linux-stable/drivers/base/power/sysfs.c
Greg Kroah-Hartman 5de363b66a drivers: base: power: add proper SPDX identifiers on files that did not have them.
There were a few files in the driver core power code that did not have
SPDX identifiers on them, so fix that up.  At the same time, remove the
"free form" text that specified the license of the file, as that is
impossible for any tool to properly parse.

Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-04 20:03:40 +02:00

736 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* sysfs entries for device PM */
#include <linux/device.h>
#include <linux/string.h>
#include <linux/export.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/atomic.h>
#include <linux/jiffies.h>
#include "power.h"
/*
* control - Report/change current runtime PM setting of the device
*
* Runtime power management of a device can be blocked with the help of
* this attribute. All devices have one of the following two values for
* the power/control file:
*
* + "auto\n" to allow the device to be power managed at run time;
* + "on\n" to prevent the device from being power managed at run time;
*
* The default for all devices is "auto", which means that devices may be
* subject to automatic power management, depending on their drivers.
* Changing this attribute to "on" prevents the driver from power managing
* the device at run time. Doing that while the device is suspended causes
* it to be woken up.
*
* wakeup - Report/change current wakeup option for device
*
* Some devices support "wakeup" events, which are hardware signals
* used to activate devices from suspended or low power states. Such
* devices have one of three values for the sysfs power/wakeup file:
*
* + "enabled\n" to issue the events;
* + "disabled\n" not to do so; or
* + "\n" for temporary or permanent inability to issue wakeup.
*
* (For example, unconfigured USB devices can't issue wakeups.)
*
* Familiar examples of devices that can issue wakeup events include
* keyboards and mice (both PS2 and USB styles), power buttons, modems,
* "Wake-On-LAN" Ethernet links, GPIO lines, and more. Some events
* will wake the entire system from a suspend state; others may just
* wake up the device (if the system as a whole is already active).
* Some wakeup events use normal IRQ lines; other use special out
* of band signaling.
*
* It is the responsibility of device drivers to enable (or disable)
* wakeup signaling as part of changing device power states, respecting
* the policy choices provided through the driver model.
*
* Devices may not be able to generate wakeup events from all power
* states. Also, the events may be ignored in some configurations;
* for example, they might need help from other devices that aren't
* active, or which may have wakeup disabled. Some drivers rely on
* wakeup events internally (unless they are disabled), keeping
* their hardware in low power modes whenever they're unused. This
* saves runtime power, without requiring system-wide sleep states.
*
* async - Report/change current async suspend setting for the device
*
* Asynchronous suspend and resume of the device during system-wide power
* state transitions can be enabled by writing "enabled" to this file.
* Analogously, if "disabled" is written to this file, the device will be
* suspended and resumed synchronously.
*
* All devices have one of the following two values for power/async:
*
* + "enabled\n" to permit the asynchronous suspend/resume of the device;
* + "disabled\n" to forbid it;
*
* NOTE: It generally is unsafe to permit the asynchronous suspend/resume
* of a device unless it is certain that all of the PM dependencies of the
* device are known to the PM core. However, for some devices this
* attribute is set to "enabled" by bus type code or device drivers and in
* that cases it should be safe to leave the default value.
*
* autosuspend_delay_ms - Report/change a device's autosuspend_delay value
*
* Some drivers don't want to carry out a runtime suspend as soon as a
* device becomes idle; they want it always to remain idle for some period
* of time before suspending it. This period is the autosuspend_delay
* value (expressed in milliseconds) and it can be controlled by the user.
* If the value is negative then the device will never be runtime
* suspended.
*
* NOTE: The autosuspend_delay_ms attribute and the autosuspend_delay
* value are used only if the driver calls pm_runtime_use_autosuspend().
