mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-31 16:38:12 +00:00
66a27abac3
- Add AT_HWCAP3 and AT_HWCAP4 aux vector entries for future use by glibc. - Add support for recognising the Power11 architected and raw PVRs. - Add support for nr_cpus=n on the command line where the boot CPU is >= n. - Add ppcxx_allmodconfig targets for all 32-bit sub-arches. - Other small features, cleanups and fixes. Thanks to: Akanksha J N, Brian King, Christophe Leroy, Dawei Li, Geoff Levand, Greg Kroah-Hartman, Jan-Benedict Glaw, Kajol Jain, Kunwu Chan, Li zeming, Madhavan Srinivasan, Masahiro Yamada, Nathan Chancellor, Nicholas Piggin, Peter Bergner, Qiheng Lin, Randy Dunlap, Ricardo B. Marliere, Rob Herring, Sathvika Vasireddy, Shrikanth Hegde, Uwe Kleine-König, Vaibhav Jain, Wen Xiong. -----BEGIN PGP SIGNATURE----- iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAmX01vgTHG1wZUBlbGxl cm1hbi5pZC5hdQAKCRBR6+o8yOGlgJ4bEACVsxXXjbjl+WKgWNjHsM7sVwUX/sSV z43iVycLPXDqochSkkgKjyIEFowaWhjgWVHFHmUXWxB5FjjFEEoH4FPo3VB0IY48 VoSFT6PhzqXDrGmt2fWsJ+k6zUyJZa8pNS38DHg1yuuYDAa0KWxd3E/x/r0qzsbr vcas1uWcDWgjoUDMBuJpyx0sYTl6+mR9HlZuM4+aNQdzhTFU/jK69hAN0RFvryes K2/fLgI0fgLZpQDogCn4HV1/4uixi1eEFlVNXkwvMYDpQVo2FqiBaWLF0hNLWNCk kvm/fYIJhdFoNlp38jVKv0KJnBhW7aAs3prF+8B3YL2B23rLnvA6ZLZKHcdBAeLb 8PJMRrbAbmVxOnVSAG0fgU+0dEdkJQ+0ABqa+usMOV7xIPg9uIui1YrKT1KVq6Fs KyGHM5EQuBC/P6bTsKO6X+1beY2QIfwWxaIkoo8pj6d0WU69qU4u+LzQiDO4XR0L UQQguB1Qo8yaip3rHXhuv0hlnMNVAVye56Zw63uq1MWGkewRKSkY91Ms02L+pXpF r6+96xoFB0ulKZFnyxyBdkj2iC0426fHtTiiJFfQ4R1fiibPKtAx9P59WYnqymVh QsSYqlgC2/jWzRgqJTweLp/XQK8fWqmFkNmCGDN1N9Sij9Xjx/8aZb5dvwJkSBnK rZ4ObxBoaCPbPA== =K9Ok -----END PGP SIGNATURE----- Merge tag 'powerpc-6.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: - Add AT_HWCAP3 and AT_HWCAP4 aux vector entries for future use by glibc - Add support for recognising the Power11 architected and raw PVRs - Add support for nr_cpus=n on the command line where the boot CPU is >= n - Add ppcxx_allmodconfig targets for all 32-bit sub-arches - Other small features, cleanups and fixes Thanks to Akanksha J N, Brian King, Christophe Leroy, Dawei Li, Geoff Levand, Greg Kroah-Hartman, Jan-Benedict Glaw, Kajol Jain, Kunwu Chan, Li zeming, Madhavan Srinivasan, Masahiro Yamada, Nathan Chancellor, Nicholas Piggin, Peter Bergner, Qiheng Lin, Randy Dunlap, Ricardo B. Marliere, Rob Herring, Sathvika Vasireddy, Shrikanth Hegde, Uwe Kleine-König, Vaibhav Jain, and Wen Xiong. * tag 'powerpc-6.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (71 commits) powerpc/macio: Make remove callback of macio driver void returned powerpc/83xx: Fix build failure with FPU=n powerpc/64s: Fix get_hugepd_cache_index() build failure powerpc/4xx: Fix warp_gpio_leds build failure powerpc/amigaone: Make several functions static powerpc/embedded6xx: Fix no previous prototype for avr_uart_send() etc. macintosh/adb: make adb_dev_class constant powerpc: xor_vmx: Add '-mhard-float' to CFLAGS powerpc/fsl: Fix mfpmr() asm constraint error powerpc: Remove cpu-as-y completely powerpc/fsl: Modernise mt/mfpmr powerpc/fsl: Fix mfpmr build errors with newer binutils powerpc/64s: Use .machine power4 around dcbt powerpc/64s: Move dcbt/dcbtst sequence into a macro powerpc/mm: Code cleanup for __hash_page_thp powerpc/hv-gpci: Fix the H_GET_PERF_COUNTER_INFO hcall return value checks powerpc/irq: Allow softirq to hardirq stack transition powerpc: Stop using of_root powerpc/machdep: Define 'compatibles' property in ppc_md and use it of: Reimplement of_machine_is_compatible() using of_machine_compatible_match() ...
6525 lines
168 KiB
C
6525 lines
168 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
|
|
*
|
|
* Authors:
|
|
* Paul Mackerras <paulus@au1.ibm.com>
|
|
* Alexander Graf <agraf@suse.de>
|
|
* Kevin Wolf <mail@kevin-wolf.de>
|
|
*
|
|
* Description: KVM functions specific to running on Book 3S
|
|
* processors in hypervisor mode (specifically POWER7 and later).
|
|
*
|
|
* This file is derived from arch/powerpc/kvm/book3s.c,
|
|
* by Alexander Graf <agraf@suse.de>.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/kvm_irqfd.h>
|
|
#include <linux/irqbypass.h>
|
|
#include <linux/module.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/of.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/ftrace.h>
|
|
#include <asm/reg.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/asm-prototypes.h>
|
|
#include <asm/archrandom.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/disassemble.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/interrupt.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/lppaca.h>
|
|
#include <asm/pmc.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/page.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/dbell.h>
|
|
#include <asm/hmi.h>
|
|
#include <asm/pnv-pci.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/xics.h>
|
|
#include <asm/xive.h>
|
|
#include <asm/hw_breakpoint.h>
|
|
#include <asm/kvm_book3s_uvmem.h>
|
|
#include <asm/ultravisor.h>
|
|
#include <asm/dtl.h>
|
|
#include <asm/plpar_wrappers.h>
|
|
|
|
#include <trace/events/ipi.h>
|
|
|
|
#include "book3s.h"
|
|
#include "book3s_hv.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace_hv.h"
|
|
|
|
/* #define EXIT_DEBUG */
|
|
/* #define EXIT_DEBUG_SIMPLE */
|
|
/* #define EXIT_DEBUG_INT */
|
|
|
|
/* Used to indicate that a guest page fault needs to be handled */
|
|
#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
|
|
/* Used to indicate that a guest passthrough interrupt needs to be handled */
|
|
#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
|
|
|
|
/* Used as a "null" value for timebase values */
|
|
#define TB_NIL (~(u64)0)
|
|
|
|
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
|
|
|
|
static int dynamic_mt_modes = 6;
|
|
module_param(dynamic_mt_modes, int, 0644);
|
|
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
|
|
static int target_smt_mode;
|
|
module_param(target_smt_mode, int, 0644);
|
|
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
|
|
|
|
static bool one_vm_per_core;
|
|
module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
|
|
|
|
#ifdef CONFIG_KVM_XICS
|
|
static const struct kernel_param_ops module_param_ops = {
|
|
.set = param_set_int,
|
|
.get = param_get_int,
|
|
};
|
|
|
|
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
|
|
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
|
|
|
|
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
|
|
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
|
|
#endif
|
|
|
|
/* If set, guests are allowed to create and control nested guests */
|
|
static bool nested = true;
|
|
module_param(nested, bool, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
|
|
|
|
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
|
|
|
|
/*
|
|
* RWMR values for POWER8. These control the rate at which PURR
|
|
* and SPURR count and should be set according to the number of
|
|
* online threads in the vcore being run.
|
|
*/
|
|
#define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
|
|
#define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
|
|
#define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
|
|
#define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
|
|
#define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
|
|
#define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
|
|
#define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
|
|
#define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
|
|
|
|
static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
|
|
RWMR_RPA_P8_1THREAD,
|
|
RWMR_RPA_P8_1THREAD,
|
|
RWMR_RPA_P8_2THREAD,
|
|
RWMR_RPA_P8_3THREAD,
|
|
RWMR_RPA_P8_4THREAD,
|
|
RWMR_RPA_P8_5THREAD,
|
|
RWMR_RPA_P8_6THREAD,
|
|
RWMR_RPA_P8_7THREAD,
|
|
RWMR_RPA_P8_8THREAD,
|
|
};
|
|
|
|
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
|
|
int *ip)
|
|
{
|
|
int i = *ip;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
while (++i < MAX_SMT_THREADS) {
|
|
vcpu = READ_ONCE(vc->runnable_threads[i]);
|
|
if (vcpu) {
|
|
*ip = i;
|
|
return vcpu;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Used to traverse the list of runnable threads for a given vcore */
|
|
#define for_each_runnable_thread(i, vcpu, vc) \
|
|
for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
|
|
|
|
static bool kvmppc_ipi_thread(int cpu)
|
|
{
|
|
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
|
|
|
|
/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
|
|
if (kvmhv_on_pseries())
|
|
return false;
|
|
|
|
/* On POWER9 we can use msgsnd to IPI any cpu */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
msg |= get_hard_smp_processor_id(cpu);
|
|
smp_mb();
|
|
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
|
|
return true;
|
|
}
|
|
|
|
/* On POWER8 for IPIs to threads in the same core, use msgsnd */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
preempt_disable();
|
|
if (cpu_first_thread_sibling(cpu) ==
|
|
cpu_first_thread_sibling(smp_processor_id())) {
|
|
msg |= cpu_thread_in_core(cpu);
|
|
smp_mb();
|
|
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
|
|
preempt_enable();
|
|
return true;
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
|
|
if (cpu >= 0 && cpu < nr_cpu_ids) {
|
|
if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
|
|
xics_wake_cpu(cpu);
|
|
return true;
|
|
}
|
|
opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
int cpu;
|
|
struct rcuwait *waitp;
|
|
|
|
/*
|
|
* rcuwait_wake_up contains smp_mb() which orders prior stores that
|
|
* create pending work vs below loads of cpu fields. The other side
|
|
* is the barrier in vcpu run that orders setting the cpu fields vs
|
|
* testing for pending work.
