linux-stable/kernel/sched/cpufreq_schedutil.c
Dietmar Eggemann 7d0583cf9e sched/fair, cpufreq: Introduce 'runnable boosting'
The responsiveness of the Per Entity Load Tracking (PELT) util_avg in
mobile devices is still considered too low for utilization changes
during task ramp-up.

In Android this manifests in the fact that the first frames of a UI
activity are very prone to be jankframes (a frame which doesn't meet
the required frame rendering time, e.g. 16ms@60Hz) since the CPU
frequency is normally low at this point and has to ramp up quickly.

The beginning of an UI activity is also characterized by the occurrence
of CPU contention, especially on little CPUs. Current little CPUs can
have an original CPU capacity of only ~ 150 which means that the actual
CPU capacity at lower frequency can even be much smaller.

Schedutil maps CPU util_avg into CPU frequency request via:

  util = effective_cpu_util(..., cpu_util_cfs(cpu), ...) ->
  util = map_util_perf(util) -> freq = map_util_freq(util, ...)

CPU contention for CFS tasks can be detected by 'CPU runnable > CPU
utililization' in cpu_util_cfs_boost() -> cpu_util(..., boost = 1).
Schedutil uses 'runnable boosting' by calling cpu_util_cfs_boost().

To be in sync with schedutil's CPU frequency selection, Energy Aware
Scheduling (EAS) also calls cpu_util(..., boost = 1) during max util
detection.

Moreover, 'runnable boosting' is also used in load-balance for busiest
CPU selection when the migration type is 'migrate_util', i.e. only at
sched domains which don't have the SD_SHARE_PKG_RESOURCES flag set.

Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230515115735.296329-3-dietmar.eggemann@arm.com
2023-06-05 21:13:44 +02:00