*
* wakeup_count - Report the number of wakeup events related to the device
*/
const char power_group_name[] = "power";
EXPORT_SYMBOL_GPL(power_group_name);
static const char ctrl_auto[] = "auto";
static const char ctrl_on[] = "on";
static ssize_t control_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%s\n",
dev->power.runtime_auto ? ctrl_auto : ctrl_on);
}
static ssize_t control_store(struct device * dev, struct device_attribute *attr,
const char * buf, size_t n)
{
device_lock(dev);
if (sysfs_streq(buf, ctrl_auto))
pm_runtime_allow(dev);
else if (sysfs_streq(buf, ctrl_on))
pm_runtime_forbid(dev);
else
n = -EINVAL;
device_unlock(dev);
return n;
}
static DEVICE_ATTR_RW(control);
static ssize_t runtime_active_time_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
u64 tmp = pm_runtime_active_time(dev);
do_div(tmp, NSEC_PER_MSEC);
ret = sprintf(buf, "%llu\n", tmp);
return ret;
}
static DEVICE_ATTR_RO(runtime_active_time);
static ssize_t runtime_suspended_time_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
u64 tmp = pm_runtime_suspended_time(dev);
do_div(tmp, NSEC_PER_MSEC);
ret = sprintf(buf, "%llu\n", tmp);
return ret;
}
static DEVICE_ATTR_RO(runtime_suspended_time);
static ssize_t runtime_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const char *p;
if (dev->power.runtime_error) {
p = "error\n";
} else if (dev->power.disable_depth) {
p = "unsupported\n";
} else {
switch (dev->power.runtime_status) {
case RPM_SUSPENDED:
p = "suspended\n";
break;
case RPM_SUSPENDING:
p = "suspending\n";
break;
case RPM_RESUMING:
p = "resuming\n";
break;
case RPM_ACTIVE:
p = "active\n";
break;
default:
return -EIO;
}
}
return sprintf(buf, p);
}
static DEVICE_ATTR_RO(runtime_status);
static ssize_t autosuspend_delay_ms_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (!dev->power.use_autosuspend)
return -EIO;
return sprintf(buf, "%d\n", dev->power.autosuspend_delay);
}
static ssize_t autosuspend_delay_ms_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t n)
{
long delay;
if (!dev->power.use_autosuspend)
return -EIO;
if (kstrtol(buf, 10, &delay) != 0 || delay != (int) delay)
return -EINVAL;
device_lock(dev);
pm_runtime_set_autosuspend_delay(dev, delay);
device_unlock(dev);
return n;
}
static DEVICE_ATTR_RW(autosuspend_delay_ms);
static ssize_t pm_qos_resume_latency_us_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
s32 value = dev_pm_qos_requested_resume_latency(dev);
if (value == 0)
return sprintf(buf, "n/a\n");
if (value == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT)
value = 0;
return sprintf(buf, "%d\n", value);
}
static ssize_t pm_qos_resume_latency_us_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t n)
{
s32 value;
int ret;
if (!kstrtos32(buf, 0, &value)) {
/*
* Prevent users from writing negative or "no constraint" values
* directly.
*/
if (value < 0 || value == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT)
return -EINVAL;
if (value == 0)
value = PM_QOS_RESUME_LATENCY_NO_CONSTRAINT;
} else if (sysfs_streq(buf, "n/a")) {
value = 0;
} else {
return -EINVAL;
}
ret = dev_pm_qos_update_request(dev->power.qos->resume_latency_req,
value);
return ret < 0 ? ret : n;
}
static DEVICE_ATTR_RW(pm_qos_resume_latency_us);
static ssize_t pm_qos_latency_tolerance_us_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
s32 value = dev_pm_qos_get_user_latency_tolerance(dev);
if (value < 0)
return sprintf(buf, "auto\n");
if (value == PM_QOS_LATENCY_ANY)
return sprintf(buf, "any\n");
return sprintf(buf, "%d\n", value);
}
static ssize_t pm_qos_latency_tolerance_us_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t n)
{
s32 value;
int ret;
if (kstrtos32(buf, 0, &value) == 0) {
/* Users can't write negative values directly */
if (value < 0)
return -EINVAL;
} else {
if (sysfs_streq(buf, "auto"))
value = PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT;
else if (sysfs_streq(buf, "any"))
value = PM_QOS_LATENCY_ANY;
else
return -EINVAL;
}
ret = dev_pm_qos_update_user_latency_tolerance(dev, value);
return ret < 0 ? ret : n;
}
static DEVICE_ATTR_RW(pm_qos_latency_tolerance_us);
static ssize_t pm_qos_no_power_off_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", !!(dev_pm_qos_requested_flags(dev)
& PM_QOS_FLAG_NO_POWER_OFF));
}
static ssize_t pm_qos_no_power_off_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t n)
{
int ret;
if (kstrtoint(buf, 0, &ret))
return -EINVAL;
if (ret != 0 && ret != 1)
return -EINVAL;
ret = dev_pm_qos_update_flags(dev, PM_QOS_FLAG_NO_POWER_OFF, ret);
return ret < 0 ? ret : n;
}
static DEVICE_ATTR_RW(pm_qos_no_power_off);
#ifdef CONFIG_PM_SLEEP
static const char _enabled[] = "enabled";