|
|
*/
|
|
|
|
waitp = kvm_arch_vcpu_get_wait(vcpu);
|
|
if (rcuwait_wake_up(waitp))
|
|
++vcpu->stat.generic.halt_wakeup;
|
|
|
|
cpu = READ_ONCE(vcpu->arch.thread_cpu);
|
|
if (cpu >= 0 && kvmppc_ipi_thread(cpu))
|
|
return;
|
|
|
|
/* CPU points to the first thread of the core */
|
|
cpu = vcpu->cpu;
|
|
if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
|
|
smp_send_reschedule(cpu);
|
|
}
|
|
|
|
/*
|
|
* We use the vcpu_load/put functions to measure stolen time.
|
|
*
|
|
* Stolen time is counted as time when either the vcpu is able to
|
|
* run as part of a virtual core, but the task running the vcore
|
|
* is preempted or sleeping, or when the vcpu needs something done
|
|
* in the kernel by the task running the vcpu, but that task is
|
|
* preempted or sleeping. Those two things have to be counted
|
|
* separately, since one of the vcpu tasks will take on the job
|
|
* of running the core, and the other vcpu tasks in the vcore will
|
|
* sleep waiting for it to do that, but that sleep shouldn't count
|
|
* as stolen time.
|
|
*
|
|
* Hence we accumulate stolen time when the vcpu can run as part of
|
|
* a vcore using vc->stolen_tb, and the stolen time when the vcpu
|
|
* needs its task to do other things in the kernel (for example,
|
|
* service a page fault) in busy_stolen. We don't accumulate
|
|
* stolen time for a vcore when it is inactive, or for a vcpu
|
|
* when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
|
|
* a misnomer; it means that the vcpu task is not executing in
|
|
* the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
|
|
* the kernel. We don't have any way of dividing up that time
|
|
* between time that the vcpu is genuinely stopped, time that
|
|
* the task is actively working on behalf of the vcpu, and time
|
|
* that the task is preempted, so we don't count any of it as
|
|
* stolen.
|
|
*
|
|
* Updates to busy_stolen are protected by arch.tbacct_lock;
|
|
* updates to vc->stolen_tb are protected by the vcore->stoltb_lock
|
|
* lock. The stolen times are measured in units of timebase ticks.
|
|
* (Note that the != TB_NIL checks below are purely defensive;
|
|
* they should never fail.)
|
|
*
|
|
* The POWER9 path is simpler, one vcpu per virtual core so the
|
|
* former case does not exist. If a vcpu is preempted when it is
|
|
* BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
|
|
* the stolen cycles in busy_stolen. RUNNING is not a preemptible
|
|
* state in the P9 path.
|
|
*/
|
|
|
|
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
|
|
{
|
|
unsigned long flags;
|
|
|
|
WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
|
|
|
|
spin_lock_irqsave(&vc->stoltb_lock, flags);
|
|
vc->preempt_tb = tb;
|
|
spin_unlock_irqrestore(&vc->stoltb_lock, flags);
|
|
}
|
|
|
|
static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
|
|
{
|
|
unsigned long flags;
|
|
|
|
WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
|
|
|
|
spin_lock_irqsave(&vc->stoltb_lock, flags);
|
|
if (vc->preempt_tb != TB_NIL) {
|
|
vc->stolen_tb += tb - vc->preempt_tb;
|
|
vc->preempt_tb = TB_NIL;
|
|
}
|
|
spin_unlock_irqrestore(&vc->stoltb_lock, flags);
|
|
}
|
|
|
|
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct kvmppc_vcore *vc = vcpu->arch.vcore;
|
|
unsigned long flags;
|
|
u64 now;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
if (vcpu->arch.busy_preempt != TB_NIL) {
|
|
WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
|
|
vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
|
|
vcpu->arch.busy_preempt = TB_NIL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
now = mftb();
|
|
|
|
/*
|
|
* We can test vc->runner without taking the vcore lock,
|
|
* because only this task ever sets vc->runner to this
|
|
* vcpu, and once it is set to this vcpu, only this task
|
|
* ever sets it to NULL.
|
|
*/
|
|
if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
|
|
kvmppc_core_end_stolen(vc, now);
|
|
|
|
spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
|
|
if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
|
|
vcpu->arch.busy_preempt != TB_NIL) {
|
|
vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
|
|
vcpu->arch.busy_preempt = TB_NIL;
|
|
}
|
|
spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
|
|
}
|
|
|
|
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_vcore *vc = vcpu->arch.vcore;
|
|
unsigned long flags;
|
|
u64 now;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
/*
|
|
* In the P9 path, RUNNABLE is not preemptible
|
|
* (nor takes host interrupts)
|
|
*/
|
|
WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
|
|
/*
|
|
* Account stolen time when preempted while the vcpu task is
|
|
* running in the kernel (but not in qemu, which is INACTIVE).
|
|
*/
|
|
if (task_is_running(current) &&
|
|
vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
|
|
vcpu->arch.busy_preempt = mftb();
|
|
return;
|
|
}
|
|
|
|
now = mftb();
|
|
|
|
if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
|
|
kvmppc_core_start_stolen(vc, now);
|
|
|
|
spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
|
|
if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
|
|
vcpu->arch.busy_preempt = now;
|
|
spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
|
|
}
|
|
|
|
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
|
|
{
|
|
vcpu->arch.pvr = pvr;
|
|
}
|
|
|
|
/* Dummy value used in computing PCR value below */
|
|
#define PCR_ARCH_31 (PCR_ARCH_300 << 1)
|
|
|
|
static inline unsigned long map_pcr_to_cap(unsigned long pcr)
|
|
{
|
|
unsigned long cap = 0;
|
|
|
|
switch (pcr) {
|
|
case PCR_ARCH_300:
|
|
cap = H_GUEST_CAP_POWER9;
|
|
break;
|
|
case PCR_ARCH_31:
|
|
cap = H_GUEST_CAP_POWER10;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return cap;
|
|
}
|
|
|
|
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
|
|
{
|
|
unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0;
|
|
struct kvmppc_vcore *vc = vcpu->arch.vcore;
|
|
|
|
/* We can (emulate) our own architecture version and anything older */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_31))
|
|
host_pcr_bit = PCR_ARCH_31;
|
|
else if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
host_pcr_bit = PCR_ARCH_300;
|
|
else if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
host_pcr_bit = PCR_ARCH_207;
|
|
else if (cpu_has_feature(CPU_FTR_ARCH_206))
|
|
host_pcr_bit = PCR_ARCH_206;
|
|
else
|
|
host_pcr_bit = PCR_ARCH_205;
|
|
|
|
/* Determine lowest PCR bit needed to run guest in given PVR level */
|
|
guest_pcr_bit = host_pcr_bit;
|
|
if (arch_compat) {
|
|
switch (arch_compat) {
|
|
case PVR_ARCH_205:
|
|
guest_pcr_bit = PCR_ARCH_205;
|
|
break;
|
|
case PVR_ARCH_206:
|
|
case PVR_ARCH_206p:
|
|
guest_pcr_bit = PCR_ARCH_206;
|
|
break;
|
|
case PVR_ARCH_207:
|
|
guest_pcr_bit = PCR_ARCH_207;
|
|
break;
|
|
case PVR_ARCH_300:
|
|
guest_pcr_bit = PCR_ARCH_300;
|
|
break;
|
|
case PVR_ARCH_31:
|
|
case PVR_ARCH_31_P11:
|
|
guest_pcr_bit = PCR_ARCH_31;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Check requested PCR bits don't exceed our capabilities */
|
|
if (guest_pcr_bit > host_pcr_bit)
|
|
return -EINVAL;
|
|
|
|
if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) {
|
|
/*
|
|
* 'arch_compat == 0' would mean the guest should default to
|
|
* L1's compatibility. In this case, the guest would pick
|
|
* host's PCR and evaluate the corresponding capabilities.