866 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* CPUFreq governor based on scheduler-provided CPU utilization data.
*
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*/
#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
struct sugov_tunables {
struct gov_attr_set attr_set;
unsigned int rate_limit_us;
};
struct sugov_policy {
struct cpufreq_policy *policy;
struct sugov_tunables *tunables;
struct list_head tunables_hook;
raw_spinlock_t update_lock;
u64 last_freq_update_time;
s64 freq_update_delay_ns;
unsigned int next_freq;
unsigned int cached_raw_freq;
/* The next fields are only needed if fast switch cannot be used: */
struct irq_work irq_work;
struct kthread_work work;
struct mutex work_lock;
struct kthread_worker worker;
struct task_struct *thread;
bool work_in_progress;
bool limits_changed;
bool need_freq_update;
};
struct sugov_cpu {
struct update_util_data update_util;
struct sugov_policy *sg_policy;
unsigned int cpu;
bool iowait_boost_pending;
unsigned int iowait_boost;
u64 last_update;
unsigned long util;
unsigned long bw_dl;
/* The field below is for single-CPU policies only: */
#ifdef CONFIG_NO_HZ_COMMON
unsigned long saved_idle_calls;
#endif
};
static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
/************************ Governor internals ***********************/
static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
{
s64 delta_ns;
/*
* Since cpufreq_update_util() is called with rq->lock held for
* the @target_cpu, our per-CPU data is fully serialized.
*
* However, drivers cannot in general deal with cross-CPU
* requests, so while get_next_freq() will work, our
* sugov_update_commit() call may not for the fast switching platforms.
*
* Hence stop here for remote requests if they aren't supported
* by the hardware, as calculating the frequency is pointless if
* we cannot in fact act on it.
*
* This is needed on the slow switching platforms too to prevent CPUs
* going offline from leaving stale IRQ work items behind.
*/
if (!cpufreq_this_cpu_can_update(sg_policy->policy))
return false;
if (unlikely(sg_policy->limits_changed)) {
sg_policy->limits_changed = false;
sg_policy->need_freq_update = true;
return true;
}
delta_ns = time - sg_policy->last_freq_update_time;
return delta_ns >= sg_policy->freq_update_delay_ns;
}
static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
if (sg_policy->need_freq_update)
sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
else if (sg_policy->next_freq == next_freq)
return false;
sg_policy->next_freq = next_freq;
sg_policy->last_freq_update_time = time;
return true;
}
static void sugov_deferred_update(struct sugov_policy *sg_policy)
{
if (!sg_policy->work_in_progress) {
sg_policy->work_in_progress = true;
irq_work_queue(&sg_policy->irq_work);
}
}
/**
* get_next_freq - Compute a new frequency for a given cpufreq policy.
* @sg_policy: schedutil policy object to compute the new frequency for.
* @util: Current CPU utilization.
* @max: CPU capacity.
*
* If the utilization is frequency-invariant, choose the new frequency to be
* proportional to it, that is
*
* next_freq = C * max_freq * util / max
*
* Otherwise, approximate the would-be frequency-invariant utilization by
* util_raw * (curr_freq / max_freq) which leads to
*
* next_freq = C * curr_freq * util_raw / max
*
* Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
*
* The lowest driver-supported frequency which is equal or greater than the raw
* next_freq (as calculated above) is returned, subject to policy min/max and
* cpufreq driver limitations.
*/
static unsigned int get_next_freq(struct sugov_policy *sg_policy,
unsigned long util, unsigned long max)
{
struct cpufreq_policy *policy = sg_policy->policy;
unsigned int freq = arch_scale_freq_invariant() ?
policy->cpuinfo.max_freq : policy->cur;
util = map_util_perf(util);
freq = map_util_freq(util, freq, max);
if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
return sg_policy->next_freq;
sg_policy->cached_raw_freq = freq;
return cpufreq_driver_resolve_freq(policy, freq);
}
static void sugov_get_util(struct sugov_cpu *sg_cpu)
{
unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
struct rq *rq = cpu_rq(sg_cpu->cpu);
sg_cpu->bw_dl = cpu_bw_dl(rq);
sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
FREQUENCY_UTIL, NULL);
}
/**
* sugov_iowait_reset() - Reset the IO boost status of a CPU.
* @sg_cpu: the sugov data for the CPU to boost
* @time: the update time from the caller
* @set_iowait_boost: true if an IO boost has been requested
*
* The IO wait boost of a task is disabled after a tick since the last update
* of a CPU. If a new IO wait boost is requested after more then a tick, then
* we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
* efficiency by ignoring sporadic wakeups from IO.
*/
static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
bool set_iowait_boost)
{
s64 delta_ns = time - sg_cpu->last_update;
/* Reset boost only if a tick has elapsed since last request */
if (delta_ns <= TICK_NSEC)
return false;
sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
sg_cpu->iowait_boost_pending = set_iowait_boost;
return true;
}
/**
* sugov_iowait_boost() - Updates the IO boost status of a CPU.