static const char _disabled[] = "disabled";
static ssize_t wakeup_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%s\n", device_can_wakeup(dev)
? (device_may_wakeup(dev) ? _enabled : _disabled)
: "");
}
static ssize_t wakeup_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t n)
{
if (!device_can_wakeup(dev))
return -EINVAL;
if (sysfs_streq(buf, _enabled))
device_set_wakeup_enable(dev, 1);
else if (sysfs_streq(buf, _disabled))
device_set_wakeup_enable(dev, 0);
else
return -EINVAL;
return n;
}
static DEVICE_ATTR_RW(wakeup);
static ssize_t wakeup_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long count = 0;
bool enabled = false;
spin_lock_irq(&dev->power.lock);
if (dev->power.wakeup) {
count = dev->power.wakeup->wakeup_count;
enabled = true;
}
spin_unlock_irq(&dev->power.lock);
return enabled ? sprintf(buf, "%lu\n", count) : sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(wakeup_count);
static ssize_t wakeup_active_count_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long count = 0;
bool enabled = false;
spin_lock_irq(&dev->power.lock);
if (dev->power.wakeup) {
count = dev->power.wakeup->active_count;
enabled = true;
}
spin_unlock_irq(&dev->power.lock);
return enabled ? sprintf(buf, "%lu\n", count) : sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(wakeup_active_count);
static ssize_t wakeup_abort_count_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long count = 0;
bool enabled = false;
spin_lock_irq(&dev->power.lock);
if (dev->power.wakeup) {
count = dev->power.wakeup->wakeup_count;
enabled = true;
}
spin_unlock_irq(&dev->power.lock);
return enabled ? sprintf(buf, "%lu\n", count) : sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(wakeup_abort_count);
static ssize_t wakeup_expire_count_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long count = 0;
bool enabled = false;
spin_lock_irq(&dev->power.lock);
if (dev->power.wakeup) {
count = dev->power.wakeup->expire_count;
enabled = true;
}
spin_unlock_irq(&dev->power.lock);
return enabled ? sprintf(buf, "%lu\n", count) : sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(wakeup_expire_count);
static ssize_t wakeup_active_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned int active = 0;
bool enabled = false;
spin_lock_irq(&dev->power.lock);
if (dev->power.wakeup) {
active = dev->power.wakeup->active;
enabled = true;
}
spin_unlock_irq(&dev->power.lock);
return enabled ? sprintf(buf, "%u\n", active) : sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(wakeup_active);
static ssize_t wakeup_total_time_ms_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
s64 msec = 0;
bool enabled = false;
spin_lock_irq(&dev->power.lock);
if (dev->power.wakeup) {
msec = ktime_to_ms(dev->power.wakeup->total_time);
enabled = true;
}
spin_unlock_irq(&dev->power.lock);
return enabled ? sprintf(buf, "%lld\n", msec) : sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(wakeup_total_time_ms);
static ssize_t wakeup_max_time_ms_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
s64 msec = 0;
bool enabled = false;
spin_lock_irq(&dev->power.lock);
if (dev->power.wakeup) {
msec = ktime_to_ms(dev->power.wakeup->max_time);
enabled = true;
}
spin_unlock_irq(&dev->power.lock);
return enabled ? sprintf(buf, "%lld\n", msec) : sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(wakeup_max_time_ms);
static ssize_t wakeup_last_time_ms_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
s64 msec = 0;
bool enabled = false;
spin_lock_irq(&dev->power.lock);
if (dev->power.wakeup) {
msec = ktime_to_ms(dev->power.wakeup->last_time);
enabled = true;
}
spin_unlock_irq(&dev->power.lock);
return enabled ? sprintf(buf, "%lld\n", msec) : sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(wakeup_last_time_ms);
#ifdef CONFIG_PM_AUTOSLEEP
static ssize_t wakeup_prevent_sleep_time_ms_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
s64 msec = 0;
bool enabled = false;
spin_lock_irq(&dev->power.lock);
if (dev->power.wakeup) {
msec = ktime_to_ms(dev->power.wakeup->prevent_sleep_time);
enabled = true;
}
spin_unlock_irq(&dev->power.lock);
return enabled ? sprintf(buf, "%lld\n", msec) : sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(wakeup_prevent_sleep_time_ms);
#endif /* CONFIG_PM_AUTOSLEEP */
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM_ADVANCED_DEBUG
static ssize_t runtime_usage_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", atomic_read(&dev->power.usage_count));
}
static DEVICE_ATTR_RO(runtime_usage);
static ssize_t runtime_active_kids_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", dev->power.ignore_children ?