|
|
*/
|
|
cap = map_pcr_to_cap(guest_pcr_bit);
|
|
if (!(cap & nested_capabilities))
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock(&vc->lock);
|
|
vc->arch_compat = arch_compat;
|
|
kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR);
|
|
/*
|
|
* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
|
|
* Also set all reserved PCR bits
|
|
*/
|
|
vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
|
|
spin_unlock(&vc->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
|
|
pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
|
|
pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
|
|
vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
|
|
for (r = 0; r < 16; ++r)
|
|
pr_err("r%2d = %.16lx r%d = %.16lx\n",
|
|
r, kvmppc_get_gpr(vcpu, r),
|
|
r+16, kvmppc_get_gpr(vcpu, r+16));
|
|
pr_err("ctr = %.16lx lr = %.16lx\n",
|
|
vcpu->arch.regs.ctr, vcpu->arch.regs.link);
|
|
pr_err("srr0 = %.16llx srr1 = %.16llx\n",
|
|
vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
|
|
pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
|
|
vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
|
|
pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
|
|
vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
|
|
pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
|
|
vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
|
|
pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
|
|
pr_err("fault dar = %.16lx dsisr = %.8x\n",
|
|
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
|
|
pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
|
|
for (r = 0; r < vcpu->arch.slb_max; ++r)
|
|
pr_err(" ESID = %.16llx VSID = %.16llx\n",
|
|
vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
|
|
pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
|
|
vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
|
|
vcpu->arch.last_inst);
|
|
}
|
|
|
|
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
|
|
{
|
|
return kvm_get_vcpu_by_id(kvm, id);
|
|
}
|
|
|
|
static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
|
|
{
|
|
vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
|
|
vpa->yield_count = cpu_to_be32(1);
|
|
}
|
|
|
|
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
|
|
unsigned long addr, unsigned long len)
|
|
{
|
|
/* check address is cacheline aligned */
|
|
if (addr & (L1_CACHE_BYTES - 1))
|
|
return -EINVAL;
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
if (v->next_gpa != addr || v->len != len) {
|
|
v->next_gpa = addr;
|
|
v->len = addr ? len : 0;
|
|
v->update_pending = 1;
|
|
}
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
|
|
struct reg_vpa {
|
|
u32 dummy;
|
|
union {
|
|
__be16 hword;
|
|
__be32 word;
|
|
} length;
|
|
};
|
|
|
|
static int vpa_is_registered(struct kvmppc_vpa *vpap)
|
|
{
|
|
if (vpap->update_pending)
|
|
return vpap->next_gpa != 0;
|
|
return vpap->pinned_addr != NULL;
|
|
}
|
|
|
|
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
|
|
unsigned long flags,
|
|
unsigned long vcpuid, unsigned long vpa)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long len, nb;
|
|
void *va;
|
|
struct kvm_vcpu *tvcpu;
|
|
int err;
|
|
int subfunc;
|
|
struct kvmppc_vpa *vpap;
|
|
|
|
tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
|
|
if (!tvcpu)
|
|
return H_PARAMETER;
|
|
|
|
subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
|
|
if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
|
|
subfunc == H_VPA_REG_SLB) {
|
|
/* Registering new area - address must be cache-line aligned */
|
|
if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
|
|
return H_PARAMETER;
|
|
|
|
/* convert logical addr to kernel addr and read length */
|
|
va = kvmppc_pin_guest_page(kvm, vpa, &nb);
|
|
if (va == NULL)
|
|
return H_PARAMETER;
|
|
if (subfunc == H_VPA_REG_VPA)
|
|
len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
|
|
else
|
|
len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
|
|
kvmppc_unpin_guest_page(kvm, va, vpa, false);
|
|
|
|
/* Check length */
|
|
if (len > nb || len < sizeof(struct reg_vpa))
|
|
return H_PARAMETER;
|
|
} else {
|
|
vpa = 0;
|
|
len = 0;
|
|
}
|
|
|
|
err = H_PARAMETER;
|
|
vpap = NULL;
|
|
spin_lock(&tvcpu->arch.vpa_update_lock);
|
|
|
|
switch (subfunc) {
|
|
case H_VPA_REG_VPA: /* register VPA */
|
|
/*
|
|
* The size of our lppaca is 1kB because of the way we align
|
|
* it for the guest to avoid crossing a 4kB boundary. We only
|
|
* use 640 bytes of the structure though, so we should accept
|
|
* clients that set a size of 640.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct lppaca) != 640);
|
|
if (len < sizeof(struct lppaca))
|
|
break;
|
|
vpap = &tvcpu->arch.vpa;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_REG_DTL: /* register DTL */
|
|
if (len < sizeof(struct dtl_entry))
|
|
break;
|
|
len -= len % sizeof(struct dtl_entry);
|
|
|
|
/* Check that they have previously registered a VPA */
|
|
err = H_RESOURCE;
|
|
if (!vpa_is_registered(&tvcpu->arch.vpa))
|
|
break;
|
|
|
|
vpap = &tvcpu->arch.dtl;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_REG_SLB: /* register SLB shadow buffer */
|
|
/* Check that they have previously registered a VPA */
|
|
err = H_RESOURCE;
|
|
if (!vpa_is_registered(&tvcpu->arch.vpa))
|
|
break;
|
|
|
|
vpap = &tvcpu->arch.slb_shadow;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_DEREG_VPA: /* deregister VPA */
|
|
/* Check they don't still have a DTL or SLB buf registered */
|
|
err = H_RESOURCE;
|
|
if (vpa_is_registered(&tvcpu->arch.dtl) ||
|
|
vpa_is_registered(&tvcpu->arch.slb_shadow))
|
|
break;
|
|
|
|
vpap = &tvcpu->arch.vpa;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_DEREG_DTL: /* deregister DTL */
|
|
vpap = &tvcpu->arch.dtl;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
|
|
vpap = &tvcpu->arch.slb_shadow;
|
|
err = 0;
|
|
break;
|
|
}
|
|
|
|
if (vpap) {
|
|
vpap->next_gpa = vpa;
|
|
vpap->len = len;
|
|
vpap->update_pending = 1;
|
|
}
|
|
|
|
spin_unlock(&tvcpu->arch.vpa_update_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap,
|
|
struct kvmppc_vpa *old_vpap)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
void *va;
|
|
unsigned long nb;
|
|
unsigned long gpa;
|
|
|
|
/*
|
|
* We need to pin the page pointed to by vpap->next_gpa,
|
|
* but we can't call kvmppc_pin_guest_page under the lock
|
|
* as it does get_user_pages() and down_read(). So we
|
|
* have to drop the lock, pin the page, then get the lock
|
|
* again and check that a new area didn't get registered
|
|
* in the meantime.
|
|
*/
|
|
for (;;) {
|
|
gpa = vpap->next_gpa;
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
va = NULL;
|
|
nb = 0;
|
|
if (gpa)
|
|
va = kvmppc_pin_guest_page(kvm, gpa, &nb);
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
if (gpa == vpap->next_gpa)
|
|
break;
|
|
/* sigh... unpin that one and try again */
|
|
if (va)
|
|
kvmppc_unpin_guest_page(kvm, va, gpa, false);
|
|
}
|
|
|
|
vpap->update_pending = 0;
|
|
if (va && nb < vpap->len) {
|
|
/*
|
|
* If it's now too short, it must be that userspace
|
|
* has changed the mappings underlying guest memory,
|
|
* so unregister the region.
|
|
*/
|
|
kvmppc_unpin_guest_page(kvm, va, gpa, false);
|
|
va = NULL;
|
|
}
|
|
*old_vpap = *vpap;
|
|
|
|
vpap->gpa = gpa;
|
|
vpap->pinned_addr = va;
|
|
vpap->dirty = false;
|
|
if (va)
|
|
vpap->pinned_end = va + vpap->len;
|
|
}
|
|
|
|
static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvmppc_vpa old_vpa = { 0 };
|
|
|
|
if (!(vcpu->arch.vpa.update_pending ||
|
|
vcpu->arch.slb_shadow.update_pending ||
|
|
vcpu->arch.dtl.update_pending))
|
|
return;
|
|
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
if (vcpu->arch.vpa.update_pending) {
|
|
kvmppc_update_vpa(vcpu, &vcpu->arch.vpa, &old_vpa);
|
|
if (old_vpa.pinned_addr) {
|
|
if (kvmhv_is_nestedv2())
|
|
kvmhv_nestedv2_set_vpa(vcpu, ~0ull);
|
|
kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
|
|
old_vpa.dirty);
|
|
}
|
|
if (vcpu->arch.vpa.pinned_addr) {
|
|
init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
|
|
if (kvmhv_is_nestedv2())
|
|
kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr));
|
|
}
|
|
}
|
|
if (vcpu->arch.dtl.update_pending) {
|
|
kvmppc_update_vpa(vcpu, &vcpu->arch.dtl, &old_vpa);
|
|
if (old_vpa.pinned_addr)
|
|
kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
|
|
old_vpa.dirty);
|
|
vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
|
|
vcpu->arch.dtl_index = 0;
|
|
}
|
|
if (vcpu->arch.slb_shadow.update_pending) {
|
|
kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow, &old_vpa);
|
|
if (old_vpa.pinned_addr)
|
|
kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
|
|
old_vpa.dirty);
|
|
}
|
|
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
}
|
|
|
|
/*
|
|
* Return the accumulated stolen time for the vcore up until `now'.
|
|
* The caller should hold the vcore lock.
|
|
*/
|
|
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
|
|
{
|
|
u64 p;
|
|
unsigned long flags;
|
|
|
|
WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
|
|
|
|
spin_lock_irqsave(&vc->stoltb_lock, flags);
|
|
p = vc->stolen_tb;
|
|
if (vc->vcore_state != VCORE_INACTIVE &&
|
|
vc->preempt_tb != TB_NIL)
|
|
p += now - vc->preempt_tb;
|
|
spin_unlock_irqrestore(&vc->stoltb_lock, flags);
|
|
return p;
|
|
}
|
|
|
|
static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
|
|
struct lppaca *vpa,
|
|
unsigned int pcpu, u64 now,
|
|
unsigned long stolen)
|
|
{
|
|
struct dtl_entry *dt;
|
|
|
|
dt = vcpu->arch.dtl_ptr;
|
|
|
|
if (!dt)
|
|
return;
|
|
|
|
dt->dispatch_reason = 7;
|
|
dt->preempt_reason = 0;
|
|
dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
|
|
dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
|
|
dt->ready_to_enqueue_time = 0;
|
|
dt->waiting_to_ready_time = 0;
|
|
dt->timebase = cpu_to_be64(now);
|
|
dt->fault_addr = 0;
|
|
dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
|
|
dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
|
|
|
|
++dt;
|
|
if (dt == vcpu->arch.dtl.pinned_end)
|
|
dt = vcpu->arch.dtl.pinned_addr;
|
|
vcpu->arch.dtl_ptr = dt;
|
|
/* order writing *dt vs. writing vpa->dtl_idx */
|
|
smp_wmb();
|
|
vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
|
|
|
|
/* vcpu->arch.dtl.dirty is set by the caller */
|
|
}
|
|
|
|
static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
|
|
struct kvmppc_vcore *vc)
|
|
{
|
|
struct lppaca *vpa;
|
|
unsigned long stolen;
|
|
unsigned long core_stolen;
|
|
u64 now;
|
|
unsigned long flags;
|
|
|
|
vpa = vcpu->arch.vpa.pinned_addr;
|
|
if (!vpa)
|
|
return;
|
|
|
|
now = mftb();
|
|
|
|
core_stolen = vcore_stolen_time(vc, now);
|
|
stolen = core_stolen - vcpu->arch.stolen_logged;
|
|
vcpu->arch.stolen_logged = core_stolen;
|
|
spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
|
|
stolen += vcpu->arch.busy_stolen;
|
|
vcpu->arch.busy_stolen = 0;
|
|
spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
|
|
|
|
vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
|
|
|
|
__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen);
|
|
|
|
vcpu->arch.vpa.dirty = true;
|
|
}
|
|
|
|
static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
|
|
struct kvmppc_vcore *vc,
|
|
u64 now)
|
|
{
|
|
struct lppaca *vpa;
|
|
unsigned long stolen;
|
|
unsigned long stolen_delta;
|
|
|
|
vpa = vcpu->arch.vpa.pinned_addr;
|
|
if (!vpa)
|
|
return;
|
|
|
|
stolen = vc->stolen_tb;
|
|
stolen_delta = stolen - vcpu->arch.stolen_logged;
|
|
vcpu->arch.stolen_logged = stolen;
|
|
|
|
vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
|
|
|
|
__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
|
|
|
|
vcpu->arch.vpa.dirty = true;
|
|
}
|
|
|
|
/* See if there is a doorbell interrupt pending for a vcpu */
|
|
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
|
|
{
|
|
int thr;
|
|
struct kvmppc_vcore *vc;
|
|
|
|
if (vcpu->arch.doorbell_request)
|
|
return true;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
return false;
|
|
/*
|
|
* Ensure that the read of vcore->dpdes comes after the read
|
|
* of vcpu->doorbell_request. This barrier matches the
|
|
* smp_wmb() in kvmppc_guest_entry_inject().
