdef CONFIG_SMP
int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
{
int ret = 0;
/*
* If the task isn't a deadline task or admission control is
* disabled then we don't care about affinity changes.
*/
if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
return 0;
/*
* Since bandwidth control happens on root_domain basis,
* if admission test is enabled, we only admit -deadline
* tasks allowed to run on all the CPUs in the task's
* root_domain.
*/
rcu_read_lock();
if (!cpumask_subset(task_rq(p)->rd->span, mask))
ret = -EBUSY;
rcu_read_unlock();
return ret;
}
#endif
static int
__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
{
int retval;
cpumask_var_t cpus_allowed, new_mask;
if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
return -ENOMEM;
if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
retval = -ENOMEM;
goto out_free_cpus_allowed;
}
cpuset_cpus_allowed(p, cpus_allowed);
cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
ctx->new_mask = new_mask;
ctx->flags |= SCA_CHECK;
retval = dl_task_check_affinity(p, new_mask);
if (retval)
goto out_free_new_mask;
retval = __set_cpus_allowed_ptr(p, ctx);
if (retval)
goto out_free_new_mask;
cpuset_cpus_allowed(p, cpus_allowed);
if (!cpumask_subset(new_mask, cpus_allowed)) {
/*
* We must have raced with a concurrent cpuset update.
* Just reset the cpumask to the cpuset's cpus_allowed.
*/
cpumask_copy(new_mask, cpus_allowed);
/*
* If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
* will restore the previous user_cpus_ptr value.
*
* In the unlikely event a previous user_cpus_ptr exists,
* we need to further restrict the mask to what is allowed
* by that old user_cpus_ptr.
*/
if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
bool empty = !cpumask_and(new_mask, new_mask,
ctx->user_mask);
if (WARN_ON_ONCE(empty))
cpumask_copy(new_mask, cpus_allowed);
}
__set_cpus_allowed_ptr(p, ctx);
retval = -EINVAL;
}
out_free_new_mask:
free_cpumask_var(new_mask);
out_free_cpus_allowed:
free_cpumask_var(cpus_allowed);
return retval;
}
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
{
struct affinity_context ac;
struct cpumask *user_mask;
struct task_struct *p;
int retval;
rcu_read_lock();
p = find_process_by_pid(pid);
if (!p) {
rcu_read_unlock();
return -ESRCH;
}
/* Prevent p going away */
get_task_struct(p);
rcu_read_unlock();
if (p->flags & PF_NO_SETAFFINITY) {
retval = -EINVAL;
goto out_put_task;
}
if (!check_same_owner(p)) {
rcu_read_lock();
if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
rcu_read_unlock();
retval = -EPERM;
goto out_put_task;
}
rcu_read_unlock();
}
retval = security_task_setscheduler(p);
if (retval)
goto out_put_task;
/*
* With non-SMP configs, user_cpus_ptr/user_mask isn't used and
* alloc_user_cpus_ptr() returns NULL.
*/
user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
if (user_mask) {
cpumask_copy(user_mask, in_mask);
} else if (IS_ENABLED(CONFIG_SMP)) {
retval = -ENOMEM;
goto out_put_task;
}
ac = (struct affinity_context){
.new_mask = in_mask,
.user_mask = user_mask,
.flags = SCA_USER,
};
retval = __sched_setaffinity(p, &ac);
kfree(ac.user_mask);
out_put_task:
put_task_struct(p);
return retval;
}
static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
struct cpumask *new_mask)
{
if (len < cpumask_size())
cpumask_clear(new_mask);
else if (len > cpumask_size())
len = cpumask_size();
return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}
/**
* sys_sched_setaffinity - set the CPU affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to the new CPU mask
*
* Return: 0 on success. An error code otherwise.
*/
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
unsigned long __user *, user_mask_ptr)
{
cpumask_var_t new_mask;
int retval;
if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
return -ENOMEM;
retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
if (retval == 0)
retval = sched_setaffinity(pid, new_mask);
free_cpumask_var(new_mask);
return retval;
}
long sched_getaffinity(pid_t pid, struct cpumask *mask)
{
struct task_struct *p;
unsigned long flags;
int retval;
rcu_read_lock();
retval = -ESRCH;
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
raw_spin_lock_irqsave(&p->pi_lock, flags);
cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
out_unlock:
rcu_read_unlock();
return retval;
}
/**
* sys_sched_getaffinity - get the CPU affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to hold the current CPU mask
*
* Return: size of CPU mask copied to user_mask_ptr on success. An
* error code otherwise.
*/
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
unsigned long __user *, user_mask_ptr)
{
int ret;
cpumask_var_t mask;
if ((len * BITS_PER_BYTE) < nr_cpu_ids)
return -EINVAL;
if (len & (sizeof(unsigned long)-1))
return -EINVAL;
if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
ret = sched_getaffinity(pid, mask);
if (ret == 0) {
unsigned int retlen = min(len, cpumask_size());
if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
ret = -EFAULT;
else
ret = retlen;
}
free_cpumask_var(mask);
return ret;
}
static void do_sched_yield(void)
{
struct rq_flags rf;
struct rq *rq;
rq = this_rq_lock_irq(&rf);
schedstat_inc(rq->yld_count);
current->sched_class->yield_task(rq);
preempt_disable();
rq_unlock_irq(rq, &rf);
sched_preempt_enable_no_resched();
schedule();
}
/**
* sys_sched_yield - yield the current processor to other threads.
*
* This function yields the current CPU to other tasks. If there are no
* other threads running on this CPU then this function will return.
*
* Return: 0.
*/
SYSCALL_DEFINE0(sched_yield)
{
do_sched_yield();
return 0;
}
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
int __sched __cond_resched(void)
{
if (should_resched(0)) {
preempt_schedule_common();
return 1;
}
/*
* In preemptible kernels, ->rcu_read_lock_nesting tells the tick
* whether the current CPU is in an RCU read-side critical section,
* so the tick can report quiescent states even for CPUs looping
* in kernel context. In contrast, in non-preemptible kernels,
* RCU readers leave no in-memory hints, which means that CPU-bound
* processes executing in kernel context might never report an
* RCU quiescent state. Therefore, the following code causes
* cond_resched() to report a quiescent state, but only when RCU
* is in urgent need of one.
*/
#ifndef CONFIG_PREEMPT_RCU
rcu_all_qs();
#endif
return 0;
}
EXPORT_SYMBOL(__cond_resched);
#endif
#ifdef CONFIG_PREEMPT_DYNAMIC
#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
#define cond_resched_dynamic_enabled __cond_resched
#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
EXPORT_STATIC_CALL_TRAMP(cond_resched);
#define might_resched_dynamic_enabled __cond_resched
#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
EXPORT_STATIC_CALL_TRAMP(might_resched);
#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
int __sched dynamic_cond_resched(void)
{
klp_sched_try_switch();
if (!static_branch_unlikely(&sk_dynamic_cond_resched))
return 0;
return __cond_resched();
}
EXPORT_SYMBOL(dynamic_cond_resched);
static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
int __sched dynamic_might_resched(void)
{
if (!static_branch_unlikely(&sk_dynamic_might_resched))
return 0;
return __cond_resched();
}
EXPORT_SYMBOL(dynamic_might_resched);
#endif
#endif
/*
* __cond_resched_lock() - if a reschedule is pending, drop the given lock,
* call schedule, and on return reacquire the lock.
*
* This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
* operations here to prevent schedule() from being called twice (once via
* spin_unlock(), once by hand).
*/
int __cond_resched_lock(spinlock_t *lock)
{
int resched = should_resched(PREEMPT_LOCK_OFFSET);
int ret = 0;
lockdep_assert_held(lock);
if (spin_needbreak(lock) || resched) {
spin_unlock(lock);
if (!_cond_resched())
cpu_relax();
ret = 1;
spin_lock(lock);
}
return ret;
}
EXPORT_SYMBOL(__cond_resched_lock);
int __cond_resched_rwlock_read(rwlock_t *lock)
{
int resched = should_resched(PREEMPT_LOCK_OFFSET);
int ret = 0;
lockdep_assert_held_read(lock);
if (rwlock_needbreak(lock) || resched) {
read_unlock(lock);
if (!_cond_resched())
cpu_relax();
ret = 1;
read_lock(lock);
}
return ret;
}
EXPORT_SYMBOL(__cond_resched_rwlock_read);
int __cond_resched_rwlock_write(rwlock_t *lock)
{
int resched = should_resched(PREEMPT_LOCK_OFFSET);
int ret = 0;
lockdep_assert_held_write(lock);
if (rwlock_needbreak(lock) || resched) {
write_unlock(lock);
if (!_cond_resched())
cpu_relax();
ret = 1;
write_lock(lock);
}
return ret;
}
EXPORT_SYMBOL(__cond_resched_rwlock_write);
#ifdef CONFIG_PREEMPT_DYNAMIC
#ifdef CONFIG_GENERIC_ENTRY
#include <linux/entry-common.h>
#endif
/*
* SC:cond_resched
* SC:might_resched
* SC:preempt_schedule
* SC:preempt_schedule_notrace
* SC:irqentry_exit_cond_resched
*
*
* NONE:
* cond_resched <- __cond_resched
* might_resched <- RET0
* preempt_schedule <- NOP
* preempt_schedule_notrace <- NOP
* irqentry_exit_cond_resched <- NOP
*
* VOLUNTARY:
* cond_resched <- __cond_resched
* might_resched <- __cond_resched
* preempt_schedule <- NOP
* preempt_schedule_notrace <- NOP
* irqentry_exit_cond_resched <- NOP
*
* FULL:
* cond_resched <- RET0
* might_resched <- RET0
* preempt_schedule <- preempt_schedule
* preempt_schedule_notrace <- preempt_schedule_notrace
* irqentry_exit_cond_resched <- irqentry_exit_cond_resched
*/
enum {
preempt_dynamic_undefined = -1,
preempt_dynamic_none,
preempt_dynamic_voluntary,
preempt_dynamic_full,
};
int preempt_dynamic_mode = preempt_dynamic_undefined;
int sched_dynamic_mode(const char *str)
{
if (!strcmp(str, "none"))
return preempt_dynamic_none;
if (!strcmp(str, "voluntary"))
return preempt_dynamic_voluntary;
if (!strcmp(str, "full"))
return preempt_dynamic_full;
return -EINVAL;
}
#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
#else
#error "Unsupported PREEMPT_DYNAMIC mechanism"
#endif
static DEFINE_MUTEX(sched_dynamic_mutex);
static bool klp_override;
static void __sched_dynamic_update(int mode)
{
/*
* Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
* the ZERO state, which is invalid.