* @sg_cpu: the sugov data for the CPU to boost
* @time: the update time from the caller
* @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
*
* Each time a task wakes up after an IO operation, the CPU utilization can be
* boosted to a certain utilization which doubles at each "frequent and
* successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
* of the maximum OPP.
*
* To keep doubling, an IO boost has to be requested at least once per tick,
* otherwise we restart from the utilization of the minimum OPP.
*/
static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
unsigned int flags)
{
bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
/* Reset boost if the CPU appears to have been idle enough */
if (sg_cpu->iowait_boost &&
sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
return;
/* Boost only tasks waking up after IO */
if (!set_iowait_boost)
return;
/* Ensure boost doubles only one time at each request */
if (sg_cpu->iowait_boost_pending)
return;
sg_cpu->iowait_boost_pending = true;
/* Double the boost at each request */
if (sg_cpu->iowait_boost) {
sg_cpu->iowait_boost =
min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
return;
}
/* First wakeup after IO: start with minimum boost */
sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
}
/**
* sugov_iowait_apply() - Apply the IO boost to a CPU.
* @sg_cpu: the sugov data for the cpu to boost
* @time: the update time from the caller
* @max_cap: the max CPU capacity
*
* A CPU running a task which woken up after an IO operation can have its
* utilization boosted to speed up the completion of those IO operations.
* The IO boost value is increased each time a task wakes up from IO, in
* sugov_iowait_apply(), and it's instead decreased by this function,
* each time an increase has not been requested (!iowait_boost_pending).
*
* A CPU which also appears to have been idle for at least one tick has also
* its IO boost utilization reset.
*
* This mechanism is designed to boost high frequently IO waiting tasks, while
* being more conservative on tasks which does sporadic IO operations.
*/
static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
unsigned long max_cap)
{
unsigned long boost;
/* No boost currently required */
if (!sg_cpu->iowait_boost)
return;
/* Reset boost if the CPU appears to have been idle enough */
if (sugov_iowait_reset(sg_cpu, time, false))
return;
if (!sg_cpu->iowait_boost_pending) {
/*
* No boost pending; reduce the boost value.
*/
sg_cpu->iowait_boost >>= 1;
if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
sg_cpu->iowait_boost = 0;
return;
}
}
sg_cpu->iowait_boost_pending = false;
/*
* sg_cpu->util is already in capacity scale; convert iowait_boost
* into the same scale so we can compare.
*/
boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
if (sg_cpu->util < boost)
sg_cpu->util = boost;
}
#ifdef CONFIG_NO_HZ_COMMON
static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
{
unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
bool ret = idle_calls == sg_cpu->saved_idle_calls;
sg_cpu->saved_idle_calls = idle_calls;
return ret;
}
#else
static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
#endif /* CONFIG_NO_HZ_COMMON */
/*
* Make sugov_should_update_freq() ignore the rate limit when DL
* has increased the utilization.
*/
static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
{
if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
sg_cpu->sg_policy->limits_changed = true;
}
static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
u64 time, unsigned long max_cap,
unsigned int flags)
{
sugov_iowait_boost(sg_cpu, time, flags);
sg_cpu->last_update = time;
ignore_dl_rate_limit(sg_cpu);
if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
return false;
sugov_get_util(sg_cpu);
sugov_iowait_apply(sg_cpu, time, max_cap);
return true;
}
static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
unsigned int cached_freq = sg_policy->cached_raw_freq;
unsigned long max_cap;
unsigned int next_f;
max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
return;
next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
/*
* Do not reduce the frequency if the CPU has not been idle
* recently, as the reduction is likely to be premature then.
*
* Except when the rq is capped by uclamp_max.
*/
if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
next_f = sg_policy->next_freq;
/* Restore cached freq as next_freq has changed */
sg_policy->cached_raw_freq = cached_freq;
}
if (!sugov_update_next_freq(sg_policy, time, next_f))
return;
/*
* This code runs under rq->lock for the target CPU, so it won't run
* concurrently on two different CPUs for the same target and it is not
* necessary to acquire the lock in the fast switch case.
*/
if (sg_policy->policy->fast_switch_enabled) {
cpufreq_driver_fast_switch(sg_policy->policy, next_f);
} else {
raw_spin_lock(&sg_policy->update_lock);
sugov_deferred_update(sg_policy);
raw_spin_unlock(&sg_policy->update_lock);
}
}
static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
unsigned long prev_util = sg_cpu->util;
unsigned long max_cap;
/*
* Fall back to the "frequency" path if frequency invariance is not
* supported, because the direct mapping between the utilization and