|
|
*/
|
|
smp_rmb();
|
|
vc = vcpu->arch.vcore;
|
|
thr = vcpu->vcpu_id - vc->first_vcpuid;
|
|
return !!(vc->dpdes & (1 << thr));
|
|
}
|
|
|
|
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207)
|
|
return true;
|
|
if ((!kvmppc_get_arch_compat(vcpu)) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
|
|
unsigned long resource, unsigned long value1,
|
|
unsigned long value2)
|
|
{
|
|
switch (resource) {
|
|
case H_SET_MODE_RESOURCE_SET_CIABR:
|
|
if (!kvmppc_power8_compatible(vcpu))
|
|
return H_P2;
|
|
if (value2)
|
|
return H_P4;
|
|
if (mflags)
|
|
return H_UNSUPPORTED_FLAG_START;
|
|
/* Guests can't breakpoint the hypervisor */
|
|
if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
|
|
return H_P3;
|
|
kvmppc_set_ciabr_hv(vcpu, value1);
|
|
return H_SUCCESS;
|
|
case H_SET_MODE_RESOURCE_SET_DAWR0:
|
|
if (!kvmppc_power8_compatible(vcpu))
|
|
return H_P2;
|
|
if (!ppc_breakpoint_available())
|
|
return H_P2;
|
|
if (mflags)
|
|
return H_UNSUPPORTED_FLAG_START;
|
|
if (value2 & DABRX_HYP)
|
|
return H_P4;
|
|
kvmppc_set_dawr0_hv(vcpu, value1);
|
|
kvmppc_set_dawrx0_hv(vcpu, value2);
|
|
return H_SUCCESS;
|
|
case H_SET_MODE_RESOURCE_SET_DAWR1:
|
|
if (!kvmppc_power8_compatible(vcpu))
|
|
return H_P2;
|
|
if (!ppc_breakpoint_available())
|
|
return H_P2;
|
|
if (!cpu_has_feature(CPU_FTR_DAWR1))
|
|
return H_P2;
|
|
if (!vcpu->kvm->arch.dawr1_enabled)
|
|
return H_FUNCTION;
|
|
if (mflags)
|
|
return H_UNSUPPORTED_FLAG_START;
|
|
if (value2 & DABRX_HYP)
|
|
return H_P4;
|
|
kvmppc_set_dawr1_hv(vcpu, value1);
|
|
kvmppc_set_dawrx1_hv(vcpu, value2);
|
|
return H_SUCCESS;
|
|
case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
|
|
/*
|
|
* KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
|
|
* Keep this in synch with kvmppc_filter_guest_lpcr_hv.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
|
|
kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
|
|
return H_UNSUPPORTED_FLAG_START;
|
|
return H_TOO_HARD;
|
|
default:
|
|
return H_TOO_HARD;
|
|
}
|
|
}
|
|
|
|
/* Copy guest memory in place - must reside within a single memslot */
|
|
static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
|
|
unsigned long len)
|
|
{
|
|
struct kvm_memory_slot *to_memslot = NULL;
|
|
struct kvm_memory_slot *from_memslot = NULL;
|
|
unsigned long to_addr, from_addr;
|
|
int r;
|
|
|
|
/* Get HPA for from address */
|
|
from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
|
|
if (!from_memslot)
|
|
return -EFAULT;
|
|
if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
|
|
<< PAGE_SHIFT))
|
|
return -EINVAL;
|
|
from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
|
|
if (kvm_is_error_hva(from_addr))
|
|
return -EFAULT;
|
|
from_addr |= (from & (PAGE_SIZE - 1));
|
|
|
|
/* Get HPA for to address */
|
|
to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
|
|
if (!to_memslot)
|
|
return -EFAULT;
|
|
if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
|
|
<< PAGE_SHIFT))
|
|
return -EINVAL;
|
|
to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
|
|
if (kvm_is_error_hva(to_addr))
|
|
return -EFAULT;
|
|
to_addr |= (to & (PAGE_SIZE - 1));
|
|
|
|
/* Perform copy */
|
|
r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
|
|
len);
|
|
if (r)
|
|
return -EFAULT;
|
|
mark_page_dirty(kvm, to >> PAGE_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
|
|
unsigned long dest, unsigned long src)
|
|
{
|
|
u64 pg_sz = SZ_4K; /* 4K page size */
|
|
u64 pg_mask = SZ_4K - 1;
|
|
int ret;
|
|
|
|
/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
|
|
if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
|
|
H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
|
|
return H_PARAMETER;
|
|
|
|
/* dest (and src if copy_page flag set) must be page aligned */
|
|
if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
|
|
return H_PARAMETER;
|
|
|
|
/* zero and/or copy the page as determined by the flags */
|
|
if (flags & H_COPY_PAGE) {
|
|
ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
|
|
if (ret < 0)
|
|
return H_PARAMETER;
|
|
} else if (flags & H_ZERO_PAGE) {
|
|
ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
|
|
if (ret < 0)
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/* We can ignore the remaining flags */
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
|
|
{
|
|
struct kvmppc_vcore *vcore = target->arch.vcore;
|
|
|
|
/*
|
|
* We expect to have been called by the real mode handler
|
|
* (kvmppc_rm_h_confer()) which would have directly returned
|
|
* H_SUCCESS if the source vcore wasn't idle (e.g. if it may
|
|
* have useful work to do and should not confer) so we don't
|
|
* recheck that here.
|
|
*
|
|
* In the case of the P9 single vcpu per vcore case, the real
|
|
* mode handler is not called but no other threads are in the
|
|
* source vcore.
|
|
*/
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
spin_lock(&vcore->lock);
|
|
if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
|
|
vcore->vcore_state != VCORE_INACTIVE &&
|
|
vcore->runner)
|
|
target = vcore->runner;
|
|
spin_unlock(&vcore->lock);
|
|
}
|
|
|
|
return kvm_vcpu_yield_to(target);
|
|
}
|
|
|
|
static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
|
|
{
|
|
int yield_count = 0;
|
|
struct lppaca *lppaca;
|
|
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
|
|
if (lppaca)
|
|
yield_count = be32_to_cpu(lppaca->yield_count);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
return yield_count;
|
|
}
|
|
|
|
/*
|
|
* H_RPT_INVALIDATE hcall handler for nested guests.
|
|
*
|
|
* Handles only nested process-scoped invalidation requests in L0.
|
|
*/
|
|
static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long type = kvmppc_get_gpr(vcpu, 6);
|
|
unsigned long pid, pg_sizes, start, end;
|
|
|
|
/*
|
|
* The partition-scoped invalidations aren't handled here in L0.
|
|
*/
|
|
if (type & H_RPTI_TYPE_NESTED)
|
|
return RESUME_HOST;
|
|
|
|
pid = kvmppc_get_gpr(vcpu, 4);
|
|
pg_sizes = kvmppc_get_gpr(vcpu, 7);
|
|
start = kvmppc_get_gpr(vcpu, 8);
|
|
end = kvmppc_get_gpr(vcpu, 9);
|
|
|
|
do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
|
|
type, pg_sizes, start, end);
|
|
|
|
kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
|
|
unsigned long id, unsigned long target,
|
|
unsigned long type, unsigned long pg_sizes,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
if (!kvm_is_radix(vcpu->kvm))
|
|
return H_UNSUPPORTED;
|
|
|
|
if (end < start)
|
|
return H_P5;
|
|
|
|
/*
|
|
* Partition-scoped invalidation for nested guests.
|
|
*/
|
|
if (type & H_RPTI_TYPE_NESTED) {
|
|
if (!nesting_enabled(vcpu->kvm))
|
|
return H_FUNCTION;
|
|
|
|
/* Support only cores as target */
|
|
if (target != H_RPTI_TARGET_CMMU)
|
|
return H_P2;
|
|
|
|
return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
|
|
start, end);
|
|
}
|
|
|
|
/*
|
|
* Process-scoped invalidation for L1 guests.