*/
if (!klp_override)
preempt_dynamic_enable(cond_resched);
preempt_dynamic_enable(might_resched);
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
preempt_dynamic_enable(irqentry_exit_cond_resched);
switch (mode) {
case preempt_dynamic_none:
if (!klp_override)
preempt_dynamic_enable(cond_resched);
preempt_dynamic_disable(might_resched);
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
preempt_dynamic_disable(irqentry_exit_cond_resched);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: none\n");
break;
case preempt_dynamic_voluntary:
if (!klp_override)
preempt_dynamic_enable(cond_resched);
preempt_dynamic_enable(might_resched);
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
preempt_dynamic_disable(irqentry_exit_cond_resched);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: voluntary\n");
break;
case preempt_dynamic_full:
if (!klp_override)
preempt_dynamic_disable(cond_resched);
preempt_dynamic_disable(might_resched);
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
preempt_dynamic_enable(irqentry_exit_cond_resched);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: full\n");
break;
}
preempt_dynamic_mode = mode;
}
void sched_dynamic_update(int mode)
{
mutex_lock(&sched_dynamic_mutex);
__sched_dynamic_update(mode);
mutex_unlock(&sched_dynamic_mutex);
}
#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
static int klp_cond_resched(void)
{
__klp_sched_try_switch();
return __cond_resched();
}
void sched_dynamic_klp_enable(void)
{
mutex_lock(&sched_dynamic_mutex);
klp_override = true;
static_call_update(cond_resched, klp_cond_resched);
mutex_unlock(&sched_dynamic_mutex);
}
void sched_dynamic_klp_disable(void)
{
mutex_lock(&sched_dynamic_mutex);
klp_override = false;
__sched_dynamic_update(preempt_dynamic_mode);
mutex_unlock(&sched_dynamic_mutex);
}
#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
static int __init setup_preempt_mode(char *str)
{
int mode = sched_dynamic_mode(str);
if (mode < 0) {
pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
return 0;
}
sched_dynamic_update(mode);
return 1;
}
__setup("preempt=", setup_preempt_mode);
static void __init preempt_dynamic_init(void)
{
if (preempt_dynamic_mode == preempt_dynamic_undefined) {
if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
sched_dynamic_update(preempt_dynamic_none);
} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
sched_dynamic_update(preempt_dynamic_voluntary);
} else {
/* Default static call setting, nothing to do */
WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
preempt_dynamic_mode = preempt_dynamic_full;
pr_info("Dynamic Preempt: full\n");
}
}
}
#define PREEMPT_MODEL_ACCESSOR(mode) \
bool preempt_model_##mode(void) \
{ \
WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
return preempt_dynamic_mode == preempt_dynamic_##mode; \
} \
EXPORT_SYMBOL_GPL(preempt_model_##mode)
PREEMPT_MODEL_ACCESSOR(none);
PREEMPT_MODEL_ACCESSOR(voluntary);
PREEMPT_MODEL_ACCESSOR(full);
#else /* !CONFIG_PREEMPT_DYNAMIC */
static inline void preempt_dynamic_init(void) { }
#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
/**
* yield - yield the current processor to other threads.
*
* Do not ever use this function, there's a 99% chance you're doing it wrong.
*
* The scheduler is at all times free to pick the calling task as the most
* eligible task to run, if removing the yield() call from your code breaks
* it, it's already broken.
*
* Typical broken usage is:
*
* while (!event)
* yield();
*
* where one assumes that yield() will let 'the other' process run that will
* make event true. If the current task is a SCHED_FIFO task that will never
* happen. Never use yield() as a progress guarantee!!
*
* If you want to use yield() to wait for something, use wait_event().
* If you want to use yield() to be 'nice' for others, use cond_resched().
* If you still want to use yield(), do not!
*/
void __sched yield(void)
{
set_current_state(TASK_RUNNING);
do_sched_yield();
}
EXPORT_SYMBOL(yield);
/**
* yield_to - yield the current processor to another thread in
* your thread group, or accelerate that thread toward the
* processor it's on.
* @p: target task
* @preempt: whether task preemption is allowed or not
*
* It's the caller's job to ensure that the target task struct
* can't go away on us before we can do any checks.
*
* Return:
* true (>0) if we indeed boosted the target task.
* false (0) if we failed to boost the target.
* -ESRCH if there's no task to yield to.
*/
int __sched yield_to(struct task_struct *p, bool preempt)
{
struct task_struct *curr = current;
struct rq *rq, *p_rq;
unsigned long flags;
int yielded = 0;
local_irq_save(flags);
rq = this_rq();
again:
p_rq = task_rq(p);
/*
* If we're the only runnable task on the rq and target rq also
* has only one task, there's absolutely no point in yielding.
*/
if (rq->nr_running == 1 && p_rq->nr_running == 1) {
yielded = -ESRCH;
goto out_irq;
}
double_rq_lock(rq, p_rq);
if (task_rq(p) != p_rq) {
double_rq_unlock(rq, p_rq);
goto again;
}
if (!curr->sched_class->yield_to_task)
goto out_unlock;
if (curr->sched_class != p->sched_class)
goto out_unlock;
if (task_on_cpu(p_rq, p) || !task_is_running(p))
goto out_unlock;
yielded = curr->sched_class->yield_to_task(rq, p);
if (yielded) {
schedstat_inc(rq->yld_count);
/*
* Make p's CPU reschedule; pick_next_entity takes care of
* fairness.
*/
if (preempt && rq != p_rq)
resched_curr(p_rq);
}
out_unlock:
double_rq_unlock(rq, p_rq);
out_irq:
local_irq_restore(flags);
if (yielded > 0)
schedule();
return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);
int io_schedule_prepare(void)
{
int old_iowait = current->in_iowait;
current->in_iowait = 1;
blk_flush_plug(current->plug, true);
return old_iowait;
}
void io_schedule_finish(int token)
{
current->in_iowait = token;
}
/*
* This task is about to go to sleep on IO. Increment rq->nr_iowait so
* that process accounting knows that this is a task in IO wait state.
*/
long __sched io_schedule_timeout(long timeout)
{
int token;
long ret;
token = io_schedule_prepare();
ret = schedule_timeout(timeout);
io_schedule_finish(token);
return ret;
}
EXPORT_SYMBOL(io_schedule_timeout);
void __sched io_schedule(void)
{
int token;
token = io_schedule_prepare();
schedule();
io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);
/**
* sys_sched_get_priority_max - return maximum RT priority.
* @policy: scheduling class.
*
* Return: On success, this syscall returns the maximum
* rt_priority that can be used by a given scheduling class.
* On failure, a negative error code is returned.
*/
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = MAX_RT_PRIO-1;
break;
case SCHED_DEADLINE:
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
ret = 0;
break;
}
return ret;
}
/**
* sys_sched_get_priority_min - return minimum RT priority.
* @policy: scheduling class.
*
* Return: On success, this syscall returns the minimum
* rt_priority that can be used by a given scheduling class.
* On failure, a negative error code is returned.
*/
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 1;
break;
case SCHED_DEADLINE:
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
ret = 0;
}
return ret;
}
static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
{
struct task_struct *p;
unsigned int time_slice;
struct rq_flags rf;
struct rq *rq;
int retval;
if (pid < 0)
return -EINVAL;
retval = -ESRCH;
rcu_read_lock();
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
rq = task_rq_lock(p, &rf);
time_slice = 0;
if (p->sched_class->get_rr_interval)
time_slice = p->sched_class->get_rr_interval(rq, p);
task_rq_unlock(rq, p, &rf);
rcu_read_unlock();
jiffies_to_timespec64(time_slice, t);
return 0;
out_unlock:
rcu_read_unlock();
return retval;
}
/**
* sys_sched_rr_get_interval - return the default timeslice of a process.
* @pid: pid of the process.
* @interval: userspace pointer to the timeslice value.
*
* this syscall writes the default timeslice value of a given process
* into the user-space timespec buffer. A value of '0' means infinity.
*
* Return: On success, 0 and the timeslice is in @interval. Otherwise,
* an error code.
*/
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
struct __kernel_timespec __user *, interval)
{
struct timespec64 t;
int retval = sched_rr_get_interval(pid, &t);
if (retval == 0)
retval = put_timespec64(&t, interval);
return retval;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
struct old_timespec32 __user *, interval)
{
struct timespec64 t;
int retval = sched_rr_get_interval(pid, &t);
if (retval == 0)
retval = put_old_timespec32(&t, interval);
return retval;
}
#endif
void sched_show_task(struct task_struct *p)
{
unsigned long free = 0;
int ppid;
if (!try_get_task_stack(p))
return;
pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
if (task_is_running(p))
pr_cont(" running task ");
#ifdef CONFIG_DEBUG_STACK_USAGE
free = stack_not_used(p);
#endif
ppid = 0;
rcu_read_lock();
if (pid_alive(p))
ppid = task_pid_nr(rcu_dereference(p->real_parent));
rcu_read_unlock();
pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
free, task_pid_nr(p), ppid,
read_task_thread_flags(p));
print_worker_info(KERN_INFO, p);
print_stop_info(KERN_INFO, p);
show_stack(p, NULL, KERN_INFO);
put_task_stack(p);
}
EXPORT_SYMBOL_GPL(sched_show_task);
static inline bool
state_filter_match(unsigned long state_filter, struct task_struct *p)
{
unsigned int state = READ_ONCE(p->__state);
/* no filter, everything matches */
if (!state_filter)
return true;
/* filter, but doesn't match */
if (!(state & state_filter))
return false;
/*
* When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
* TASK_KILLABLE).
*/
if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
return false;
return true;
}
void show_state_filter(unsigned int state_filter)
{
struct task_struct *g, *p;
rcu_read_lock();
for_each_process_thread(g, p) {
/*
* reset the NMI-timeout, listing all files on a slow
* console might take a lot of time:
* Also, reset softlockup watchdogs on all CPUs, because
* another CPU might be blocked waiting for us to process
* an IPI.
*/
touch_nmi_watchdog();
touch_all_softlockup_watchdogs();
if (state_filter_match(state_filter, p))
sched_show_task(p);
}
#ifdef CONFIG_SCHED_DEBUG
if (!state_filter)
sysrq_sched_debug_show();
#endif
rcu_read_unlock();
/*
* Only show locks if all tasks are dumped:
*/
if (!state_filter)
debug_show_all_locks();
}
/**
* init_idle - set up an idle thread for a given CPU
* @idle: task in question
* @cpu: CPU the idle task belongs to
*
* NOTE: this function does not set the idle thread's NEED_RESCHED
* flag, to make booting more robust.
*/
void __init init_idle(struct task_struct *idle, int cpu)
{
#ifdef CONFIG_SMP
struct affinity_context ac = (struct affinity_context) {
.new_mask = cpumask_of(cpu),
.flags = 0,
};
#endif
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
__sched_fork(0, idle);
raw_spin_lock_irqsave(&idle->pi_lock, flags);
raw_spin_rq_lock(rq);
idle->__state = TASK_RUNNING;
idle->se.exec_start = sched_clock();
/*
* PF_KTHREAD should already be set at this point; regardless, make it
* look like a proper per-CPU kthread.
*/
idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
kthread_set_per_cpu(idle, cpu);
#ifdef CONFIG_SMP
/*
* It's possible that init_idle() gets called multiple times on a task,
* in that case do_set_cpus_allowed() will not do the right thing.
*
* And since this is boot we can forgo the serialization.