0 : atomic_read(&dev->power.child_count));
}
static DEVICE_ATTR_RO(runtime_active_kids);
static ssize_t runtime_enabled_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (dev->power.disable_depth && (dev->power.runtime_auto == false))
return sprintf(buf, "disabled & forbidden\n");
if (dev->power.disable_depth)
return sprintf(buf, "disabled\n");
if (dev->power.runtime_auto == false)
return sprintf(buf, "forbidden\n");
return sprintf(buf, "enabled\n");
}
static DEVICE_ATTR_RO(runtime_enabled);
#ifdef CONFIG_PM_SLEEP
static ssize_t async_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%s\n",
device_async_suspend_enabled(dev) ?
_enabled : _disabled);
}
static ssize_t async_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t n)
{
if (sysfs_streq(buf, _enabled))
device_enable_async_suspend(dev);
else if (sysfs_streq(buf, _disabled))
device_disable_async_suspend(dev);
else
return -EINVAL;
return n;
}
static DEVICE_ATTR_RW(async);
#endif /* CONFIG_PM_SLEEP */
#endif /* CONFIG_PM_ADVANCED_DEBUG */
static struct attribute *power_attrs[] = {
#ifdef CONFIG_PM_ADVANCED_DEBUG
#ifdef CONFIG_PM_SLEEP
&dev_attr_async.attr,
#endif
&dev_attr_runtime_status.attr,
&dev_attr_runtime_usage.attr,
&dev_attr_runtime_active_kids.attr,
&dev_attr_runtime_enabled.attr,
#endif /* CONFIG_PM_ADVANCED_DEBUG */
NULL,
};
static const struct attribute_group pm_attr_group = {
.name = power_group_name,
.attrs = power_attrs,
};
static struct attribute *wakeup_attrs[] = {
#ifdef CONFIG_PM_SLEEP
&dev_attr_wakeup.attr,
&dev_attr_wakeup_count.attr,
&dev_attr_wakeup_active_count.attr,
&dev_attr_wakeup_abort_count.attr,
&dev_attr_wakeup_expire_count.attr,
&dev_attr_wakeup_active.attr,
&dev_attr_wakeup_total_time_ms.attr,
&dev_attr_wakeup_max_time_ms.attr,
&dev_attr_wakeup_last_time_ms.attr,
#ifdef CONFIG_PM_AUTOSLEEP
&dev_attr_wakeup_prevent_sleep_time_ms.attr,
#endif
#endif
NULL,
};
static const struct attribute_group pm_wakeup_attr_group = {
.name = power_group_name,
.attrs = wakeup_attrs,
};
static struct attribute *runtime_attrs[] = {
#ifndef CONFIG_PM_ADVANCED_DEBUG
&dev_attr_runtime_status.attr,
#endif
&dev_attr_control.attr,
&dev_attr_runtime_suspended_time.attr,
&dev_attr_runtime_active_time.attr,
&dev_attr_autosuspend_delay_ms.attr,
NULL,
};
static const struct attribute_group pm_runtime_attr_group = {
.name = power_group_name,
.attrs = runtime_attrs,
};
static struct attribute *pm_qos_resume_latency_attrs[] = {
&dev_attr_pm_qos_resume_latency_us.attr,
NULL,
};
static const struct attribute_group pm_qos_resume_latency_attr_group = {
.name = power_group_name,
.attrs = pm_qos_resume_latency_attrs,
};
static struct attribute *pm_qos_latency_tolerance_attrs[] = {