|
|
*/
|
|
do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
|
|
type, pg_sizes, start, end);
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long req = kvmppc_get_gpr(vcpu, 3);
|
|
unsigned long target, ret = H_SUCCESS;
|
|
int yield_count;
|
|
struct kvm_vcpu *tvcpu;
|
|
int idx, rc;
|
|
|
|
if (req <= MAX_HCALL_OPCODE &&
|
|
!test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
|
|
return RESUME_HOST;
|
|
|
|
switch (req) {
|
|
case H_REMOVE:
|
|
ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_ENTER:
|
|
ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6),
|
|
kvmppc_get_gpr(vcpu, 7));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_READ:
|
|
ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_CLEAR_MOD:
|
|
ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_CLEAR_REF:
|
|
ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_PROTECT:
|
|
ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_BULK_REMOVE:
|
|
ret = kvmppc_h_bulk_remove(vcpu);
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
|
|
case H_CEDE:
|
|
break;
|
|
case H_PROD:
|
|
target = kvmppc_get_gpr(vcpu, 4);
|
|
tvcpu = kvmppc_find_vcpu(kvm, target);
|
|
if (!tvcpu) {
|
|
ret = H_PARAMETER;
|
|
break;
|
|
}
|
|
tvcpu->arch.prodded = 1;
|
|
smp_mb(); /* This orders prodded store vs ceded load */
|
|
if (tvcpu->arch.ceded)
|
|
kvmppc_fast_vcpu_kick_hv(tvcpu);
|
|
break;
|
|
case H_CONFER:
|
|
target = kvmppc_get_gpr(vcpu, 4);
|
|
if (target == -1)
|
|
break;
|
|
tvcpu = kvmppc_find_vcpu(kvm, target);
|
|
if (!tvcpu) {
|
|
ret = H_PARAMETER;
|
|
break;
|
|
}
|
|
yield_count = kvmppc_get_gpr(vcpu, 5);
|
|
if (kvmppc_get_yield_count(tvcpu) != yield_count)
|
|
break;
|
|
kvm_arch_vcpu_yield_to(tvcpu);
|
|
break;
|
|
case H_REGISTER_VPA:
|
|
ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6));
|
|
break;
|
|
case H_RTAS:
|
|
if (list_empty(&kvm->arch.rtas_tokens))
|
|
return RESUME_HOST;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
rc = kvmppc_rtas_hcall(vcpu);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
|
|
if (rc == -ENOENT)
|
|
return RESUME_HOST;
|
|
else if (rc == 0)
|
|
break;
|
|
|
|
/* Send the error out to userspace via KVM_RUN */
|
|
return rc;
|
|
case H_LOGICAL_CI_LOAD:
|
|
ret = kvmppc_h_logical_ci_load(vcpu);
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_LOGICAL_CI_STORE:
|
|
ret = kvmppc_h_logical_ci_store(vcpu);
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_SET_MODE:
|
|
ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6),
|
|
kvmppc_get_gpr(vcpu, 7));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_XIRR:
|
|
case H_CPPR:
|
|
case H_EOI:
|
|
case H_IPI:
|
|
case H_IPOLL:
|
|
case H_XIRR_X:
|
|
if (kvmppc_xics_enabled(vcpu)) {
|
|
if (xics_on_xive()) {
|
|
ret = H_NOT_AVAILABLE;
|
|
return RESUME_GUEST;
|
|
}
|
|
ret = kvmppc_xics_hcall(vcpu, req);
|
|
break;
|
|
}
|
|
return RESUME_HOST;
|
|
case H_SET_DABR:
|
|
ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
|
|
break;
|
|
case H_SET_XDABR:
|
|
ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5));
|
|
break;
|
|
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
|
case H_GET_TCE:
|
|
ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_PUT_TCE:
|
|
ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_PUT_TCE_INDIRECT:
|
|
ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6),
|
|
kvmppc_get_gpr(vcpu, 7));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_STUFF_TCE:
|
|
ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6),
|
|
kvmppc_get_gpr(vcpu, 7));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
#endif
|
|
case H_RANDOM: {
|
|
unsigned long rand;
|
|
|
|
if (!arch_get_random_seed_longs(&rand, 1))
|
|
ret = H_HARDWARE;
|
|
kvmppc_set_gpr(vcpu, 4, rand);
|
|
break;
|
|
}
|
|
case H_RPT_INVALIDATE:
|
|
ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6),
|
|
kvmppc_get_gpr(vcpu, 7),
|
|
kvmppc_get_gpr(vcpu, 8),
|
|
kvmppc_get_gpr(vcpu, 9));
|
|
break;
|
|
|
|
case H_SET_PARTITION_TABLE:
|
|
ret = H_FUNCTION;
|
|
if (nesting_enabled(kvm))
|
|
ret = kvmhv_set_partition_table(vcpu);
|
|
break;
|
|
case H_ENTER_NESTED:
|
|
ret = H_FUNCTION;
|
|
if (!nesting_enabled(kvm))
|
|
break;
|
|
ret = kvmhv_enter_nested_guest(vcpu);
|
|
if (ret == H_INTERRUPT) {
|
|
kvmppc_set_gpr(vcpu, 3, 0);
|
|
vcpu->arch.hcall_needed = 0;
|
|
return -EINTR;
|
|
} else if (ret == H_TOO_HARD) {
|
|
kvmppc_set_gpr(vcpu, 3, 0);
|
|
vcpu->arch.hcall_needed = 0;
|
|
return RESUME_HOST;
|
|
}
|
|
break;
|
|
case H_TLB_INVALIDATE:
|
|
ret = H_FUNCTION;
|
|
if (nesting_enabled(kvm))
|
|
ret = kvmhv_do_nested_tlbie(vcpu);
|
|
break;
|
|
case H_COPY_TOFROM_GUEST:
|
|
ret = H_FUNCTION;
|
|
if (nesting_enabled(kvm))
|
|
ret = kvmhv_copy_tofrom_guest_nested(vcpu);
|
|
break;
|
|
case H_PAGE_INIT:
|
|
ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6));
|
|
break;
|
|
case H_SVM_PAGE_IN:
|
|
ret = H_UNSUPPORTED;
|
|
if (kvmppc_get_srr1(vcpu) & MSR_S)
|
|
ret = kvmppc_h_svm_page_in(kvm,
|
|
kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6));
|
|
break;
|
|
case H_SVM_PAGE_OUT:
|
|
ret = H_UNSUPPORTED;
|
|
if (kvmppc_get_srr1(vcpu) & MSR_S)
|
|
ret = kvmppc_h_svm_page_out(kvm,
|
|
kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6));
|
|
break;
|
|
case H_SVM_INIT_START:
|
|
ret = H_UNSUPPORTED;
|
|
if (kvmppc_get_srr1(vcpu) & MSR_S)
|
|
ret = kvmppc_h_svm_init_start(kvm);
|
|
break;
|
|
case H_SVM_INIT_DONE:
|
|
ret = H_UNSUPPORTED;
|
|
if (kvmppc_get_srr1(vcpu) & MSR_S)
|
|
ret = kvmppc_h_svm_init_done(kvm);
|
|
break;
|
|
case H_SVM_INIT_ABORT:
|
|
/*
|
|
* Even if that call is made by the Ultravisor, the SSR1 value
|
|
* is the guest context one, with the secure bit clear as it has
|
|
* not yet been secured. So we can't check it here.
|
|
* Instead the kvm->arch.secure_guest flag is checked inside
|
|
* kvmppc_h_svm_init_abort().
|
|
*/
|
|
ret = kvmppc_h_svm_init_abort(kvm);
|
|
break;
|
|
|
|
default:
|
|
return RESUME_HOST;
|
|
}
|
|
WARN_ON_ONCE(ret == H_TOO_HARD);
|
|
kvmppc_set_gpr(vcpu, 3, ret);
|
|
vcpu->arch.hcall_needed = 0;
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/*
|
|
* Handle H_CEDE in the P9 path where we don't call the real-mode hcall
|
|
* handlers in book3s_hv_rmhandlers.S.
|
|
*
|
|
* This has to be done early, not in kvmppc_pseries_do_hcall(), so
|
|
* that the cede logic in kvmppc_run_single_vcpu() works properly.
|
|
*/
|
|
static void kvmppc_cede(struct kvm_vcpu *vcpu)
|
|
{
|
|
__kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
|
|
vcpu->arch.ceded = 1;
|
|
smp_mb();
|
|
if (vcpu->arch.prodded) {
|
|
vcpu->arch.prodded = 0;
|
|
smp_mb();
|
|
vcpu->arch.ceded = 0;
|
|
}
|
|
}
|
|
|
|
static int kvmppc_hcall_impl_hv(unsigned long cmd)
|
|
{
|
|
switch (cmd) {
|
|
case H_CEDE:
|
|
case H_PROD:
|
|
case H_CONFER:
|
|
case H_REGISTER_VPA:
|
|
case H_SET_MODE:
|
|
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
|
case H_GET_TCE:
|
|
case H_PUT_TCE:
|
|
case H_PUT_TCE_INDIRECT:
|
|
case H_STUFF_TCE:
|
|
#endif
|
|
case H_LOGICAL_CI_LOAD:
|
|
case H_LOGICAL_CI_STORE:
|
|
#ifdef CONFIG_KVM_XICS
|
|
case H_XIRR:
|
|
case H_CPPR:
|
|
case H_EOI:
|
|
case H_IPI:
|
|
case H_IPOLL:
|
|
case H_XIRR_X:
|
|
#endif
|
|
case H_PAGE_INIT:
|
|
case H_RPT_INVALIDATE:
|
|
return 1;
|
|
}
|
|
|
|
/* See if it's in the real-mode table */
|
|
return kvmppc_hcall_impl_hv_realmode(cmd);
|
|
}
|
|
|
|
static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
|
|
{
|
|
ppc_inst_t last_inst;
|
|
|
|
if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
|
|
EMULATE_DONE) {
|
|
/*
|
|
* Fetch failed, so return to guest and
|
|
* try executing it again.
|
|
*/
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
|
|
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
|
|
vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
|
|
return RESUME_HOST;
|
|
} else {
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
|
|
(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
|
|
return RESUME_GUEST;
|
|
}
|
|
}
|
|
|
|
static void do_nothing(void *x)
|
|
{
|
|
}
|
|
|
|
static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
|
|
{
|
|
int thr, cpu, pcpu, nthreads;
|
|
struct kvm_vcpu *v;
|
|
unsigned long dpdes;
|
|
|
|
nthreads = vcpu->kvm->arch.emul_smt_mode;
|
|
dpdes = 0;
|
|
cpu = vcpu->vcpu_id & ~(nthreads - 1);
|
|
for (thr = 0; thr < nthreads; ++thr, ++cpu) {
|
|
v = kvmppc_find_vcpu(vcpu->kvm, cpu);
|
|
if (!v)
|
|
continue;
|
|
/*
|
|
* If the vcpu is currently running on a physical cpu thread,
|
|
* interrupt it in order to pull it out of the guest briefly,
|
|
* which will update its vcore->dpdes value.
|
|
*/
|
|
pcpu = READ_ONCE(v->cpu);
|
|
if (pcpu >= 0)
|
|
smp_call_function_single(pcpu, do_nothing, NULL, 1);
|
|
if (kvmppc_doorbell_pending(v))
|
|
dpdes |= 1 << thr;
|
|
}
|
|
return dpdes;
|
|
}
|
|
|
|
/*
|
|
* On POWER9, emulate doorbell-related instructions in order to
|
|
* give the guest the illusion of running on a multi-threaded core.
|
|
* The instructions emulated are msgsndp, msgclrp, mfspr TIR,
|
|
* and mfspr DPDES.
