linux-stable/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
Dominik Brodowski 4b31e77455 [ACPI] Always set P-state on initialization
Otherwise a platform that supports ACPI based cpufreq
and boots up at lowest possible speed could stay there
forever.  This because the governor may request max speed,
but the code doesn't update if there is no change in
speed, and it assumed the initial state of max speed.

http://bugzilla.kernel.org/show_bug.cgi?id=4634

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2005-07-29 18:29:47 -04:00

544 lines
13 KiB
C

/*
* acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <asm/io.h>
#include <asm/delay.h>
#include <asm/uaccess.h>
#include <linux/acpi.h>
#include <acpi/processor.h>
#include "speedstep-est-common.h"
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
MODULE_LICENSE("GPL");
struct cpufreq_acpi_io {
struct acpi_processor_performance acpi_data;
struct cpufreq_frequency_table *freq_table;
unsigned int resume;
};
static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
static struct cpufreq_driver acpi_cpufreq_driver;
static int
acpi_processor_write_port(
u16 port,
u8 bit_width,
u32 value)
{
if (bit_width <= 8) {
outb(value, port);
} else if (bit_width <= 16) {
outw(value, port);
} else if (bit_width <= 32) {
outl(value, port);
} else {
return -ENODEV;
}
return 0;
}
static int
acpi_processor_read_port(
u16 port,
u8 bit_width,
u32 *ret)
{
*ret = 0;
if (bit_width <= 8) {
*ret = inb(port);
} else if (bit_width <= 16) {
*ret = inw(port);
} else if (bit_width <= 32) {
*ret = inl(port);
} else {
return -ENODEV;
}
return 0;
}
static int
acpi_processor_set_performance (
struct cpufreq_acpi_io *data,
unsigned int cpu,
int state)
{
u16 port = 0;
u8 bit_width = 0;
int ret = 0;
u32 value = 0;
int i = 0;
struct cpufreq_freqs cpufreq_freqs;
cpumask_t saved_mask;
int retval;
dprintk("acpi_processor_set_performance\n");
/*
* TBD: Use something other than set_cpus_allowed.
* As set_cpus_allowed is a bit racy,
* with any other set_cpus_allowed for this process.
*/
saved_mask = current->cpus_allowed;
set_cpus_allowed(current, cpumask_of_cpu(cpu));
if (smp_processor_id() != cpu) {
return (-EAGAIN);
}
if (state == data->acpi_data.state) {
if (unlikely(data->resume)) {
dprintk("Called after resume, resetting to P%d\n", state);
data->resume = 0;
} else {
dprintk("Already at target state (P%d)\n", state);
retval = 0;
goto migrate_end;
}
}
dprintk("Transitioning from P%d to P%d\n",
data->acpi_data.state, state);
/* cpufreq frequency struct */
cpufreq_freqs.cpu = cpu;
cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
cpufreq_freqs.new = data->freq_table[state].frequency;
/* notify cpufreq */
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
/*
* First we write the target state's 'control' value to the
* control_register.
*/
port = data->acpi_data.control_register.address;
bit_width = data->acpi_data.control_register.bit_width;
value = (u32) data->acpi_data.states[state].control;
dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
ret = acpi_processor_write_port(port, bit_width, value);
if (ret) {
dprintk("Invalid port width 0x%04x\n", bit_width);
retval = ret;
goto migrate_end;
}
/*
* Then we read the 'status_register' and compare the value with the
* target state's 'status' to make sure the transition was successful.
* Note that we'll poll for up to 1ms (100 cycles of 10us) before
* giving up.