*/
set_cpus_allowed_common(idle, &ac);
#endif
/*
* We're having a chicken and egg problem, even though we are
* holding rq->lock, the CPU isn't yet set to this CPU so the
* lockdep check in task_group() will fail.
*
* Similar case to sched_fork(). / Alternatively we could
* use task_rq_lock() here and obtain the other rq->lock.
*
* Silence PROVE_RCU
*/
rcu_read_lock();
__set_task_cpu(idle, cpu);
rcu_read_unlock();
rq->idle = idle;
rcu_assign_pointer(rq->curr, idle);
idle->on_rq = TASK_ON_RQ_QUEUED;
#ifdef CONFIG_SMP
idle->on_cpu = 1;
#endif
raw_spin_rq_unlock(rq);
raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
/* Set the preempt count _outside_ the spinlocks! */
init_idle_preempt_count(idle, cpu);
/*
* The idle tasks have their own, simple scheduling class:
*/
idle->sched_class = &idle_sched_class;
ftrace_graph_init_idle_task(idle, cpu);
vtime_init_idle(idle, cpu);
#ifdef CONFIG_SMP
sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
}
#ifdef CONFIG_SMP
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
const struct cpumask *trial)
{
int ret = 1;
if (cpumask_empty(cur))
return ret;
ret = dl_cpuset_cpumask_can_shrink(cur, trial);
return ret;
}
int task_can_attach(struct task_struct *p)
{
int ret = 0;
/*
* Kthreads which disallow setaffinity shouldn't be moved
* to a new cpuset; we don't want to change their CPU
* affinity and isolating such threads by their set of
* allowed nodes is unnecessary. Thus, cpusets are not
* applicable for such threads. This prevents checking for
* success of set_cpus_allowed_ptr() on all attached tasks
* before cpus_mask may be changed.
*/
if (p->flags & PF_NO_SETAFFINITY)
ret = -EINVAL;
return ret;
}
bool sched_smp_initialized __read_mostly;
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
struct migration_arg arg = { p, target_cpu };
int curr_cpu = task_cpu(p);
if (curr_cpu == target_cpu)
return 0;
if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
return -EINVAL;
/* TODO: This is not properly updating schedstats */
trace_sched_move_numa(p, curr_cpu, target_cpu);
return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
/*
* Requeue a task on a given node and accurately track the number of NUMA
* tasks on the runqueues
*/
void sched_setnuma(struct task_struct *p, int nid)
{
bool queued, running;
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(p, &rf);
queued = task_on_rq_queued(p);
running = task_current(rq, p);
if (queued)
dequeue_task(rq, p, DEQUEUE_SAVE);
if (running)
put_prev_task(rq, p);
p->numa_preferred_nid = nid;
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
if (running)
set_next_task(rq, p);
task_rq_unlock(rq, p, &rf);
}
#endif /* CONFIG_NUMA_BALANCING */
#ifdef CONFIG_HOTPLUG_CPU
/*
* Ensure that the idle task is using init_mm right before its CPU goes
* offline.
*/
void idle_task_exit(void)
{
struct mm_struct *mm = current->active_mm;
BUG_ON(cpu_online(smp_processor_id()));
BUG_ON(current != this_rq()->idle);
if (mm != &init_mm) {
switch_mm(mm, &init_mm, current);
finish_arch_post_lock_switch();
}
/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
}
static int __balance_push_cpu_stop(void *arg)
{
struct task_struct *p = arg;
struct rq *rq = this_rq();
struct rq_flags rf;
int cpu;
raw_spin_lock_irq(&p->pi_lock);
rq_lock(rq, &rf);
update_rq_clock(rq);
if (task_rq(p) == rq && task_on_rq_queued(p)) {
cpu = select_fallback_rq(rq->cpu, p);
rq = __migrate_task(rq, &rf, p, cpu);
}
rq_unlock(rq, &rf);
raw_spin_unlock_irq(&p->pi_lock);
put_task_struct(p);
return 0;
}
static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
/*
* Ensure we only run per-cpu kthreads once the CPU goes !active.
*
* This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
* effective when the hotplug motion is down.
*/
static void balance_push(struct rq *rq)
{
struct task_struct *push_task = rq->curr;
lockdep_assert_rq_held(rq);
/*
* Ensure the thing is persistent until balance_push_set(.on = false);
*/
rq->balance_callback = &balance_push_callback;
/*
* Only active while going offline and when invoked on the outgoing
* CPU.
*/
if (!cpu_dying(rq->cpu) || rq != this_rq())
return;
/*
* Both the cpu-hotplug and stop task are in this case and are
* required to complete the hotplug process.
*/
if (kthread_is_per_cpu(push_task) ||
is_migration_disabled(push_task)) {
/*
* If this is the idle task on the outgoing CPU try to wake
* up the hotplug control thread which might wait for the
* last task to vanish. The rcuwait_active() check is
* accurate here because the waiter is pinned on this CPU
* and can't obviously be running in parallel.
*
* On RT kernels this also has to check whether there are
* pinned and scheduled out tasks on the runqueue. They
* need to leave the migrate disabled section first.
*/
if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
rcuwait_active(&rq->hotplug_wait)) {
raw_spin_rq_unlock(rq);
rcuwait_wake_up(&rq->hotplug_wait);
raw_spin_rq_lock(rq);
}
return;
}
get_task_struct(push_task);
/*
* Temporarily drop rq->lock such that we can wake-up the stop task.
* Both preemption and IRQs are still disabled.
*/
raw_spin_rq_unlock(rq);
stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
this_cpu_ptr(&push_work));
/*
* At this point need_resched() is true and we'll take the loop in
* schedule(). The next pick is obviously going to be the stop task
* which kthread_is_per_cpu() and will push this task away.
*/
raw_spin_rq_lock(rq);
}
static void balance_push_set(int cpu, bool on)
{
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
rq_lock_irqsave(rq, &rf);
if (on) {
WARN_ON_ONCE(rq->balance_callback);
rq->balance_callback = &balance_push_callback;
} else if (rq->balance_callback == &balance_push_callback) {
rq->balance_callback = NULL;
}
rq_unlock_irqrestore(rq, &rf);
}
/*
* Invoked from a CPUs hotplug control thread after the CPU has been marked
* inactive. All tasks which are not per CPU kernel threads are either
* pushed off this CPU now via balance_push() or placed on a different CPU
* during wakeup. Wait until the CPU is quiescent.
*/
static void balance_hotplug_wait(void)
{
struct rq *rq = this_rq();
rcuwait_wait_event(&rq->hotplug_wait,
rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
TASK_UNINTERRUPTIBLE);
}
#else
static inline void balance_push(struct rq *rq)
{
}
static inline void balance_push_set(int cpu, bool on)
{
}
static inline void balance_hotplug_wait(void)
{
}
#endif /* CONFIG_HOTPLUG_CPU */
void set_rq_online(struct rq *rq)
{
if (!rq->online) {
const struct sched_class *class;
cpumask_set_cpu(rq->cpu, rq->rd->online);
rq->online = 1;
for_each_class(class) {
if (class->rq_online)
class->rq_online(rq);
}
}
}
void set_rq_offline(struct rq *rq)
{
if (rq->online) {
const struct sched_class *class;
update_rq_clock(rq);
for_each_class(class) {
if (class->rq_offline)
class->rq_offline(rq);
}
cpumask_clear_cpu(rq->cpu, rq->rd->online);
rq->online = 0;
}
}
/*
* used to mark begin/end of suspend/resume:
*/
static int num_cpus_frozen;
/*
* Update cpusets according to cpu_active mask. If cpusets are
* disabled, cpuset_update_active_cpus() becomes a simple wrapper
* around partition_sched_domains().
*
* If we come here as part of a suspend/resume, don't touch cpusets because we
* want to restore it back to its original state upon resume anyway.
*/
static void cpuset_cpu_active(void)
{
if (cpuhp_tasks_frozen) {
/*
* num_cpus_frozen tracks how many CPUs are involved in suspend
* resume sequence. As long as this is not the last online
* operation in the resume sequence, just build a single sched
* domain, ignoring cpusets.
*/
partition_sched_domains(1, NULL, NULL);
if (--num_cpus_frozen)
return;
/*
* This is the last CPU online operation. So fall through and
* restore the original sched domains by considering the
* cpuset configurations.
*/
cpuset_force_rebuild();
}
cpuset_update_active_cpus();
}
static int cpuset_cpu_inactive(unsigned int cpu)
{
if (!cpuhp_tasks_frozen) {
int ret = dl_bw_check_overflow(cpu);
if (ret)
return ret;
cpuset_update_active_cpus();
} else {
num_cpus_frozen++;
partition_sched_domains(1, NULL, NULL);
}
return 0;
}
int sched_cpu_activate(unsigned int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
/*
* Clear the balance_push callback and prepare to schedule
* regular tasks.
*/
balance_push_set(cpu, false);
#ifdef CONFIG_SCHED_SMT
/*
* When going up, increment the number of cores with SMT present.
*/
if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
static_branch_inc_cpuslocked(&sched_smt_present);
#endif
set_cpu_active(cpu, true);
if (sched_smp_initialized) {
sched_update_numa(cpu, true);
sched_domains_numa_masks_set(cpu);
cpuset_cpu_active();
}
/*
* Put the rq online, if not already. This happens:
*
* 1) In the early boot process, because we build the real domains
* after all CPUs have been brought up.
*
* 2) At runtime, if cpuset_cpu_active() fails to rebuild the
* domains.
*/
rq_lock_irqsave(rq, &rf);
if (rq->rd) {
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
set_rq_online(rq);
}
rq_unlock_irqrestore(rq, &rf);
return 0;
}
int sched_cpu_deactivate(unsigned int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
int ret;
/*
* Remove CPU from nohz.idle_cpus_mask to prevent participating in
* load balancing when not active
*/
nohz_balance_exit_idle(rq);
set_cpu_active(cpu, false);
/*
* From this point forward, this CPU will refuse to run any task that
* is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
* push those tasks away until this gets cleared, see
* sched_cpu_dying().
*/
balance_push_set(cpu, true);
/*
* We've cleared cpu_active_mask / set balance_push, wait for all
* preempt-disabled and RCU users of this state to go away such that
* all new such users will observe it.
*
* Specifically, we rely on ttwu to no longer target this CPU, see
* ttwu_queue_cond() and is_cpu_allowed().
*
* Do sync before park smpboot threads to take care the rcu boost case.
*/
synchronize_rcu();
rq_lock_irqsave(rq, &rf);
if (rq->rd) {
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
set_rq_offline(rq);
}
rq_unlock_irqrestore(rq, &rf);
#ifdef CONFIG_SCHED_SMT
/*
* When going down, decrement the number of cores with SMT present.