|
|
*/
|
|
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 inst, rb, thr;
|
|
unsigned long arg;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_vcpu *tvcpu;
|
|
ppc_inst_t pinst;
|
|
|
|
if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
|
|
return RESUME_GUEST;
|
|
inst = ppc_inst_val(pinst);
|
|
if (get_op(inst) != 31)
|
|
return EMULATE_FAIL;
|
|
rb = get_rb(inst);
|
|
thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
|
|
switch (get_xop(inst)) {
|
|
case OP_31_XOP_MSGSNDP:
|
|
arg = kvmppc_get_gpr(vcpu, rb);
|
|
if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
|
|
break;
|
|
arg &= 0x7f;
|
|
if (arg >= kvm->arch.emul_smt_mode)
|
|
break;
|
|
tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
|
|
if (!tvcpu)
|
|
break;
|
|
if (!tvcpu->arch.doorbell_request) {
|
|
tvcpu->arch.doorbell_request = 1;
|
|
kvmppc_fast_vcpu_kick_hv(tvcpu);
|
|
}
|
|
break;
|
|
case OP_31_XOP_MSGCLRP:
|
|
arg = kvmppc_get_gpr(vcpu, rb);
|
|
if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
|
|
break;
|
|
vcpu->arch.vcore->dpdes = 0;
|
|
vcpu->arch.doorbell_request = 0;
|
|
break;
|
|
case OP_31_XOP_MFSPR:
|
|
switch (get_sprn(inst)) {
|
|
case SPRN_TIR:
|
|
arg = thr;
|
|
break;
|
|
case SPRN_DPDES:
|
|
arg = kvmppc_read_dpdes(vcpu);
|
|
break;
|
|
default:
|
|
return EMULATE_FAIL;
|
|
}
|
|
kvmppc_set_gpr(vcpu, get_rt(inst), arg);
|
|
break;
|
|
default:
|
|
return EMULATE_FAIL;
|
|
}
|
|
kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/*
|
|
* If the lppaca had pmcregs_in_use clear when we exited the guest, then
|
|
* HFSCR_PM is cleared for next entry. If the guest then tries to access
|
|
* the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
|
|
* back in the guest HFSCR will cause the next entry to load the PMU SPRs and
|
|
* allow the guest access to continue.
|
|
*/
|
|
static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
|
|
return EMULATE_FAIL;
|
|
|
|
kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
|
|
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
|
|
return EMULATE_FAIL;
|
|
|
|
kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
|
|
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
|
|
return EMULATE_FAIL;
|
|
|
|
kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
|
|
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
|
|
struct task_struct *tsk)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
int r = RESUME_HOST;
|
|
|
|
vcpu->stat.sum_exits++;
|
|
|
|
/*
|
|
* This can happen if an interrupt occurs in the last stages
|
|
* of guest entry or the first stages of guest exit (i.e. after
|
|
* setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
|
|
* and before setting it to KVM_GUEST_MODE_HOST_HV).
|
|
* That can happen due to a bug, or due to a machine check
|
|
* occurring at just the wrong time.
|
|
*/
|
|
if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) {
|
|
printk(KERN_EMERG "KVM trap in HV mode!\n");
|
|
printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
|
|
vcpu->arch.trap, kvmppc_get_pc(vcpu),
|
|
vcpu->arch.shregs.msr);
|
|
kvmppc_dump_regs(vcpu);
|
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
run->hw.hardware_exit_reason = vcpu->arch.trap;
|
|
return RESUME_HOST;
|
|
}
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
run->ready_for_interrupt_injection = 1;
|
|
switch (vcpu->arch.trap) {
|
|
/* We're good on these - the host merely wanted to get our attention */
|
|
case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
|
|
WARN_ON_ONCE(1); /* Should never happen */
|
|
vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
|
|
fallthrough;
|
|
case BOOK3S_INTERRUPT_HV_DECREMENTER:
|
|
vcpu->stat.dec_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_EXTERNAL:
|
|
case BOOK3S_INTERRUPT_H_DOORBELL:
|
|
case BOOK3S_INTERRUPT_H_VIRT:
|
|
vcpu->stat.ext_intr_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
|
|
case BOOK3S_INTERRUPT_HMI:
|
|
case BOOK3S_INTERRUPT_PERFMON:
|
|
case BOOK3S_INTERRUPT_SYSTEM_RESET:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_MACHINE_CHECK: {
|
|
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
/*
|
|
* Print the MCE event to host console. Ratelimit so the guest
|
|
* can't flood the host log.
|
|
*/
|
|
if (__ratelimit(&rs))
|
|
machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
|
|
|
|
/*
|
|
* If the guest can do FWNMI, exit to userspace so it can
|
|
* deliver a FWNMI to the guest.
|
|
* Otherwise we synthesize a machine check for the guest
|
|
* so that it knows that the machine check occurred.
|
|
*/
|
|
if (!vcpu->kvm->arch.fwnmi_enabled) {
|
|
ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
|
|
(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
|
|
kvmppc_core_queue_machine_check(vcpu, flags);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
|
|
/* Exit to guest with KVM_EXIT_NMI as exit reason */
|
|
run->exit_reason = KVM_EXIT_NMI;
|
|
run->hw.hardware_exit_reason = vcpu->arch.trap;
|
|
/* Clear out the old NMI status from run->flags */
|
|
run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
|
|
/* Now set the NMI status */
|
|
if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
|
|
run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
|
|
else
|
|
run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
|
|
|
|
r = RESUME_HOST;
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_PROGRAM:
|
|
{
|
|
ulong flags;
|
|
/*
|
|
* Normally program interrupts are delivered directly
|
|
* to the guest by the hardware, but we can get here
|
|
* as a result of a hypervisor emulation interrupt
|
|
* (e40) getting turned into a 700 by BML RTAS.
|
|
*/
|
|
flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
|
|
(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
|
|
kvmppc_core_queue_program(vcpu, flags);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_SYSCALL:
|
|
{
|
|
int i;
|
|
|
|
if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
|
|
/*
|
|
* Guest userspace executed sc 1. This can only be
|
|
* reached by the P9 path because the old path
|
|
* handles this case in realmode hcall handlers.
|
|
*/
|
|
if (!kvmhv_vcpu_is_radix(vcpu)) {
|
|
/*
|
|
* A guest could be running PR KVM, so this
|
|
* may be a PR KVM hcall. It must be reflected
|
|
* to the guest kernel as a sc interrupt.
|
|
*/
|
|
kvmppc_core_queue_syscall(vcpu);
|
|
} else {
|
|
/*
|
|
* Radix guests can not run PR KVM or nested HV
|
|
* hash guests which might run PR KVM, so this
|
|
* is always a privilege fault. Send a program
|
|
* check to guest kernel.
|
|
*/
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* hcall - gather args and set exit_reason. This will next be
|
|
* handled by kvmppc_pseries_do_hcall which may be able to deal
|
|
* with it and resume guest, or may punt to userspace.
|
|
*/
|
|
run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
|
|
for (i = 0; i < 9; ++i)
|
|
run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
|
|
run->exit_reason = KVM_EXIT_PAPR_HCALL;
|
|
vcpu->arch.hcall_needed = 1;
|
|
r = RESUME_HOST;
|
|
break;
|
|
}
|
|
/*
|
|
* We get these next two if the guest accesses a page which it thinks
|
|
* it has mapped but which is not actually present, either because
|
|
* it is for an emulated I/O device or because the corresonding
|
|
* host page has been paged out.
|
|
*
|
|
* Any other HDSI/HISI interrupts have been handled already for P7/8
|
|
* guests. For POWER9 hash guests not using rmhandlers, basic hash
|
|
* fault handling is done here.
|
|
*/
|
|
case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
|
|
unsigned long vsid;
|
|
long err;
|
|
|
|
if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
|
|
unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
|
|
r = RESUME_GUEST; /* Just retry if it's the canary */
|
|
break;
|
|
}
|
|
|
|
if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
/*
|
|
* Radix doesn't require anything, and pre-ISAv3.0 hash
|
|
* already attempted to handle this in rmhandlers. The
|
|
* hash fault handling below is v3 only (it uses ASDR
|
|
* via fault_gpa).
|
|
*/
|
|
r = RESUME_PAGE_FAULT;
|
|
break;
|
|
}
|
|
|
|
if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
|
|
kvmppc_core_queue_data_storage(vcpu,
|
|
kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
|
|
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
|
|
if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
|
|
vsid = vcpu->kvm->arch.vrma_slb_v;
|
|
else
|
|
vsid = vcpu->arch.fault_gpa;
|
|
|
|
err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
|
|
vsid, vcpu->arch.fault_dsisr, true);
|
|
if (err == 0) {
|
|
r = RESUME_GUEST;
|
|
} else if (err == -1 || err == -2) {
|
|
r = RESUME_PAGE_FAULT;
|
|
} else {
|
|
kvmppc_core_queue_data_storage(vcpu,
|
|
kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
|
|
vcpu->arch.fault_dar, err);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_H_INST_STORAGE: {
|
|
unsigned long vsid;
|
|
long err;
|
|
|
|
vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
|
|
vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
|
|
DSISR_SRR1_MATCH_64S;
|
|
if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
/*
|
|
* Radix doesn't require anything, and pre-ISAv3.0 hash
|
|
* already attempted to handle this in rmhandlers. The
|
|
* hash fault handling below is v3 only (it uses ASDR
|
|
* via fault_gpa).
|
|
*/
|
|
if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
|
|
vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
|
|
r = RESUME_PAGE_FAULT;
|
|
break;
|
|
}
|
|
|
|
if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
|
|
kvmppc_core_queue_inst_storage(vcpu,
|
|
vcpu->arch.fault_dsisr |
|
|
(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
|
|
if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
|
|
vsid = vcpu->kvm->arch.vrma_slb_v;
|
|
else
|
|
vsid = vcpu->arch.fault_gpa;
|
|
|
|
err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
|
|
vsid, vcpu->arch.fault_dsisr, false);
|
|
if (err == 0) {
|
|
r = RESUME_GUEST;
|
|
} else if (err == -1) {
|
|
r = RESUME_PAGE_FAULT;
|
|
} else {
|
|
kvmppc_core_queue_inst_storage(vcpu,
|
|
err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This occurs if the guest executes an illegal instruction.
|
|
* If the guest debug is disabled, generate a program interrupt
|
|
* to the guest. If guest debug is enabled, we need to check
|
|
* whether the instruction is a software breakpoint instruction.
|
|
* Accordingly return to Guest or Host.
|
|
*/
|
|
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
|
|
if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
|
|
vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
|
|
swab32(vcpu->arch.emul_inst) :
|
|
vcpu->arch.emul_inst;
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
|
|
r = kvmppc_emulate_debug_inst(vcpu);
|
|
} else {
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
|
|
(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
case BOOK3S_INTERRUPT_HV_SOFTPATCH:
|
|
/*
|
|
* This occurs for various TM-related instructions that
|
|
* we need to emulate on POWER9 DD2.2. We have already
|
|
* handled the cases where the guest was in real-suspend
|
|
* mode and was transitioning to transactional state.
|
|
*/
|
|
r = kvmhv_p9_tm_emulation(vcpu);
|
|
if (r != -1)
|
|
break;
|
|
fallthrough; /* go to facility unavailable handler */
|
|
#endif
|
|
|
|
/*
|
|
* This occurs if the guest (kernel or userspace), does something that
|
|
* is prohibited by HFSCR.