* the performance levels depends on the frequency invariance.
*/
if (!arch_scale_freq_invariant()) {
sugov_update_single_freq(hook, time, flags);
return;
}
max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
return;
/*
* Do not reduce the target performance level if the CPU has not been
* idle recently, as the reduction is likely to be premature then.
*
* Except when the rq is capped by uclamp_max.
*/
if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
sg_cpu->util = prev_util;
cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
map_util_perf(sg_cpu->util), max_cap);
sg_cpu->sg_policy->last_freq_update_time = time;
}
static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
{
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
struct cpufreq_policy *policy = sg_policy->policy;
unsigned long util = 0, max_cap;
unsigned int j;
max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
for_each_cpu(j, policy->cpus) {
struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
sugov_get_util(j_sg_cpu);
sugov_iowait_apply(j_sg_cpu, time, max_cap);
util = max(j_sg_cpu->util, util);
}
return get_next_freq(sg_policy, util, max_cap);
}
static void
sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
unsigned int next_f;
raw_spin_lock(&sg_policy->update_lock);
sugov_iowait_boost(sg_cpu, time, flags);
sg_cpu->last_update = time;
ignore_dl_rate_limit(sg_cpu);
if (sugov_should_update_freq(sg_policy, time)) {
next_f = sugov_next_freq_shared(sg_cpu, time);
if (!sugov_update_next_freq(sg_policy, time, next_f))
goto unlock;
if (sg_policy->policy->fast_switch_enabled)
cpufreq_driver_fast_switch(sg_policy->policy, next_f);
else
sugov_deferred_update(sg_policy);
}
unlock:
raw_spin_unlock(&sg_policy->update_lock);
}
static void sugov_work(struct kthread_work *work)
{
struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
unsigned int freq;
unsigned long flags;
/*
* Hold sg_policy->update_lock shortly to handle the case where:
* in case sg_policy->next_freq is read here, and then updated by
* sugov_deferred_update() just before work_in_progress is set to false
* here, we may miss queueing the new update.
*
* Note: If a work was queued after the update_lock is released,
* sugov_work() will just be called again by kthread_work code; and the
* request will be proceed before the sugov thread sleeps.
*/
raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
freq = sg_policy->next_freq;
sg_policy->work_in_progress = false;
raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
mutex_lock(&sg_policy->work_lock);
__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
mutex_unlock(&sg_policy->work_lock);
}
static void sugov_irq_work(struct irq_work *irq_work)
{
struct sugov_policy *sg_policy;
sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
kthread_queue_work(&sg_policy->worker, &sg_policy->work);
}
/************************** sysfs interface ************************/
static struct sugov_tunables *global_tunables;
static DEFINE_MUTEX(global_tunables_lock);
static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
{
return container_of(attr_set, struct sugov_tunables, attr_set);
}
static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->rate_limit_us);
}
static ssize_t
rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int rate_limit_us;
if (kstrtouint(buf, 10, &rate_limit_us))
return -EINVAL;
tunables->rate_limit_us = rate_limit_us;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
return count;
}
static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
static struct attribute *sugov_attrs[] = {
&rate_limit_us.attr,
NULL
};
ATTRIBUTE_GROUPS(sugov);
static void sugov_tunables_free(struct kobject *kobj)
{
struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
kfree(to_sugov_tunables(attr_set));
}
static const struct kobj_type sugov_tunables_ktype = {
.default_groups = sugov_groups,
.sysfs_ops = &governor_sysfs_ops,
.release = &sugov_tunables_free,
};
/********************** cpufreq governor interface *********************/
struct cpufreq_governor schedutil_gov;
static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
if (!sg_policy)
return NULL;
sg_policy->policy = policy;
raw_spin_lock_init(&sg_policy->update_lock);
return sg_policy;
}
static void sugov_policy_free(struct sugov_policy *sg_policy)
{
kfree(sg_policy);
}
static int sugov_kthread_create(struct sugov_policy *sg_policy)
{
struct task_struct *thread;
struct sched_attr attr = {
.size = sizeof(struct sched_attr),
.sched_policy = SCHED_DEADLINE,
.sched_flags = SCHED_FLAG_SUGOV,
.sched_nice = 0,
.sched_priority = 0,
/*
* Fake (unused) bandwidth; workaround to "fix"
* priority inheritance.
*/
.sched_runtime = 1000000,
.sched_deadline = 10000000,
.sched_period = 10000000,
};
struct cpufreq_policy *policy = sg_policy->policy;
int ret;
/* kthread only required for slow path */
if (policy->fast_switch_enabled)
return 0;
kthread_init_work(&sg_policy->work, sugov_work);
kthread_init_worker(&sg_policy->worker);
thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
"sugov:%d",
cpumask_first(policy->related_cpus));
if (IS_ERR(thread)) {
pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
return PTR_ERR(thread);
}
ret = sched_setattr_nocheck(thread, &attr);