*/
if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
static_branch_dec_cpuslocked(&sched_smt_present);
sched_core_cpu_deactivate(cpu);
#endif
if (!sched_smp_initialized)
return 0;
sched_update_numa(cpu, false);
ret = cpuset_cpu_inactive(cpu);
if (ret) {
balance_push_set(cpu, false);
set_cpu_active(cpu, true);
sched_update_numa(cpu, true);
return ret;
}
sched_domains_numa_masks_clear(cpu);
return 0;
}
static void sched_rq_cpu_starting(unsigned int cpu)
{
struct rq *rq = cpu_rq(cpu);
rq->calc_load_update = calc_load_update;
update_max_interval();
}
int sched_cpu_starting(unsigned int cpu)
{
sched_core_cpu_starting(cpu);
sched_rq_cpu_starting(cpu);
sched_tick_start(cpu);
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Invoked immediately before the stopper thread is invoked to bring the
* CPU down completely. At this point all per CPU kthreads except the
* hotplug thread (current) and the stopper thread (inactive) have been
* either parked or have been unbound from the outgoing CPU. Ensure that
* any of those which might be on the way out are gone.
*
* If after this point a bound task is being woken on this CPU then the
* responsible hotplug callback has failed to do it's job.
* sched_cpu_dying() will catch it with the appropriate fireworks.
*/
int sched_cpu_wait_empty(unsigned int cpu)
{
balance_hotplug_wait();
return 0;
}
/*
* Since this CPU is going 'away' for a while, fold any nr_active delta we
* might have. Called from the CPU stopper task after ensuring that the
* stopper is the last running task on the CPU, so nr_active count is
* stable. We need to take the teardown thread which is calling this into
* account, so we hand in adjust = 1 to the load calculation.
*
* Also see the comment "Global load-average calculations".
*/
static void calc_load_migrate(struct rq *rq)
{
long delta = calc_load_fold_active(rq, 1);
if (delta)
atomic_long_add(delta, &calc_load_tasks);
}
static void dump_rq_tasks(struct rq *rq, const char *loglvl)
{
struct task_struct *g, *p;
int cpu = cpu_of(rq);
lockdep_assert_rq_held(rq);
printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
for_each_process_thread(g, p) {
if (task_cpu(p) != cpu)
continue;
if (!task_on_rq_queued(p))
continue;
printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
}
}
int sched_cpu_dying(unsigned int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
/* Handle pending wakeups and then migrate everything off */
sched_tick_stop(cpu);
rq_lock_irqsave(rq, &rf);
if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
WARN(true, "Dying CPU not properly vacated!");
dump_rq_tasks(rq, KERN_WARNING);
}
rq_unlock_irqrestore(rq, &rf);
calc_load_migrate(rq);
update_max_interval();
hrtick_clear(rq);
sched_core_cpu_dying(cpu);
return 0;
}
#endif
void __init sched_init_smp(void)
{
sched_init_numa(NUMA_NO_NODE);
/*
* There's no userspace yet to cause hotplug operations; hence all the
* CPU masks are stable and all blatant races in the below code cannot
* happen.
*/
mutex_lock(&sched_domains_mutex);
sched_init_domains(cpu_active_mask);
mutex_unlock(&sched_domains_mutex);
/* Move init over to a non-isolated CPU */
if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
BUG();
current->flags &= ~PF_NO_SETAFFINITY;
sched_init_granularity();
init_sched_rt_class();
init_sched_dl_class();
sched_smp_initialized = true;
}
static int __init migration_init(void)
{
sched_cpu_starting(smp_processor_id());
return 0;
}
early_initcall(migration_init);
#else
void __init sched_init_smp(void)
{
sched_init_granularity();
}
#endif /* CONFIG_SMP */
int in_sched_functions(unsigned long addr)
{
return in_lock_functions(addr) ||
(addr >= (unsigned long)__sched_text_start
&& addr < (unsigned long)__sched_text_end);
}
#ifdef CONFIG_CGROUP_SCHED
/*
* Default task group.
* Every task in system belongs to this group at bootup.
*/
struct task_group root_task_group;
LIST_HEAD(task_groups);
/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
#endif
void __init sched_init(void)
{
unsigned long ptr = 0;
int i;
/* Make sure the linker didn't screw up */
BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
&fair_sched_class != &rt_sched_class + 1 ||
&rt_sched_class != &dl_sched_class + 1);
#ifdef CONFIG_SMP
BUG_ON(&dl_sched_class != &stop_sched_class + 1);
#endif
wait_bit_init();
#ifdef CONFIG_FAIR_GROUP_SCHED
ptr += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
ptr += 2 * nr_cpu_ids * sizeof(void **);
#endif
if (ptr) {
ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
#ifdef CONFIG_FAIR_GROUP_SCHED
root_task_group.se = (struct sched_entity **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
root_task_group.cfs_rq = (struct cfs_rq **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
root_task_group.shares = ROOT_TASK_GROUP_LOAD;
init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
root_task_group.rt_se = (struct sched_rt_entity **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
root_task_group.rt_rq = (struct rt_rq **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
#endif /* CONFIG_RT_GROUP_SCHED */
}
init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
#ifdef CONFIG_SMP
init_defrootdomain();
#endif
#ifdef CONFIG_RT_GROUP_SCHED
init_rt_bandwidth(&root_task_group.rt_bandwidth,
global_rt_period(), global_rt_runtime());
#endif /* CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_CGROUP_SCHED
task_group_cache = KMEM_CACHE(task_group, 0);
list_add(&root_task_group.list, &task_groups);
INIT_LIST_HEAD(&root_task_group.children);
INIT_LIST_HEAD(&root_task_group.siblings);
autogroup_init(&init_task);
#endif /* CONFIG_CGROUP_SCHED */
for_each_possible_cpu(i) {
struct rq *rq;
rq = cpu_rq(i);
raw_spin_lock_init(&rq->__lock);
rq->nr_running = 0;
rq->calc_load_active = 0;
rq->calc_load_update = jiffies + LOAD_FREQ;
init_cfs_rq(&rq->cfs);
init_rt_rq(&rq->rt);
init_dl_rq(&rq->dl);
#ifdef CONFIG_FAIR_GROUP_SCHED
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
/*
* How much CPU bandwidth does root_task_group get?
*
* In case of task-groups formed thr' the cgroup filesystem, it
* gets 100% of the CPU resources in the system. This overall
* system CPU resource is divided among the tasks of
* root_task_group and its child task-groups in a fair manner,
* based on each entity's (task or task-group's) weight
* (se->load.weight).
*
* In other words, if root_task_group has 10 tasks of weight
* 1024) and two child groups A0 and A1 (of weight 1024 each),
* then A0's share of the CPU resource is:
*
* A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
*
* We achieve this by letting root_task_group's tasks sit
* directly in rq->cfs (i.e root_task_group->se[] = NULL).
*/
init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
#endif /* CONFIG_FAIR_GROUP_SCHED */
rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
#ifdef CONFIG_RT_GROUP_SCHED
init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
#endif
#ifdef CONFIG_SMP
rq->sd = NULL;
rq->rd = NULL;
rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
rq->balance_callback = &balance_push_callback;
rq->active_balance = 0;
rq->next_balance = jiffies;
rq->push_cpu = 0;
rq->cpu = i;
rq->online = 0;
rq->idle_stamp = 0;
rq->avg_idle = 2*sysctl_sched_migration_cost;
rq->wake_stamp = jiffies;
rq->wake_avg_idle = rq->avg_idle;
rq->max_idle_balance_cost = sysctl_sched_migration_cost;
INIT_LIST_HEAD(&rq->cfs_tasks);
rq_attach_root(rq, &def_root_domain);
#ifdef CONFIG_NO_HZ_COMMON
rq->last_blocked_load_update_tick = jiffies;
atomic_set(&rq->nohz_flags, 0);
INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
#endif
#ifdef CONFIG_HOTPLUG_CPU
rcuwait_init(&rq->hotplug_wait);
#endif
#endif /* CONFIG_SMP */
hrtick_rq_init(rq);
atomic_set(&rq->nr_iowait, 0);
#ifdef CONFIG_SCHED_CORE
rq->core = rq;
rq->core_pick = NULL;
rq->core_enabled = 0;
rq->core_tree = RB_ROOT;
rq->core_forceidle_count = 0;
rq->core_forceidle_occupation = 0;
rq->core_forceidle_start = 0;
rq->core_cookie = 0UL;
#endif
zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
}
set_load_weight(&init_task, false);
/*
* The boot idle thread does lazy MMU switching as well:
*/
mmgrab_lazy_tlb(&init_mm);
enter_lazy_tlb(&init_mm, current);
/*
* The idle task doesn't need the kthread struct to function, but it
* is dressed up as a per-CPU kthread and thus needs to play the part
* if we want to avoid special-casing it in code that deals with per-CPU
* kthreads.
*/
WARN_ON(!set_kthread_struct(current));
/*
* Make us the idle thread. Technically, schedule() should not be
* called from this thread, however somewhere below it might be,
* but because we are the idle thread, we just pick up running again
* when this runqueue becomes "idle".
*/
init_idle(current, smp_processor_id());
calc_load_update = jiffies + LOAD_FREQ;
#ifdef CONFIG_SMP
idle_thread_set_boot_cpu();
balance_push_set(smp_processor_id(), false);
#endif
init_sched_fair_class();
psi_init();
init_uclamp();
preempt_dynamic_init();
scheduler_running = 1;
}
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
void __might_sleep(const char *file, int line)
{
unsigned int state = get_current_state();
/*
* Blocking primitives will set (and therefore destroy) current->state,
* since we will exit with TASK_RUNNING make sure we enter with it,
* otherwise we will destroy state.