|
|
* On POWER9, this could be a doorbell instruction that we need
|
|
* to emulate.
|
|
* Otherwise, we just generate a program interrupt to the guest.
|
|
*/
|
|
case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
|
|
u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
|
|
|
|
r = EMULATE_FAIL;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
if (cause == FSCR_MSGP_LG)
|
|
r = kvmppc_emulate_doorbell_instr(vcpu);
|
|
if (cause == FSCR_PM_LG)
|
|
r = kvmppc_pmu_unavailable(vcpu);
|
|
if (cause == FSCR_EBB_LG)
|
|
r = kvmppc_ebb_unavailable(vcpu);
|
|
if (cause == FSCR_TM_LG)
|
|
r = kvmppc_tm_unavailable(vcpu);
|
|
}
|
|
if (r == EMULATE_FAIL) {
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
|
|
(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case BOOK3S_INTERRUPT_HV_RM_HARD:
|
|
r = RESUME_PASSTHROUGH;
|
|
break;
|
|
default:
|
|
kvmppc_dump_regs(vcpu);
|
|
printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
|
|
vcpu->arch.trap, kvmppc_get_pc(vcpu),
|
|
__kvmppc_get_msr_hv(vcpu));
|
|
run->hw.hardware_exit_reason = vcpu->arch.trap;
|
|
r = RESUME_HOST;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
int srcu_idx;
|
|
|
|
vcpu->stat.sum_exits++;
|
|
|
|
/*
|
|
* This can happen if an interrupt occurs in the last stages
|
|
* of guest entry or the first stages of guest exit (i.e. after
|
|
* setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
|
|
* and before setting it to KVM_GUEST_MODE_HOST_HV).
|
|
* That can happen due to a bug, or due to a machine check
|
|
* occurring at just the wrong time.
|
|
*/
|
|
if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
|
|
pr_emerg("KVM trap in HV mode while nested!\n");
|
|
pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
|
|
vcpu->arch.trap, kvmppc_get_pc(vcpu),
|
|
__kvmppc_get_msr_hv(vcpu));
|
|
kvmppc_dump_regs(vcpu);
|
|
return RESUME_HOST;
|
|
}
|
|
switch (vcpu->arch.trap) {
|
|
/* We're good on these - the host merely wanted to get our attention */
|
|
case BOOK3S_INTERRUPT_HV_DECREMENTER:
|
|
vcpu->stat.dec_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_EXTERNAL:
|
|
vcpu->stat.ext_intr_exits++;
|
|
r = RESUME_HOST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_H_DOORBELL:
|
|
case BOOK3S_INTERRUPT_H_VIRT:
|
|
vcpu->stat.ext_intr_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
/* These need to go to the nested HV */
|
|
case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
|
|
vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
|
|
vcpu->stat.dec_exits++;
|
|
r = RESUME_HOST;
|
|
break;
|
|
/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
|
|
case BOOK3S_INTERRUPT_HMI:
|
|
case BOOK3S_INTERRUPT_PERFMON:
|
|
case BOOK3S_INTERRUPT_SYSTEM_RESET:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_MACHINE_CHECK:
|
|
{
|
|
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
/* Pass the machine check to the L1 guest */
|
|
r = RESUME_HOST;
|
|
/* Print the MCE event to host console. */
|
|
if (__ratelimit(&rs))
|
|
machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
|
|
break;
|
|
}
|
|
/*
|
|
* We get these next two if the guest accesses a page which it thinks
|
|
* it has mapped but which is not actually present, either because
|
|
* it is for an emulated I/O device or because the corresonding
|
|
* host page has been paged out.
|
|
*/
|
|
case BOOK3S_INTERRUPT_H_DATA_STORAGE:
|
|
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = kvmhv_nested_page_fault(vcpu);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
|
|
break;
|
|
case BOOK3S_INTERRUPT_H_INST_STORAGE:
|
|
vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
|
|
vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
|
|
DSISR_SRR1_MATCH_64S;
|
|
if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
|
|
vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
|
|
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = kvmhv_nested_page_fault(vcpu);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
|
|
break;
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
case BOOK3S_INTERRUPT_HV_SOFTPATCH:
|
|
/*
|
|
* This occurs for various TM-related instructions that
|
|
* we need to emulate on POWER9 DD2.2. We have already
|
|
* handled the cases where the guest was in real-suspend
|
|
* mode and was transitioning to transactional state.
|
|
*/
|
|
r = kvmhv_p9_tm_emulation(vcpu);
|
|
if (r != -1)
|
|
break;
|
|
fallthrough; /* go to facility unavailable handler */
|
|
#endif
|
|
|
|
case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
|
|
u64 cause = vcpu->arch.hfscr >> 56;
|
|
|
|
/*
|
|
* Only pass HFU interrupts to the L1 if the facility is
|
|
* permitted but disabled by the L1's HFSCR, otherwise
|
|
* the interrupt does not make sense to the L1 so turn
|
|
* it into a HEAI.
|
|
*/
|
|
if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
|
|
(vcpu->arch.nested_hfscr & (1UL << cause))) {
|
|
ppc_inst_t pinst;
|
|
vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
|
|
|
|
/*
|
|
* If the fetch failed, return to guest and
|
|
* try executing it again.
|
|
*/
|
|
r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
|
|
vcpu->arch.emul_inst = ppc_inst_val(pinst);
|
|
if (r != EMULATE_DONE)
|
|
r = RESUME_GUEST;
|
|
else
|
|
r = RESUME_HOST;
|
|
} else {
|
|
r = RESUME_HOST;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case BOOK3S_INTERRUPT_HV_RM_HARD:
|
|
vcpu->arch.trap = 0;
|
|
r = RESUME_GUEST;
|
|
if (!xics_on_xive())
|
|
kvmppc_xics_rm_complete(vcpu, 0);
|
|
break;
|
|
case BOOK3S_INTERRUPT_SYSCALL:
|
|
{
|
|
unsigned long req = kvmppc_get_gpr(vcpu, 3);
|
|
|
|
/*
|
|
* The H_RPT_INVALIDATE hcalls issued by nested
|
|
* guests for process-scoped invalidations when
|
|
* GTSE=0, are handled here in L0.
|
|
*/
|
|
if (req == H_RPT_INVALIDATE) {
|
|
r = kvmppc_nested_h_rpt_invalidate(vcpu);
|
|
break;
|
|
}
|
|
|
|
r = RESUME_HOST;
|
|
break;
|
|
}
|
|
default:
|
|
r = RESUME_HOST;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
int i;
|
|
|
|
memset(sregs, 0, sizeof(struct kvm_sregs));
|
|
sregs->pvr = vcpu->arch.pvr;
|
|
for (i = 0; i < vcpu->arch.slb_max; i++) {
|
|
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
|
|
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
int i, j;
|
|
|
|
/* Only accept the same PVR as the host's, since we can't spoof it */
|
|
if (sregs->pvr != vcpu->arch.pvr)
|
|
return -EINVAL;
|
|
|
|
j = 0;
|
|
for (i = 0; i < vcpu->arch.slb_nr; i++) {
|
|
if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
|
|
vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
|
|
vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
|
|
++j;
|
|
}
|
|
}
|
|
vcpu->arch.slb_max = j;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enforce limits on guest LPCR values based on hardware availability,
|
|
* guest configuration, and possibly hypervisor support and security
|
|
* concerns.
|
|
*/
|
|
unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
|
|
{
|
|
/* LPCR_TC only applies to HPT guests */
|
|
if (kvm_is_radix(kvm))
|
|
lpcr &= ~LPCR_TC;
|
|
|
|
/* On POWER8 and above, userspace can modify AIL */
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
lpcr &= ~LPCR_AIL;
|
|
if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
|
|
lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
|
|
/*
|
|
* On some POWER9s we force AIL off for radix guests to prevent
|
|
* executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
|
|
* guest, which can result in Q0 translations with LPID=0 PID=PIDR to
|
|
* be cached, which the host TLB management does not expect.
|
|
*/
|
|
if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
|
|
lpcr &= ~LPCR_AIL;
|
|
|
|
/*
|
|
* On POWER9, allow userspace to enable large decrementer for the
|
|
* guest, whether or not the host has it enabled.
|
|
*/
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
lpcr &= ~LPCR_LD;
|
|
|
|
return lpcr;
|
|
}
|
|
|
|
static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
|
|
{
|
|
if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
|
|
WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
|
|
lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
|
|
}
|
|
}
|
|
|
|
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
|
|
bool preserve_top32)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvmppc_vcore *vc = vcpu->arch.vcore;
|
|
u64 mask;
|
|
|
|
spin_lock(&vc->lock);
|
|
|
|
/*
|
|
* Userspace can only modify
|
|
* DPFD (default prefetch depth), ILE (interrupt little-endian),
|
|
* TC (translation control), AIL (alternate interrupt location),
|
|
* LD (large decrementer).
|
|
* These are subject to restrictions from kvmppc_filter_lcpr_hv().
|
|
*/
|
|
mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
|
|
|
|
/* Broken 32-bit version of LPCR must not clear top bits */
|
|
if (preserve_top32)
|
|
mask &= 0xFFFFFFFF;
|
|
|
|
new_lpcr = kvmppc_filter_lpcr_hv(kvm,
|
|
(vc->lpcr & ~mask) | (new_lpcr & mask));
|
|
|
|
/*
|
|
* If ILE (interrupt little-endian) has changed, update the
|
|
* MSR_LE bit in the intr_msr for each vcpu in this vcore.