*/
port = data->acpi_data.status_register.address;
bit_width = data->acpi_data.status_register.bit_width;
dprintk("Looking for 0x%08x from port 0x%04x\n",
(u32) data->acpi_data.states[state].status, port);
for (i=0; i<100; i++) {
ret = acpi_processor_read_port(port, bit_width, &value);
if (ret) {
dprintk("Invalid port width 0x%04x\n", bit_width);
retval = ret;
goto migrate_end;
}
if (value == (u32) data->acpi_data.states[state].status)
break;
udelay(10);
}
/* notify cpufreq */
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
if (value != (u32) data->acpi_data.states[state].status) {
unsigned int tmp = cpufreq_freqs.new;
cpufreq_freqs.new = cpufreq_freqs.old;
cpufreq_freqs.old = tmp;
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
retval = -ENODEV;
goto migrate_end;
}
dprintk("Transition successful after %d microseconds\n", i * 10);
data->acpi_data.state = state;
retval = 0;
migrate_end:
set_cpus_allowed(current, saved_mask);
return (retval);
}
static int
acpi_cpufreq_target (
struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
unsigned int next_state = 0;
unsigned int result = 0;
dprintk("acpi_cpufreq_setpolicy\n");
result = cpufreq_frequency_table_target(policy,
data->freq_table,
target_freq,
relation,
&next_state);
if (result)
return (result);
result = acpi_processor_set_performance (data, policy->cpu, next_state);
return (result);
}
static int
acpi_cpufreq_verify (
struct cpufreq_policy *policy)
{
unsigned int result = 0;
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
dprintk("acpi_cpufreq_verify\n");
result = cpufreq_frequency_table_verify(policy,
data->freq_table);
return (result);
}
static unsigned long
acpi_cpufreq_guess_freq (
struct cpufreq_acpi_io *data,
unsigned int cpu)
{
if (cpu_khz) {
/* search the closest match to cpu_khz */
unsigned int i;
unsigned long freq;
unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000;
for (i=0; i < (data->acpi_data.state_count - 1); i++) {
freq = freqn;
freqn = data->acpi_data.states[i+1].core_frequency * 1000;
if ((2 * cpu_khz) > (freqn + freq)) {
data->acpi_data.state = i;
return (freq);
}
}
data->acpi_data.state = data->acpi_data.state_count - 1;
return (freqn);
} else
/* assume CPU is at P0... */
data->acpi_data.state = 0;
return data->acpi_data.states[0].core_frequency * 1000;
}
/*
* acpi_processor_cpu_init_pdc_est - let BIOS know about the SMP capabilities
* of this driver
* @perf: processor-specific acpi_io_data struct
* @cpu: CPU being initialized
*
* To avoid issues with legacy OSes, some BIOSes require to be informed of
* the SMP capabilities of OS P-state driver. Here we set the bits in _PDC
* accordingly, for Enhanced Speedstep. Actual call to _PDC is done in
* driver/acpi/processor.c
*/
static void
acpi_processor_cpu_init_pdc_est(
struct acpi_processor_performance *perf,
unsigned int cpu,
struct acpi_object_list *obj_list
)
{
union acpi_object *obj;
u32 *buf;
struct cpuinfo_x86 *c = cpu_data + cpu;
dprintk("acpi_processor_cpu_init_pdc_est\n");
if (!cpu_has(c, X86_FEATURE_EST))
return;
/* Initialize pdc. It will be used later. */
if (!obj_list)
return;
if (!(obj_list->count && obj_list->pointer))
return;
obj = obj_list->pointer;
if ((obj->buffer.length == 12) && obj->buffer.pointer) {
buf = (u32 *)obj->buffer.pointer;
buf[0] = ACPI_PDC_REVISION_ID;
buf[1] = 1;
buf[2] = ACPI_PDC_EST_CAPABILITY_SMP;
perf->pdc = obj_list;
}
return;
}
/* CPU specific PDC initialization */
static void
acpi_processor_cpu_init_pdc(
struct acpi_processor_performance *perf,
unsigned int cpu,
struct acpi_object_list *obj_list
)
{
struct cpuinfo_x86 *c = cpu_data + cpu;
dprintk("acpi_processor_cpu_init_pdc\n");
perf->pdc = NULL;
if (cpu_has(c, X86_FEATURE_EST))
acpi_processor_cpu_init_pdc_est(perf, cpu, obj_list);
return;
}
static int
acpi_cpufreq_cpu_init (
struct cpufreq_policy *policy)
{
unsigned int i;
unsigned int cpu = policy->cpu;
struct cpufreq_acpi_io *data;
unsigned int result = 0;
union acpi_object arg0 = {ACPI_TYPE_BUFFER};
u32 arg0_buf[3];