*/
WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
"do not call blocking ops when !TASK_RUNNING; "
"state=%x set at [<%p>] %pS\n", state,
(void *)current->task_state_change,
(void *)current->task_state_change);
__might_resched(file, line, 0);
}
EXPORT_SYMBOL(__might_sleep);
static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
{
if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
return;
if (preempt_count() == preempt_offset)
return;
pr_err("Preemption disabled at:");
print_ip_sym(KERN_ERR, ip);
}
static inline bool resched_offsets_ok(unsigned int offsets)
{
unsigned int nested = preempt_count();
nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
return nested == offsets;
}
void __might_resched(const char *file, int line, unsigned int offsets)
{
/* Ratelimiting timestamp: */
static unsigned long prev_jiffy;
unsigned long preempt_disable_ip;
/* WARN_ON_ONCE() by default, no rate limit required: */
rcu_sleep_check();
if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
!is_idle_task(current) && !current->non_block_count) ||
system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
oops_in_progress)
return;
if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
return;
prev_jiffy = jiffies;
/* Save this before calling printk(), since that will clobber it: */
preempt_disable_ip = get_preempt_disable_ip(current);
pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
file, line);
pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
in_atomic(), irqs_disabled(), current->non_block_count,
current->pid, current->comm);
pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
offsets & MIGHT_RESCHED_PREEMPT_MASK);
if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
pr_err("RCU nest depth: %d, expected: %u\n",
rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
}
if (task_stack_end_corrupted(current))
pr_emerg("Thread overran stack, or stack corrupted\n");
debug_show_held_locks(current);
if (irqs_disabled())
print_irqtrace_events(current);
print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
preempt_disable_ip);
dump_stack();
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
}
EXPORT_SYMBOL(__might_resched);
void __cant_sleep(const char *file, int line, int preempt_offset)
{
static unsigned long prev_jiffy;
if (irqs_disabled())
return;
if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
return;
if (preempt_count() > preempt_offset)
return;
if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
return;
prev_jiffy = jiffies;
printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
in_atomic(), irqs_disabled(),
current->pid, current->comm);
debug_show_held_locks(current);
dump_stack();
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
}
EXPORT_SYMBOL_GPL(__cant_sleep);
#ifdef CONFIG_SMP
void __cant_migrate(const char *file, int line)
{
static unsigned long prev_jiffy;
if (irqs_disabled())
return;
if (is_migration_disabled(current))
return;
if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
return;
if (preempt_count() > 0)
return;
if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
return;
prev_jiffy = jiffies;
pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
in_atomic(), irqs_disabled(), is_migration_disabled(current),
current->pid, current->comm);
debug_show_held_locks(current);
dump_stack();
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
}
EXPORT_SYMBOL_GPL(__cant_migrate);
#endif
#endif
#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
struct task_struct *g, *p;
struct sched_attr attr = {
.sched_policy = SCHED_NORMAL,
};
read_lock(&tasklist_lock);
for_each_process_thread(g, p) {
/*
* Only normalize user tasks:
*/
if (p->flags & PF_KTHREAD)
continue;
p->se.exec_start = 0;
schedstat_set(p->stats.wait_start, 0);
schedstat_set(p->stats.sleep_start, 0);
schedstat_set(p->stats.block_start, 0);
if (!dl_task(p) && !rt_task(p)) {
/*
* Renice negative nice level userspace
* tasks back to 0:
*/
if (task_nice(p) < 0)
set_user_nice(p, 0);
continue;
}
__sched_setscheduler(p, &attr, false, false);
}
read_unlock(&tasklist_lock);
}
#endif /* CONFIG_MAGIC_SYSRQ */
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
/*
* These functions are only useful for the IA64 MCA handling, or kdb.
*
* They can only be called when the whole system has been
* stopped - every CPU needs to be quiescent, and no scheduling
* activity can take place. Using them for anything else would
* be a serious bug, and as a result, they aren't even visible
* under any other configuration.
*/
/**
* curr_task - return the current task for a given CPU.
* @cpu: the processor in question.
*
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
*
* Return: The current task for @cpu.
*/
struct task_struct *curr_task(int cpu)
{
return cpu_curr(cpu);
}
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
#ifdef CONFIG_IA64
/**
* ia64_set_curr_task - set the current task for a given CPU.
* @cpu: the processor in question.
* @p: the task pointer to set.
*
* Description: This function must only be used when non-maskable interrupts
* are serviced on a separate stack. It allows the architecture to switch the
* notion of the current task on a CPU in a non-blocking manner. This function
* must be called with all CPU's synchronized, and interrupts disabled, the
* and caller must save the original value of the current task (see
* curr_task() above) and restore that value before reenabling interrupts and
* re-starting the system.
*
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
*/
void ia64_set_curr_task(int cpu, struct task_struct *p)
{
cpu_curr(cpu) = p;
}
#endif
#ifdef CONFIG_CGROUP_SCHED
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);
static inline void alloc_uclamp_sched_group(struct task_group *tg,
struct task_group *parent)
{
#ifdef CONFIG_UCLAMP_TASK_GROUP
enum uclamp_id clamp_id;
for_each_clamp_id(clamp_id) {
uclamp_se_set(&tg->uclamp_req[clamp_id],
uclamp_none(clamp_id), false);
tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
}
#endif
}
static void sched_free_group(struct task_group *tg)
{
free_fair_sched_group(tg);
free_rt_sched_group(tg);
autogroup_free(tg);
kmem_cache_free(task_group_cache, tg);
}
static void sched_free_group_rcu(struct rcu_head *rcu)
{
sched_free_group(container_of(rcu, struct task_group, rcu));
}
static void sched_unregister_group(struct task_group *tg)
{
unregister_fair_sched_group(tg);
unregister_rt_sched_group(tg);
/*
* We have to wait for yet another RCU grace period to expire, as
* print_cfs_stats() might run concurrently.
*/
call_rcu(&tg->rcu, sched_free_group_rcu);
}
/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(struct task_group *parent)
{
struct task_group *tg;
tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
if (!tg)
return ERR_PTR(-ENOMEM);
if (!alloc_fair_sched_group(tg, parent))
goto err;
if (!alloc_rt_sched_group(tg, parent))
goto err;
alloc_uclamp_sched_group(tg, parent);
return tg;
err:
sched_free_group(tg);
return ERR_PTR(-ENOMEM);
}
void sched_online_group(struct task_group *tg, struct task_group *parent)
{
unsigned long flags;
spin_lock_irqsave(&task_group_lock, flags);
list_add_rcu(&tg->list, &task_groups);
/* Root should already exist: */
WARN_ON(!parent);
tg->parent = parent;
INIT_LIST_HEAD(&tg->children);
list_add_rcu(&tg->siblings, &parent->children);
spin_unlock_irqrestore(&task_group_lock, flags);
online_fair_sched_group(tg);
}
/* rcu callback to free various structures associated with a task group */
static void sched_unregister_group_rcu(struct rcu_head *rhp)
{
/* Now it should be safe to free those cfs_rqs: */
sched_unregister_group(container_of(rhp, struct task_group, rcu));
}
void sched_destroy_group(struct task_group *tg)
{
/* Wait for possible concurrent references to cfs_rqs complete: */
call_rcu(&tg->rcu, sched_unregister_group_rcu);
}
void sched_release_group(struct task_group *tg)
{
unsigned long flags;
/*
* Unlink first, to avoid walk_tg_tree_from() from finding us (via
* sched_cfs_period_timer()).
*
* For this to be effective, we have to wait for all pending users of
* this task group to leave their RCU critical section to ensure no new
* user will see our dying task group any more. Specifically ensure
* that tg_unthrottle_up() won't add decayed cfs_rq's to it.
*
* We therefore defer calling unregister_fair_sched_group() to
* sched_unregister_group() which is guarantied to get called only after the
* current RCU grace period has expired.
*/
spin_lock_irqsave(&task_group_lock, flags);
list_del_rcu(&tg->list);
list_del_rcu(&tg->siblings);
spin_unlock_irqrestore(&task_group_lock, flags);
}
static struct task_group *sched_get_task_group(struct task_struct *tsk)
{
struct task_group *tg;
/*
* All callers are synchronized by task_rq_lock(); we do not use RCU
* which is pointless here. Thus, we pass "true" to task_css_check()
* to prevent lockdep warnings.
*/
tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
struct task_group, css);
tg = autogroup_task_group(tsk, tg);
return tg;
}
static void sched_change_group(struct task_struct *tsk, struct task_group *group)
{
tsk->sched_task_group = group;
#ifdef CONFIG_FAIR_GROUP_SCHED
if (tsk->sched_class->task_change_group)
tsk->sched_class->task_change_group(tsk);
else
#endif
set_task_rq(tsk, task_cpu(tsk));
}
/*
* Change task's runqueue when it moves between groups.
*
* The caller of this function should have put the task in its new group by
* now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
* its new group.
*/
void sched_move_task(struct task_struct *tsk)
{
int queued, running, queue_flags =
DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
struct task_group *group;
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(tsk, &rf);
/*
* Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
* group changes.
*/
group = sched_get_task_group(tsk);
if (group == tsk->sched_task_group)
goto unlock;
update_rq_clock(rq);
running = task_current(rq, tsk);
queued = task_on_rq_queued(tsk);
if (queued)
dequeue_task(rq, tsk, queue_flags);
if (running)
put_prev_task(rq, tsk);
sched_change_group(tsk, group);
if (queued)
enqueue_task(rq, tsk, queue_flags);
if (running) {
set_next_task(rq, tsk);
/*
* After changing group, the running task may have joined a
* throttled one but it's still the running task. Trigger a
* resched to make sure that task can still run.
*/
resched_curr(rq);
}
unlock:
task_rq_unlock(rq, tsk, &rf);
}
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
{
return css ? container_of(css, struct task_group, css) : NULL;
}
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct task_group *parent = css_tg(parent_css);
struct task_group *tg;
if (!parent) {
/* This is early initialization for the top cgroup */
return &root_task_group.css;
}
tg = sched_create_group(parent);
if (IS_ERR(tg))
return ERR_PTR(-ENOMEM);
return &tg->css;
}
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
struct task_group *tg = css_tg(css);
struct task_group *parent = css_tg(css->parent);
if (parent)
sched_online_group(tg, parent);
#ifdef CONFIG_UCLAMP_TASK_GROUP
/* Propagate the effective uclamp value for the new group */
mutex_lock(&uclamp_mutex);
rcu_read_lock();
cpu_util_update_eff(css);
rcu_read_unlock();
mutex_unlock(&uclamp_mutex);
#endif
return 0;
}
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
{
struct task_group *tg = css_tg(css);
sched_release_group(tg);
}
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
{
struct task_group *tg = css_tg(css);
/*
* Relies on the RCU grace period between css_released() and this.
*/
sched_unregister_group(tg);
}
#ifdef CONFIG_RT_GROUP_SCHED
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
{
struct task_struct *task;
struct cgroup_subsys_state *css;
cgroup_taskset_for_each(task, css, tset) {
if (!sched_rt_can_attach(css_tg(css), task))
return -EINVAL;
}
return 0;
}
#endif
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
{
struct task_struct *task;
struct cgroup_subsys_state *css;
cgroup_taskset_for_each(task, css, tset)
sched_move_task(task);
}
#ifdef CONFIG_UCLAMP_TASK_GROUP
static void cpu_util_update_eff(struct cgroup_subsys_state *css)
{
struct cgroup_subsys_state *top_css = css;
struct uclamp_se *uc_parent = NULL;
struct uclamp_se *uc_se = NULL;
unsigned int eff[UCLAMP_CNT];
enum uclamp_id clamp_id;
unsigned int clamps;
lockdep_assert_held(&uclamp_mutex);
SCHED_WARN_ON(!rcu_read_lock_held());
css_for_each_descendant_pre(css, top_css) {
uc_parent = css_tg(css)->parent
? css_tg(css)->parent->uclamp : NULL;
for_each_clamp_id(clamp_id) {
/* Assume effective clamps matches requested clamps */
eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
/* Cap effective clamps with parent's effective clamps */
if (uc_parent &&
eff[clamp_id] > uc_parent[clamp_id].value) {
eff[clamp_id] = uc_parent[clamp_id].value;
}
}
/* Ensure protection is always capped by limit */
eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
/* Propagate most restrictive effective clamps */
clamps = 0x0;
uc_se = css_tg(css)->uclamp;
for_each_clamp_id(clamp_id) {
if (eff[clamp_id] == uc_se[clamp_id].value)
continue;
uc_se[clamp_id].value = eff[clamp_id];
uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
clamps |= (0x1 << clamp_id);
}
if (!clamps) {
css = css_rightmost_descendant(css);
continue;
}
/* Immediately update descendants RUNNABLE tasks */
uclamp_update_active_tasks(css);
}
}
/*
* Integer 10^N with a given N exponent by casting to integer the literal "1eN"
* C expression. Since there is no way to convert a macro argument (N) into a
* character constant, use two levels of macros.