&dev_attr_pm_qos_latency_tolerance_us.attr,
NULL,
};
static const struct attribute_group pm_qos_latency_tolerance_attr_group = {
.name = power_group_name,
.attrs = pm_qos_latency_tolerance_attrs,
};
static struct attribute *pm_qos_flags_attrs[] = {
&dev_attr_pm_qos_no_power_off.attr,
NULL,
};
static const struct attribute_group pm_qos_flags_attr_group = {
.name = power_group_name,
.attrs = pm_qos_flags_attrs,
};
int dpm_sysfs_add(struct device *dev)
{
int rc;
/* No need to create PM sysfs if explicitly disabled. */
if (device_pm_not_required(dev))
return 0;
rc = sysfs_create_group(&dev->kobj, &pm_attr_group);
if (rc)
return rc;
if (pm_runtime_callbacks_present(dev)) {
rc = sysfs_merge_group(&dev->kobj, &pm_runtime_attr_group);
if (rc)
goto err_out;
}
if (device_can_wakeup(dev)) {
rc = sysfs_merge_group(&dev->kobj, &pm_wakeup_attr_group);
if (rc)
goto err_runtime;
}
if (dev->power.set_latency_tolerance) {
rc = sysfs_merge_group(&dev->kobj,
&pm_qos_latency_tolerance_attr_group);
if (rc)
goto err_wakeup;
}
return 0;
err_wakeup:
sysfs_unmerge_group(&dev->kobj, &pm_wakeup_attr_group);
err_runtime:
sysfs_unmerge_group(&dev->kobj, &pm_runtime_attr_group);
err_out:
sysfs_remove_group(&dev->kobj, &pm_attr_group);
return rc;
}
int wakeup_sysfs_add(struct device *dev)
{
return sysfs_merge_group(&dev->kobj, &pm_wakeup_attr_group);
}
void wakeup_sysfs_remove(struct device *dev)
{
sysfs_unmerge_group(&dev->kobj, &pm_wakeup_attr_group);
}
int pm_qos_sysfs_add_resume_latency(struct device *dev)
{
return sysfs_merge_group(&dev->kobj, &pm_qos_resume_latency_attr_group);
}
void pm_qos_sysfs_remove_resume_latency(struct device *dev)
{
sysfs_unmerge_group(&dev->kobj, &pm_qos_resume_latency_attr_group);
}
int pm_qos_sysfs_add_flags(struct device *dev)
{
return sysfs_merge_group(&dev->kobj, &pm_qos_flags_attr_group);
}
void pm_qos_sysfs_remove_flags(struct device *dev)
{
sysfs_unmerge_group(&dev->kobj, &pm_qos_flags_attr_group);
}
int pm_qos_sysfs_add_latency_tolerance(struct device *dev)
{
return sysfs_merge_group(&dev->kobj,
&pm_qos_latency_tolerance_attr_group);
}
void pm_qos_sysfs_remove_latency_tolerance(struct device *dev)
{
sysfs_unmerge_group(&dev->kobj, &pm_qos_latency_tolerance_attr_group);
}
void rpm_sysfs_remove(struct device *dev)
{
sysfs_unmerge_group(&dev->kobj, &pm_runtime_attr_group);
}
void dpm_sysfs_remove(struct device *dev)
{
if (device_pm_not_required(dev))
return;
sysfs_unmerge_group(&dev->kobj, &pm_qos_latency_tolerance_attr_group);
dev_pm_qos_constraints_destroy(dev);
rpm_sysfs_remove(dev);
sysfs_unmerge_group(&dev->kobj, &pm_wakeup_attr_group);
sysfs_remove_group(&dev->kobj, &pm_attr_group);
}