if (ret) {
kthread_stop(thread);
pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
return ret;
}
sg_policy->thread = thread;
kthread_bind_mask(thread, policy->related_cpus);
init_irq_work(&sg_policy->irq_work, sugov_irq_work);
mutex_init(&sg_policy->work_lock);
wake_up_process(thread);
return 0;
}
static void sugov_kthread_stop(struct sugov_policy *sg_policy)
{
/* kthread only required for slow path */
if (sg_policy->policy->fast_switch_enabled)
return;
kthread_flush_worker(&sg_policy->worker);
kthread_stop(sg_policy->thread);
mutex_destroy(&sg_policy->work_lock);
}
static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
{
struct sugov_tunables *tunables;
tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
if (tunables) {
gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
if (!have_governor_per_policy())
global_tunables = tunables;
}
return tunables;
}
static void sugov_clear_global_tunables(void)
{
if (!have_governor_per_policy())
global_tunables = NULL;
}
static int sugov_init(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
int ret = 0;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
cpufreq_enable_fast_switch(policy);
sg_policy = sugov_policy_alloc(policy);
if (!sg_policy) {
ret = -ENOMEM;
goto disable_fast_switch;
}
ret = sugov_kthread_create(sg_policy);
if (ret)
goto free_sg_policy;
mutex_lock(&global_tunables_lock);
if (global_tunables) {
if (WARN_ON(have_governor_per_policy())) {
ret = -EINVAL;
goto stop_kthread;
}
policy->governor_data = sg_policy;
sg_policy->tunables = global_tunables;
gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
goto out;
}
tunables = sugov_tunables_alloc(sg_policy);
if (!tunables) {
ret = -ENOMEM;
goto stop_kthread;
}
tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
policy->governor_data = sg_policy;
sg_policy->tunables = tunables;
ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
get_governor_parent_kobj(policy), "%s",
schedutil_gov.name);
if (ret)
goto fail;
out:
mutex_unlock(&global_tunables_lock);
return 0;
fail:
kobject_put(&tunables->attr_set.kobj);
policy->governor_data = NULL;
sugov_clear_global_tunables();
stop_kthread:
sugov_kthread_stop(sg_policy);
mutex_unlock(&global_tunables_lock);
free_sg_policy:
sugov_policy_free(sg_policy);
disable_fast_switch:
cpufreq_disable_fast_switch(policy);
pr_err("initialization failed (error %d)\n", ret);
return ret;
}
static void sugov_exit(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
struct sugov_tunables *tunables = sg_policy->tunables;
unsigned int count;
mutex_lock(&global_tunables_lock);
count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
policy->governor_data = NULL;
if (!count)
sugov_clear_global_tunables();
mutex_unlock(&global_tunables_lock);
sugov_kthread_stop(sg_policy);
sugov_policy_free(sg_policy);
cpufreq_disable_fast_switch(policy);
}
static int sugov_start(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
unsigned int cpu;
sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
sg_policy->last_freq_update_time = 0;
sg_policy->next_freq = 0;
sg_policy->work_in_progress = false;
sg_policy->limits_changed = false;
sg_policy->cached_raw_freq = 0;
sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
memset(sg_cpu, 0, sizeof(*sg_cpu));
sg_cpu->cpu = cpu;
sg_cpu->sg_policy = sg_policy;
}
if (policy_is_shared(policy))
uu = sugov_update_shared;
else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
uu = sugov_update_single_perf;
else
uu = sugov_update_single_freq;
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
}
return 0;
}
static void sugov_stop(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
for_each_cpu(cpu, policy->cpus)
cpufreq_remove_update_util_hook(cpu);
synchronize_rcu();
if (!policy->fast_switch_enabled) {
irq_work_sync(&sg_policy->irq_work);
kthread_cancel_work_sync(&sg_policy->work);
}
}
static void sugov_limits(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
if (!policy->fast_switch_enabled) {
mutex_lock(&sg_policy->work_lock);
cpufreq_policy_apply_limits(policy);
mutex_unlock(&sg_policy->work_lock);
}
sg_policy->limits_changed = true;
}
struct cpufreq_governor schedutil_gov = {
.name = "schedutil",
.owner = THIS_MODULE,
.flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
.init = sugov_init,
.exit = sugov_exit,
.start = sugov_start,
.stop = sugov_stop,
.limits = sugov_limits,
};
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
struct cpufreq_governor *cpufreq_default_governor(void)
{
return &schedutil_gov;
}
#endif
cpufreq_governor_init(schedutil_gov);
#ifdef CONFIG_ENERGY_MODEL
static void rebuild_sd_workfn(struct work_struct *work)
{
rebuild_sched_domains_energy();
}
static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
/*
* EAS shouldn't be attempted without sugov, so rebuild the sched_domains
* on governor changes to make sure the scheduler knows about it.
*/
void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
struct cpufreq_governor *old_gov)
{
if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
/*
* When called from the cpufreq_register_driver() path, the
* cpu_hotplug_lock is already held, so use a work item to
* avoid nested locking in rebuild_sched_domains().
*/
schedule_work(&rebuild_sd_work);
}
}
#endif