*/
#define _POW10(exp) ((unsigned int)1e##exp)
#define POW10(exp) _POW10(exp)
struct uclamp_request {
#define UCLAMP_PERCENT_SHIFT 2
#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
s64 percent;
u64 util;
int ret;
};
static inline struct uclamp_request
capacity_from_percent(char *buf)
{
struct uclamp_request req = {
.percent = UCLAMP_PERCENT_SCALE,
.util = SCHED_CAPACITY_SCALE,
.ret = 0,
};
buf = strim(buf);
if (strcmp(buf, "max")) {
req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
&req.percent);
if (req.ret)
return req;
if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
req.ret = -ERANGE;
return req;
}
req.util = req.percent << SCHED_CAPACITY_SHIFT;
req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
}
return req;
}
static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off,
enum uclamp_id clamp_id)
{
struct uclamp_request req;
struct task_group *tg;
req = capacity_from_percent(buf);
if (req.ret)
return req.ret;
static_branch_enable(&sched_uclamp_used);
mutex_lock(&uclamp_mutex);
rcu_read_lock();
tg = css_tg(of_css(of));
if (tg->uclamp_req[clamp_id].value != req.util)
uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
/*
* Because of not recoverable conversion rounding we keep track of the
* exact requested value
*/
tg->uclamp_pct[clamp_id] = req.percent;
/* Update effective clamps to track the most restrictive value */
cpu_util_update_eff(of_css(of));
rcu_read_unlock();
mutex_unlock(&uclamp_mutex);
return nbytes;
}
static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
char *buf, size_t nbytes,
loff_t off)
{
return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
}
static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
char *buf, size_t nbytes,
loff_t off)
{
return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
}
static inline void cpu_uclamp_print(struct seq_file *sf,
enum uclamp_id clamp_id)
{
struct task_group *tg;
u64 util_clamp;
u64 percent;
u32 rem;
rcu_read_lock();
tg = css_tg(seq_css(sf));
util_clamp = tg->uclamp_req[clamp_id].value;
rcu_read_unlock();
if (util_clamp == SCHED_CAPACITY_SCALE) {
seq_puts(sf, "max\n");
return;
}
percent = tg->uclamp_pct[clamp_id];
percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
}
static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
{
cpu_uclamp_print(sf, UCLAMP_MIN);
return 0;
}
static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
{
cpu_uclamp_print(sf, UCLAMP_MAX);
return 0;
}
#endif /* CONFIG_UCLAMP_TASK_GROUP */
#ifdef CONFIG_FAIR_GROUP_SCHED
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
struct cftype *cftype, u64 shareval)
{
if (shareval > scale_load_down(ULONG_MAX))
shareval = MAX_SHARES;
return sched_group_set_shares(css_tg(css), scale_load(shareval));
}
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct task_group *tg = css_tg(css);
return (u64) scale_load_down(tg->shares);
}
#ifdef CONFIG_CFS_BANDWIDTH
static DEFINE_MUTEX(cfs_constraints_mutex);
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
/* More than 203 days if BW_SHIFT equals 20. */
static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
u64 burst)
{
int i, ret = 0, runtime_enabled, runtime_was_enabled;
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
if (tg == &root_task_group)
return -EINVAL;
/*
* Ensure we have at some amount of bandwidth every period. This is
* to prevent reaching a state of large arrears when throttled via
* entity_tick() resulting in prolonged exit starvation.
*/
if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
return -EINVAL;
/*
* Likewise, bound things on the other side by preventing insane quota
* periods. This also allows us to normalize in computing quota
* feasibility.
*/
if (period > max_cfs_quota_period)
return -EINVAL;
/*
* Bound quota to defend quota against overflow during bandwidth shift.
*/
if (quota != RUNTIME_INF && quota > max_cfs_runtime)
return -EINVAL;
if (quota != RUNTIME_INF && (burst > quota ||
burst + quota > max_cfs_runtime))
return -EINVAL;
/*
* Prevent race between setting of cfs_rq->runtime_enabled and
* unthrottle_offline_cfs_rqs().
*/
cpus_read_lock();
mutex_lock(&cfs_constraints_mutex);
ret = __cfs_schedulable(tg, period, quota);
if (ret)
goto out_unlock;
runtime_enabled = quota != RUNTIME_INF;
runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
/*
* If we need to toggle cfs_bandwidth_used, off->on must occur
* before making related changes, and on->off must occur afterwards
*/
if (runtime_enabled && !runtime_was_enabled)
cfs_bandwidth_usage_inc();
raw_spin_lock_irq(&cfs_b->lock);
cfs_b->period = ns_to_ktime(period);
cfs_b->quota = quota;
cfs_b->burst = burst;
__refill_cfs_bandwidth_runtime(cfs_b);
/* Restart the period timer (if active) to handle new period expiry: */
if (runtime_enabled)
start_cfs_bandwidth(cfs_b);
raw_spin_unlock_irq(&cfs_b->lock);
for_each_online_cpu(i) {
struct cfs_rq *cfs_rq = tg->cfs_rq[i];
struct rq *rq = cfs_rq->rq;
struct rq_flags rf;
rq_lock_irq(rq, &rf);
cfs_rq->runtime_enabled = runtime_enabled;
cfs_rq->runtime_remaining = 0;
if (cfs_rq->throttled)
unthrottle_cfs_rq(cfs_rq);
rq_unlock_irq(rq, &rf);
}
if (runtime_was_enabled && !runtime_enabled)
cfs_bandwidth_usage_dec();
out_unlock:
mutex_unlock(&cfs_constraints_mutex);
cpus_read_unlock();
return ret;
}
static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
u64 quota, period, burst;
period = ktime_to_ns(tg->cfs_bandwidth.period);
burst = tg->cfs_bandwidth.burst;
if (cfs_quota_us < 0)
quota = RUNTIME_INF;
else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
quota = (u64)cfs_quota_us * NSEC_PER_USEC;
else
return -EINVAL;
return tg_set_cfs_bandwidth(tg, period, quota, burst);
}
static long tg_get_cfs_quota(struct task_group *tg)
{
u64 quota_us;
if (tg->cfs_bandwidth.quota == RUNTIME_INF)
return -1;
quota_us = tg->cfs_bandwidth.quota;
do_div(quota_us, NSEC_PER_USEC);
return quota_us;
}
static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
u64 quota, period, burst;
if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
return -EINVAL;
period = (u64)cfs_period_us * NSEC_PER_USEC;
quota = tg->cfs_bandwidth.quota;
burst = tg->cfs_bandwidth.burst;
return tg_set_cfs_bandwidth(tg, period, quota, burst);
}
static long tg_get_cfs_period(struct task_group *tg)
{
u64 cfs_period_us;
cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
do_div(cfs_period_us, NSEC_PER_USEC);
return cfs_period_us;
}
static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
{
u64 quota, period, burst;
if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
return -EINVAL;
burst = (u64)cfs_burst_us * NSEC_PER_USEC;
period = ktime_to_ns(tg->cfs_bandwidth.period);
quota = tg->cfs_bandwidth.quota;
return tg_set_cfs_bandwidth(tg, period, quota, burst);
}
static long tg_get_cfs_burst(struct task_group *tg)
{
u64 burst_us;
burst_us = tg->cfs_bandwidth.burst;
do_div(burst_us, NSEC_PER_USEC);
return burst_us;
}
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return tg_get_cfs_quota(css_tg(css));
}
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
struct cftype *cftype, s64 cfs_quota_us)
{
return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
}
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return tg_get_cfs_period(css_tg(css));
}
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
struct cftype *cftype, u64 cfs_period_us)
{
return tg_set_cfs_period(css_tg(css), cfs_period_us);
}
static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return tg_get_cfs_burst(css_tg(css));
}
static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
struct cftype *cftype, u64 cfs_burst_us)
{
return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
}
struct cfs_schedulable_data {
struct task_group *tg;
u64 period, quota;
};
/*
* normalize group quota/period to be quota/max_period
* note: units are usecs
*/
static u64 normalize_cfs_quota(struct task_group *tg,
struct cfs_schedulable_data *d)
{
u64 quota, period;
if (tg == d->tg) {
period = d->period;
quota = d->quota;
} else {
period = tg_get_cfs_period(tg);
quota = tg_get_cfs_quota(tg);
}
/* note: these should typically be equivalent */
if (quota == RUNTIME_INF || quota == -1)
return RUNTIME_INF;
return to_ratio(period, quota);
}
static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
struct cfs_schedulable_data *d = data;
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
s64 quota = 0, parent_quota = -1;
if (!tg->parent) {
quota = RUNTIME_INF;
} else {
struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
quota = normalize_cfs_quota(tg, d);
parent_quota = parent_b->hierarchical_quota;
/*
* Ensure max(child_quota) <= parent_quota. On cgroup2,
* always take the min. On cgroup1, only inherit when no
* limit is set:
*/
if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
quota = min(quota, parent_quota);
} else {
if (quota == RUNTIME_INF)
quota = parent_quota;
else if (parent_quota != RUNTIME_INF && quota > parent_quota)
return -EINVAL;
}
}
cfs_b->hierarchical_quota = quota;
return 0;
}
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
int ret;
struct cfs_schedulable_data data = {
.tg = tg,
.period = period,
.quota = quota,
};
if (quota != RUNTIME_INF) {
do_div(data.period, NSEC_PER_USEC);
do_div(data.quota, NSEC_PER_USEC);
}
rcu_read_lock();
ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
rcu_read_unlock();
return ret;
}
static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
{
struct task_group *tg = css_tg(seq_css(sf));
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
if (schedstat_enabled() && tg != &root_task_group) {
struct sched_statistics *stats;
u64 ws = 0;
int i;
for_each_possible_cpu(i) {
stats = __schedstats_from_se(tg->se[i]);
ws += schedstat_val(stats->wait_sum);
}
seq_printf(sf, "wait_sum %llu\n", ws);
}
seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
return 0;
}
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
struct cftype *cft, s64 val)
{
return sched_group_set_rt_runtime(css_tg(css), val);
}
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return sched_group_rt_runtime(css_tg(css));
}
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
struct cftype *cftype, u64 rt_period_us)
{
return sched_group_set_rt_period(css_tg(css), rt_period_us);
}
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return sched_group_rt_period(css_tg(css));
}
#endif /* CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_FAIR_GROUP_SCHED
static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return css_tg(css)->idle;
}
static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
struct cftype *cft, s64 idle)
{
return sched_group_set_idle(css_tg(css), idle);
}
#endif
static struct cftype cpu_legacy_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
{
.name = "shares",
.read_u64 = cpu_shares_read_u64,
.write_u64 = cpu_shares_write_u64,
},
{
.name = "idle",
.read_s64 = cpu_idle_read_s64,
.write_s64 = cpu_idle_write_s64,
},
#endif
#ifdef CONFIG_CFS_BANDWIDTH
{
.name = "cfs_quota_us",
.read_s64 = cpu_cfs_quota_read_s64,
.write_s64 = cpu_cfs_quota_write_s64,
},
{
.name = "cfs_period_us",
.read_u64 = cpu_cfs_period_read_u64,
.write_u64 = cpu_cfs_period_write_u64,
},
{
.name = "cfs_burst_us",
.read_u64 = cpu_cfs_burst_read_u64,
.write_u64 = cpu_cfs_burst_write_u64,
},
{
.name = "stat",
.seq_show = cpu_cfs_stat_show,
},
#endif
#ifdef CONFIG_RT_GROUP_SCHED
{
.name = "rt_runtime_us",
.read_s64 = cpu_rt_runtime_read,
.write_s64 = cpu_rt_runtime_write,
},
{
.name = "rt_period_us",
.read_u64 = cpu_rt_period_read_uint,
.write_u64 = cpu_rt_period_write_uint,
},
#endif
#ifdef CONFIG_UCLAMP_TASK_GROUP
{
.name = "uclamp.min",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = cpu_uclamp_min_show,
.write = cpu_uclamp_min_write,
},
{
.name = "uclamp.max",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = cpu_uclamp_max_show,
.write = cpu_uclamp_max_write,
},
#endif
{ } /* Terminate */
};
static int cpu_extra_stat_show(struct seq_file *sf,
struct cgroup_subsys_state *css)
{
#ifdef CONFIG_CFS_BANDWIDTH
{
struct task_group *tg = css_tg(css);
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
u64 throttled_usec, burst_usec;
throttled_usec = cfs_b->throttled_time;
do_div(throttled_usec, NSEC_PER_USEC);
burst_usec = cfs_b->burst_time;
do_div(burst_usec, NSEC_PER_USEC);
seq_printf(sf, "nr_periods %d\n"
"nr_throttled %d\n"
"throttled_usec %llu\n"
"nr_bursts %d\n"
"burst_usec %llu\n",
cfs_b->nr_periods, cfs_b->nr_throttled,
throttled_usec, cfs_b->nr_burst, burst_usec);
}
#endif
return 0;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct task_group *tg = css_tg(css);
u64 weight = scale_load_down(tg->shares);
return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
}
static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
struct cftype *cft, u64 weight)
{
/*
* cgroup weight knobs should use the common MIN, DFL and MAX
* values which are 1, 100 and 10000 respectively. While it loses
* a bit of range on both ends, it maps pretty well onto the shares
* value used by scheduler and the round-trip conversions preserve
* the original value over the entire range.