struct acpi_object_list arg_list = {1, &arg0};
dprintk("acpi_cpufreq_cpu_init\n");
/* setup arg_list for _PDC settings */
arg0.buffer.length = 12;
arg0.buffer.pointer = (u8 *) arg0_buf;
data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
if (!data)
return (-ENOMEM);
memset(data, 0, sizeof(struct cpufreq_acpi_io));
acpi_io_data[cpu] = data;
acpi_processor_cpu_init_pdc(&data->acpi_data, cpu, &arg_list);
result = acpi_processor_register_performance(&data->acpi_data, cpu);
data->acpi_data.pdc = NULL;
if (result)
goto err_free;
if (is_const_loops_cpu(cpu)) {
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
}
/* capability check */
if (data->acpi_data.state_count <= 1) {
dprintk("No P-States\n");
result = -ENODEV;
goto err_unreg;
}
if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
(data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
dprintk("Unsupported address space [%d, %d]\n",
(u32) (data->acpi_data.control_register.space_id),
(u32) (data->acpi_data.status_register.space_id));
result = -ENODEV;
goto err_unreg;
}
/* alloc freq_table */
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL);
if (!data->freq_table) {
result = -ENOMEM;
goto err_unreg;
}
/* detect transition latency */
policy->cpuinfo.transition_latency = 0;
for (i=0; i<data->acpi_data.state_count; i++) {
if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000;
}
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
/* The current speed is unknown and not detectable by ACPI... */
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
/* table init */
for (i=0; i<=data->acpi_data.state_count; i++)
{
data->freq_table[i].index = i;
if (i<data->acpi_data.state_count)
data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000;
else
data->freq_table[i].frequency = CPUFREQ_TABLE_END;
}
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
if (result) {
goto err_freqfree;
}
/* notify BIOS that we exist */
acpi_processor_notify_smm(THIS_MODULE);
printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
cpu);
for (i = 0; i < data->acpi_data.state_count; i++)
dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
(i == data->acpi_data.state?'*':' '), i,
(u32) data->acpi_data.states[i].core_frequency,
(u32) data->acpi_data.states[i].power,
(u32) data->acpi_data.states[i].transition_latency);
cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
/*
* the first call to ->target() should result in us actually
* writing something to the appropriate registers.
*/
data->resume = 1;
return (result);
err_freqfree:
kfree(data->freq_table);
err_unreg:
acpi_processor_unregister_performance(&data->acpi_data, cpu);
err_free:
kfree(data);
acpi_io_data[cpu] = NULL;
return (result);
}
static int
acpi_cpufreq_cpu_exit (
struct cpufreq_policy *policy)
{
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
dprintk("acpi_cpufreq_cpu_exit\n");
if (data) {
cpufreq_frequency_table_put_attr(policy->cpu);
acpi_io_data[policy->cpu] = NULL;
acpi_processor_unregister_performance(&data->acpi_data, policy->cpu);
kfree(data);
}
return (0);
}
static int
acpi_cpufreq_resume (
struct cpufreq_policy *policy)
{
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
dprintk("acpi_cpufreq_resume\n");
data->resume = 1;
return (0);
}
static struct freq_attr* acpi_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static struct cpufreq_driver acpi_cpufreq_driver = {
.verify = acpi_cpufreq_verify,
.target = acpi_cpufreq_target,
.init = acpi_cpufreq_cpu_init,
.exit = acpi_cpufreq_cpu_exit,
.resume = acpi_cpufreq_resume,
.name = "acpi-cpufreq",
.owner = THIS_MODULE,
.attr = acpi_cpufreq_attr,
};
static int __init
acpi_cpufreq_init (void)
{
int result = 0;
dprintk("acpi_cpufreq_init\n");
result = cpufreq_register_driver(&acpi_cpufreq_driver);
return (result);
}
static void __exit
acpi_cpufreq_exit (void)
{
dprintk("acpi_cpufreq_exit\n");
cpufreq_unregister_driver(&acpi_cpufreq_driver);
return;
}
late_initcall(acpi_cpufreq_init);
module_exit(acpi_cpufreq_exit);
MODULE_ALIAS("acpi");