*/
if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
return -ERANGE;
weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
return sched_group_set_shares(css_tg(css), scale_load(weight));
}
static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
unsigned long weight = scale_load_down(css_tg(css)->shares);
int last_delta = INT_MAX;
int prio, delta;
/* find the closest nice value to the current weight */
for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
delta = abs(sched_prio_to_weight[prio] - weight);
if (delta >= last_delta)
break;
last_delta = delta;
}
return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
}
static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
struct cftype *cft, s64 nice)
{
unsigned long weight;
int idx;
if (nice < MIN_NICE || nice > MAX_NICE)
return -ERANGE;
idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
idx = array_index_nospec(idx, 40);
weight = sched_prio_to_weight[idx];
return sched_group_set_shares(css_tg(css), scale_load(weight));
}
#endif
static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
long period, long quota)
{
if (quota < 0)
seq_puts(sf, "max");
else
seq_printf(sf, "%ld", quota);
seq_printf(sf, " %ld\n", period);
}
/* caller should put the current value in *@periodp before calling */
static int __maybe_unused cpu_period_quota_parse(char *buf,
u64 *periodp, u64 *quotap)
{
char tok[21]; /* U64_MAX */
if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
return -EINVAL;
*periodp *= NSEC_PER_USEC;
if (sscanf(tok, "%llu", quotap))
*quotap *= NSEC_PER_USEC;
else if (!strcmp(tok, "max"))
*quotap = RUNTIME_INF;
else
return -EINVAL;
return 0;
}
#ifdef CONFIG_CFS_BANDWIDTH
static int cpu_max_show(struct seq_file *sf, void *v)
{
struct task_group *tg = css_tg(seq_css(sf));
cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
return 0;
}
static ssize_t cpu_max_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct task_group *tg = css_tg(of_css(of));
u64 period = tg_get_cfs_period(tg);
u64 burst = tg_get_cfs_burst(tg);
u64 quota;
int ret;
ret = cpu_period_quota_parse(buf, &period, &quota);
if (!ret)
ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
return ret ?: nbytes;
}
#endif
static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
{
.name = "weight",
.flags = CFTYPE_NOT_ON_ROOT,
.read_u64 = cpu_weight_read_u64,
.write_u64 = cpu_weight_write_u64,
},
{
.name = "weight.nice",
.flags = CFTYPE_NOT_ON_ROOT,
.read_s64 = cpu_weight_nice_read_s64,
.write_s64 = cpu_weight_nice_write_s64,
},
{
.name = "idle",
.flags = CFTYPE_NOT_ON_ROOT,
.read_s64 = cpu_idle_read_s64,
.write_s64 = cpu_idle_write_s64,
},
#endif
#ifdef CONFIG_CFS_BANDWIDTH
{
.name = "max",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = cpu_max_show,
.write = cpu_max_write,
},
{
.name = "max.burst",
.flags = CFTYPE_NOT_ON_ROOT,
.read_u64 = cpu_cfs_burst_read_u64,
.write_u64 = cpu_cfs_burst_write_u64,
},
#endif
#ifdef CONFIG_UCLAMP_TASK_GROUP
{
.name = "uclamp.min",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = cpu_uclamp_min_show,
.write = cpu_uclamp_min_write,
},
{
.name = "uclamp.max",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = cpu_uclamp_max_show,
.write = cpu_uclamp_max_write,
},
#endif
{ } /* terminate */
};
struct cgroup_subsys cpu_cgrp_subsys = {
.css_alloc = cpu_cgroup_css_alloc,
.css_online = cpu_cgroup_css_online,
.css_released = cpu_cgroup_css_released,
.css_free = cpu_cgroup_css_free,
.css_extra_stat_show = cpu_extra_stat_show,
#ifdef CONFIG_RT_GROUP_SCHED
.can_attach = cpu_cgroup_can_attach,
#endif
.attach = cpu_cgroup_attach,
.legacy_cftypes = cpu_legacy_files,
.dfl_cftypes = cpu_files,
.early_init = true,
.threaded = true,
};
#endif /* CONFIG_CGROUP_SCHED */
void dump_cpu_task(int cpu)
{
if (cpu == smp_processor_id() && in_hardirq()) {
struct pt_regs *regs;
regs = get_irq_regs();
if (regs) {
show_regs(regs);
return;
}
}
if (trigger_single_cpu_backtrace(cpu))
return;
pr_info("Task dump for CPU %d:\n", cpu);
sched_show_task(cpu_curr(cpu));
}
/*
* Nice levels are multiplicative, with a gentle 10% change for every
* nice level changed. I.e. when a CPU-bound task goes from nice 0 to
* nice 1, it will get ~10% less CPU time than another CPU-bound task
* that remained on nice 0.
*
* The "10% effect" is relative and cumulative: from _any_ nice level,
* if you go up 1 level, it's -10% CPU usage, if you go down 1 level
* it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
* If a task goes up by ~10% and another task goes down by ~10% then
* the relative distance between them is ~25%.)
*/
const int sched_prio_to_weight[40] = {
/* -20 */ 88761, 71755, 56483, 46273, 36291,
/* -15 */ 29154, 23254, 18705, 14949, 11916,
/* -10 */ 9548, 7620, 6100, 4904, 3906,
/* -5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,
};
/*
* Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
*
* In cases where the weight does not change often, we can use the
* precalculated inverse to speed up arithmetics by turning divisions
* into multiplications:
*/
const u32 sched_prio_to_wmult[40] = {
/* -20 */ 48388, 59856, 76040, 92818, 118348,
/* -15 */ 147320, 184698, 229616, 287308, 360437,
/* -10 */ 449829, 563644, 704093, 875809, 1099582,
/* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
/* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
/* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
/* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};
void call_trace_sched_update_nr_running(struct rq *rq, int count)
{
trace_sched_update_nr_running_tp(rq, count);
}
#ifdef CONFIG_SCHED_MM_CID
/*
* @cid_lock: Guarantee forward-progress of cid allocation.
*
* Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
* is only used when contention is detected by the lock-free allocation so
* forward progress can be guaranteed.
*/
DEFINE_RAW_SPINLOCK(cid_lock);
/*
* @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
*
* When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
* detected, it is set to 1 to ensure that all newly coming allocations are
* serialized by @cid_lock until the allocation which detected contention
* completes and sets @use_cid_lock back to 0. This guarantees forward progress
* of a cid allocation.
*/
int use_cid_lock;
/*
* mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
* concurrently with respect to the execution of the source runqueue context
* switch.
*
* There is one basic properties we want to guarantee here:
*
* (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
* used by a task. That would lead to concurrent allocation of the cid and
* userspace corruption.
*
* Provide this guarantee by introducing a Dekker memory ordering to guarantee
* that a pair of loads observe at least one of a pair of stores, which can be
* shown as:
*
* X = Y = 0
*
* w[X]=1 w[Y]=1
* MB MB
* r[Y]=y r[X]=x
*
* Which guarantees that x==0 && y==0 is impossible. But rather than using
* values 0 and 1, this algorithm cares about specific state transitions of the
* runqueue current task (as updated by the scheduler context switch), and the
* per-mm/cpu cid value.
*
* Let's introduce task (Y) which has task->mm == mm and task (N) which has
* task->mm != mm for the rest of the discussion. There are two scheduler state
* transitions on context switch we care about:
*
* (TSA) Store to rq->curr with transition from (N) to (Y)
*
* (TSB) Store to rq->curr with transition from (Y) to (N)
*
* On the remote-clear side, there is one transition we care about:
*
* (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
*
* There is also a transition to UNSET state which can be performed from all
* sides (scheduler, remote-clear). It is always performed with a cmpxchg which
* guarantees that only a single thread will succeed:
*
* (TMB) cmpxchg to *pcpu_cid to mark UNSET
*
* Just to be clear, what we do _not_ want to happen is a transition to UNSET
* when a thread is actively using the cid (property (1)).
*
* Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
*
* Scenario A) (TSA)+(TMA) (from next task perspective)
*
* CPU0 CPU1
*
* Context switch CS-1 Remote-clear
* - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
* (implied barrier after cmpxchg)
* - switch_mm_cid()
* - memory barrier (see switch_mm_cid()
* comment explaining how this barrier
* is combined with other scheduler
* barriers)
* - mm_cid_get (next)
* - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
*
* This Dekker ensures that either task (Y) is observed by the
* rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
* observed.
*
* If task (Y) store is observed by rcu_dereference(), it means that there is
* still an active task on the cpu. Remote-clear will therefore not transition
* to UNSET, which fulfills property (1).
*
* If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
* it will move its state to UNSET, which clears the percpu cid perhaps
* uselessly (which is not an issue for correctness). Because task (Y) is not
* observed, CPU1 can move ahead to set the state to UNSET. Because moving
* state to UNSET is done with a cmpxchg expecting that the old state has the
* LAZY flag set, only one thread will successfully UNSET.
*
* If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
* will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
* CPU1 will observe task (Y) and do nothing more, which is fine.
*
* What we are effectively preventing with this Dekker is a scenario where
* neither LAZY flag nor store (Y) are observed, which would fail property (1)
* because this would UNSET a cid which is actively used.
*/
void sched_mm_cid_migrate_from(struct task_struct *t)
{
t->migrate_from_cpu = task_cpu(t);
}
static
int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
struct task_struct *t,
struct mm_cid *src_pcpu_cid)
{
struct mm_struct *mm = t->mm;
struct task_struct *src_task;
int src_cid, last_mm_cid;
if (!mm)
return -1;
last_mm_cid = t->last_mm_cid;
/*
* If the migrated task has no last cid, or if the current
* task on src rq uses the cid, it means the source cid does not need
* to be moved to the destination cpu.
*/
if (last_mm_cid == -1)
return -1;
src_cid = READ_ONCE(src_pcpu_cid->cid);
if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
return -1;
/*
* If we observe an active task using the mm on this rq, it means we
* are not the last task to be migrated from this cpu for this mm, so
* there is no need to move src_cid to the destination cpu.
*/
rcu_read_lock();
src_task = rcu_dereference(src_rq->curr);
if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
rcu_read_unlock();
t->last_mm_cid = -1;
return -1;
}
rcu_read_unlock();
return src_cid;
}
static
int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
struct task_struct *t,
struct mm_cid *src_pcpu_cid,
int src_cid)
{
struct task_struct *src_task;
struct mm_struct *mm = t->mm;
int lazy_cid;
if (src_cid == -1)
return -1;
/*
* Attempt to clear the source cpu cid to move it to the destination
* cpu.
*/
lazy_cid = mm_cid_set_lazy_put(src_cid);
if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
return -1;
/*
* The implicit barrier after cmpxchg per-mm/cpu cid before loading
* rq->curr->mm matches the scheduler barrier in context_switch()
* between store to rq->curr and load of prev and next task's
* per-mm/cpu cid.
*
* The implicit barrier after cmpxchg per-mm/cpu cid before loading
* rq->curr->mm_cid_active matches the barrier in
* sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
* sched_mm_cid_after_execve() between store to t->mm_cid_active and
* load of per-mm/cpu cid.
*/
/*
* If we observe an active task using the mm on this rq after setting
* the lazy-put flag, this task will be responsible for transitioning
* from lazy-put flag set to MM_CID_UNSET.
*/
rcu_read_lock();
src_task = rcu_dereference(src_rq->curr);
if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
rcu_read_unlock();
/*
* We observed an active task for this mm, there is therefore
* no point in moving this cid to the destination cpu.
*/
t->last_mm_cid = -1;
return -1;
}
rcu_read_unlock();
/*
* The src_cid is unused, so it can be unset.
*/
if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
return -1;
return src_cid;
}
/*
* Migration to dst cpu. Called with dst_rq lock held.
* Interrupts are disabled, which keeps the window of cid ownership without the
* source rq lock held small.
*/
void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
{
struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
struct mm_struct *mm = t->mm;
int src_cid, dst_cid, src_cpu;
struct rq *src_rq;
lockdep_assert_rq_held(dst_rq);
if (!mm)
return;
src_cpu = t->migrate_from_cpu;
if (src_cpu == -1) {
t->last_mm_cid = -1;
return;
}
/*
* Move the src cid if the dst cid is unset. This keeps id
* allocation closest to 0 in cases where few threads migrate around
* many cpus.
*
* If destination cid is already set, we may have to just clear
* the src cid to ensure compactness in frequent migrations
* scenarios.
*
* It is not useful to clear the src cid when the number of threads is
* greater or equal to the number of allowed cpus, because user-space
* can expect that the number of allowed cids can reach the number of
* allowed cpus.
*/
dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
dst_cid = READ_ONCE(dst_pcpu_cid->cid);
if (!mm_cid_is_unset(dst_cid) &&
atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
return;
src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
src_rq = cpu_rq(src_cpu);
src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
if (src_cid == -1)
return;
src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
src_cid);
if (src_cid == -1)
return;
if (!mm_cid_is_unset(dst_cid)) {
__mm_cid_put(mm, src_cid);
return;
}
/* Move src_cid to dst cpu. */
mm_cid_snapshot_time(dst_rq, mm);
WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
}
static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct task_struct *t;
unsigned long flags;
int cid, lazy_cid;
cid = READ_ONCE(pcpu_cid->cid);
if (!mm_cid_is_valid(cid))
return;
/*
* Clear the cpu cid if it is set to keep cid allocation compact. If
* there happens to be other tasks left on the source cpu using this
* mm, the next task using this mm will reallocate its cid on context
* switch.
*/
lazy_cid = mm_cid_set_lazy_put(cid);
if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
return;
/*
* The implicit barrier after cmpxchg per-mm/cpu cid before loading
* rq->curr->mm matches the scheduler barrier in context_switch()
* between store to rq->curr and load of prev and next task's
* per-mm/cpu cid.
*
* The implicit barrier after cmpxchg per-mm/cpu cid before loading
* rq->curr->mm_cid_active matches the barrier in
* sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
* sched_mm_cid_after_execve() between store to t->mm_cid_active and
* load of per-mm/cpu cid.
*/
/*
* If we observe an active task using the mm on this rq after setting
* the lazy-put flag, that task will be responsible for transitioning
* from lazy-put flag set to MM_CID_UNSET.
*/
rcu_read_lock();
t = rcu_dereference(rq->curr);
if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
rcu_read_unlock();
return;
}
rcu_read_unlock();
/*
* The cid is unused, so it can be unset.
* Disable interrupts to keep the window of cid ownership without rq
* lock small.
*/
local_irq_save(flags);
if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
__mm_cid_put(mm, cid);
local_irq_restore(flags);
}
static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct mm_cid *pcpu_cid;
struct task_struct *curr;
u64 rq_clock;
/*
* rq->clock load is racy on 32-bit but one spurious clear once in a
* while is irrelevant.
*/
rq_clock = READ_ONCE(rq->clock);
pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
/*
* In order to take care of infrequently scheduled tasks, bump the time
* snapshot associated with this cid if an active task using the mm is
* observed on this rq.
*/
rcu_read_lock();
curr = rcu_dereference(rq->curr);
if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
WRITE_ONCE(pcpu_cid->time, rq_clock);
rcu_read_unlock();
return;
}
rcu_read_unlock();
if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
return;
sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
}
static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
int weight)
{
struct mm_cid *pcpu_cid;
int cid;
pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
cid = READ_ONCE(pcpu_cid->cid);
if (!mm_cid_is_valid(cid) || cid < weight)
return;
sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
}
static void task_mm_cid_work(struct callback_head *work)
{
unsigned long now = jiffies, old_scan, next_scan;
struct task_struct *t = current;
struct cpumask *cidmask;
struct mm_struct *mm;
int weight, cpu;
SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
work->next = work; /* Prevent double-add */
if (t->flags & PF_EXITING)
return;
mm = t->mm;
if (!mm)
return;
old_scan = READ_ONCE(mm->mm_cid_next_scan);
next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
if (!old_scan) {
unsigned long res;
res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
if (res != old_scan)
old_scan = res;
else
old_scan = next_scan;
}
if (time_before(now, old_scan))
return;
if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
return;
cidmask = mm_cidmask(mm);
/* Clear cids that were not recently used. */
for_each_possible_cpu(cpu)
sched_mm_cid_remote_clear_old(mm, cpu);
weight = cpumask_weight(cidmask);
/*
* Clear cids that are greater or equal to the cidmask weight to
* recompact it.
*/
for_each_possible_cpu(cpu)
sched_mm_cid_remote_clear_weight(mm, cpu, weight);
}
void init_sched_mm_cid(struct task_struct *t)
{
struct mm_struct *mm = t->mm;
int mm_users = 0;
if (mm) {
mm_users = atomic_read(&mm->mm_users);
if (mm_users == 1)
mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
}
t->cid_work.next = &t->cid_work; /* Protect against double add */
init_task_work(&t->cid_work, task_mm_cid_work);
}
void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
{
struct callback_head *work = &curr->cid_work;
unsigned long now = jiffies;
if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
work->next != work)
return;
if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
return;
task_work_add(curr, work, TWA_RESUME);
}
void sched_mm_cid_exit_signals(struct task_struct *t)
{
struct mm_struct *mm = t->mm;
struct rq_flags rf;
struct rq *rq;
if (!mm)
return;
preempt_disable();
rq = this_rq();
rq_lock_irqsave(rq, &rf);
preempt_enable_no_resched(); /* holding spinlock */
WRITE_ONCE(t->mm_cid_active, 0);
/*
* Store t->mm_cid_active before loading per-mm/cpu cid.
* Matches barrier in sched_mm_cid_remote_clear_old().
*/
smp_mb();
mm_cid_put(mm);
t->last_mm_cid = t->mm_cid = -1;
rq_unlock_irqrestore(rq, &rf);
}
void sched_mm_cid_before_execve(struct task_struct *t)
{
struct mm_struct *mm = t->mm;
struct rq_flags rf;
struct rq *rq;
if (!mm)
return;
preempt_disable();
rq = this_rq();
rq_lock_irqsave(rq, &rf);
preempt_enable_no_resched(); /* holding spinlock */
WRITE_ONCE(t->mm_cid_active, 0);
/*
* Store t->mm_cid_active before loading per-mm/cpu cid.
* Matches barrier in sched_mm_cid_remote_clear_old().
*/
smp_mb();
mm_cid_put(mm);
t->last_mm_cid = t->mm_cid = -1;
rq_unlock_irqrestore(rq, &rf);
}
void sched_mm_cid_after_execve(struct task_struct *t)
{
struct mm_struct *mm = t->mm;
struct rq_flags rf;
struct rq *rq;
if (!mm)
return;
preempt_disable();
rq = this_rq();
rq_lock_irqsave(rq, &rf);
preempt_enable_no_resched(); /* holding spinlock */
WRITE_ONCE(t->mm_cid_active, 1);
/*
* Store t->mm_cid_active before loading per-mm/cpu cid.
* Matches barrier in sched_mm_cid_remote_clear_old().
*/
smp_mb();
t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
rq_unlock_irqrestore(rq, &rf);
rseq_set_notify_resume(t);
}
void sched_mm_cid_fork(struct task_struct *t)
{
WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
t->mm_cid_active = 1;
}
#endif