|
|
*/
|
|
if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long i;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (vcpu->arch.vcore != vc)
|
|
continue;
|
|
if (new_lpcr & LPCR_ILE)
|
|
vcpu->arch.intr_msr |= MSR_LE;
|
|
else
|
|
vcpu->arch.intr_msr &= ~MSR_LE;
|
|
}
|
|
}
|
|
|
|
vc->lpcr = new_lpcr;
|
|
kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
|
|
|
|
spin_unlock(&vc->lock);
|
|
}
|
|
|
|
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
|
|
union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
long int i;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_DEBUG_INST:
|
|
*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
|
|
break;
|
|
case KVM_REG_PPC_HIOR:
|
|
*val = get_reg_val(id, 0);
|
|
break;
|
|
case KVM_REG_PPC_DABR:
|
|
*val = get_reg_val(id, vcpu->arch.dabr);
|
|
break;
|
|
case KVM_REG_PPC_DABRX:
|
|
*val = get_reg_val(id, vcpu->arch.dabrx);
|
|
break;
|
|
case KVM_REG_PPC_DSCR:
|
|
*val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_PURR:
|
|
*val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_SPURR:
|
|
*val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_AMR:
|
|
*val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_UAMOR:
|
|
*val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
|
|
i = id - KVM_REG_PPC_MMCR0;
|
|
*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
|
|
break;
|
|
case KVM_REG_PPC_MMCR2:
|
|
*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
|
|
break;
|
|
case KVM_REG_PPC_MMCRA:
|
|
*val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_MMCRS:
|
|
*val = get_reg_val(id, vcpu->arch.mmcrs);
|
|
break;
|
|
case KVM_REG_PPC_MMCR3:
|
|
*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
|
|
break;
|
|
case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
|
|
i = id - KVM_REG_PPC_PMC1;
|
|
*val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
|
|
break;
|
|
case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
|
|
i = id - KVM_REG_PPC_SPMC1;
|
|
*val = get_reg_val(id, vcpu->arch.spmc[i]);
|
|
break;
|
|
case KVM_REG_PPC_SIAR:
|
|
*val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_SDAR:
|
|
*val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_SIER:
|
|
*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
|
|
break;
|
|
case KVM_REG_PPC_SIER2:
|
|
*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
|
|
break;
|
|
case KVM_REG_PPC_SIER3:
|
|
*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
|
|
break;
|
|
case KVM_REG_PPC_IAMR:
|
|
*val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_PSPB:
|
|
*val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_DPDES:
|
|
/*
|
|
* On POWER9, where we are emulating msgsndp etc.,
|
|
* we return 1 bit for each vcpu, which can come from
|
|
* either vcore->dpdes or doorbell_request.
|
|
* On POWER8, doorbell_request is 0.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
*val = get_reg_val(id, vcpu->arch.doorbell_request);
|
|
else
|
|
*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
|
|
break;
|
|
case KVM_REG_PPC_VTB:
|
|
*val = get_reg_val(id, kvmppc_get_vtb(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_DAWR:
|
|
*val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_DAWRX:
|
|
*val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_DAWR1:
|
|
*val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_DAWRX1:
|
|
*val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_CIABR:
|
|
*val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_CSIGR:
|
|
*val = get_reg_val(id, vcpu->arch.csigr);
|
|
break;
|
|
case KVM_REG_PPC_TACR:
|
|
*val = get_reg_val(id, vcpu->arch.tacr);
|
|
break;
|
|
case KVM_REG_PPC_TCSCR:
|
|
*val = get_reg_val(id, vcpu->arch.tcscr);
|
|
break;
|
|
case KVM_REG_PPC_PID:
|
|
*val = get_reg_val(id, kvmppc_get_pid(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_ACOP:
|
|
*val = get_reg_val(id, vcpu->arch.acop);
|
|
break;
|
|
case KVM_REG_PPC_WORT:
|
|
*val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_TIDR:
|
|
*val = get_reg_val(id, vcpu->arch.tid);
|
|
break;
|
|
case KVM_REG_PPC_PSSCR:
|
|
*val = get_reg_val(id, vcpu->arch.psscr);
|
|
break;
|
|
case KVM_REG_PPC_VPA_ADDR:
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
break;
|
|
case KVM_REG_PPC_VPA_SLB:
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
|
|
val->vpaval.length = vcpu->arch.slb_shadow.len;
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
break;
|
|
case KVM_REG_PPC_VPA_DTL:
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
val->vpaval.addr = vcpu->arch.dtl.next_gpa;
|
|
val->vpaval.length = vcpu->arch.dtl.len;
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
break;
|
|
case KVM_REG_PPC_TB_OFFSET:
|
|
*val = get_reg_val(id, kvmppc_get_tb_offset(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_LPCR:
|
|
case KVM_REG_PPC_LPCR_64:
|
|
*val = get_reg_val(id, kvmppc_get_lpcr(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_PPR:
|
|
*val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
|
|
break;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
case KVM_REG_PPC_TFHAR:
|
|
*val = get_reg_val(id, vcpu->arch.tfhar);
|
|
break;
|
|
case KVM_REG_PPC_TFIAR:
|
|
*val = get_reg_val(id, vcpu->arch.tfiar);
|
|
break;
|
|
case KVM_REG_PPC_TEXASR:
|
|
*val = get_reg_val(id, vcpu->arch.texasr);
|
|
break;
|
|
case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
|
|
i = id - KVM_REG_PPC_TM_GPR0;
|
|
*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
|
|
break;
|
|
case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
|
|
{
|
|
int j;
|
|
i = id - KVM_REG_PPC_TM_VSR0;
|
|
if (i < 32)
|
|
for (j = 0; j < TS_FPRWIDTH; j++)
|
|
val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
|
|
else {
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
val->vval = vcpu->arch.vr_tm.vr[i-32];
|
|
else
|
|
r = -ENXIO;
|
|
}
|
|
break;
|
|
}
|
|
case KVM_REG_PPC_TM_CR:
|
|
*val = get_reg_val(id, vcpu->arch.cr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_XER:
|
|
*val = get_reg_val(id, vcpu->arch.xer_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_LR:
|
|
*val = get_reg_val(id, vcpu->arch.lr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_CTR:
|
|
*val = get_reg_val(id, vcpu->arch.ctr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_FPSCR:
|
|
*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
|
|
break;
|
|
case KVM_REG_PPC_TM_AMR:
|
|
*val = get_reg_val(id, vcpu->arch.amr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_PPR:
|
|
*val = get_reg_val(id, vcpu->arch.ppr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_VRSAVE:
|
|
*val = get_reg_val(id, vcpu->arch.vrsave_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_VSCR:
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
|
|
else
|
|
r = -ENXIO;
|
|
break;
|
|
case KVM_REG_PPC_TM_DSCR:
|
|
*val = get_reg_val(id, vcpu->arch.dscr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_TAR:
|
|
*val = get_reg_val(id, vcpu->arch.tar_tm);
|
|
break;
|
|
#endif
|
|
case KVM_REG_PPC_ARCH_COMPAT:
|
|
*val = get_reg_val(id, kvmppc_get_arch_compat(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_DEC_EXPIRY:
|
|
*val = get_reg_val(id, kvmppc_get_dec_expires(vcpu));
|
|
break;
|
|
case KVM_REG_PPC_ONLINE:
|
|
*val = get_reg_val(id, vcpu->arch.online);
|
|
break;
|
|
case KVM_REG_PPC_PTCR:
|
|
*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
|
|
break;
|
|
case KVM_REG_PPC_FSCR:
|
|
*val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
|
|
union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
long int i;
|
|
unsigned long addr, len;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_HIOR:
|
|
/* Only allow this to be set to zero */
|
|
if (set_reg_val(id, *val))
|
|
r = -EINVAL;
|
|
break;
|
|
case KVM_REG_PPC_DABR:
|
|
vcpu->arch.dabr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_DABRX:
|
|
vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
|
|
break;
|
|
case KVM_REG_PPC_DSCR:
|
|
kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_PURR:
|
|
kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_SPURR:
|
|
kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_AMR:
|
|
kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_UAMOR:
|
|
kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
|
|
i = id - KVM_REG_PPC_MMCR0;
|
|
kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_MMCR2:
|
|
kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_MMCRA:
|
|
kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_MMCRS:
|
|
vcpu->arch.mmcrs = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_MMCR3:
|
|
*val = get_reg_val(id, vcpu->arch.mmcr[3]);
|
|
break;
|
|
case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
|
|
i = id - KVM_REG_PPC_PMC1;
|
|
kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
|
|
i = id - KVM_REG_PPC_SPMC1;
|
|
vcpu->arch.spmc[i] = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_SIAR:
|
|
kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_SDAR:
|
|
kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_SIER:
|
|
kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_SIER2:
|
|
kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_SIER3:
|
|
kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_IAMR:
|
|
kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_PSPB:
|
|
kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_DPDES:
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
|
|
else
|
|
vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_VTB:
|
|
kvmppc_set_vtb(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_DAWR:
|
|
kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_DAWRX:
|
|
kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
|
|
break;
|
|
case KVM_REG_PPC_DAWR1:
|
|
kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_DAWRX1:
|
|
kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
|
|
break;
|
|
case KVM_REG_PPC_CIABR:
|
|
kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
|
|
/* Don't allow setting breakpoints in hypervisor code */
|
|
if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
|
|
kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
|
|
break;
|
|
case KVM_REG_PPC_CSIGR:
|
|
vcpu->arch.csigr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TACR:
|
|
vcpu->arch.tacr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TCSCR:
|
|
vcpu->arch.tcscr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_PID:
|
|
kvmppc_set_pid(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_ACOP:
|
|
vcpu->arch.acop = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_WORT:
|
|
kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_TIDR:
|
|
vcpu->arch.tid = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_PSSCR:
|
|
vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
|
|
break;
|
|
case KVM_REG_PPC_VPA_ADDR:
|
|
addr = set_reg_val(id, *val);
|
|
r = -EINVAL;
|
|
if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
|
|
vcpu->arch.dtl.next_gpa))
|
|
break;
|
|
r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
|
|
break;
|
|
case KVM_REG_PPC_VPA_SLB:
|
|
addr = val->vpaval.addr;
|
|
len = val->vpaval.length;
|
|
r = -EINVAL;
|
|
if (addr && !vcpu->arch.vpa.next_gpa)
|
|
break;
|
|
r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
|
|
break;
|
|
case KVM_REG_PPC_VPA_DTL:
|
|
addr = val->vpaval.addr;
|
|
len = val->vpaval.length;
|
|
r = -EINVAL;
|
|
if (addr && (len < sizeof(struct dtl_entry) ||
|
|
!vcpu->arch.vpa.next_gpa))
|
|
break;
|
|
len -= len % sizeof(struct dtl_entry);
|
|
r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
|
|
break;
|
|
case KVM_REG_PPC_TB_OFFSET:
|
|
{
|
|
/* round up to multiple of 2^24 */
|
|
u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
|
|
|
|
/*
|
|
* Now that we know the timebase offset, update the
|
|
* decrementer expiry with a guest timebase value. If
|
|
* the userspace does not set DEC_EXPIRY, this ensures
|
|
* a migrated vcpu at least starts with an expired
|
|
* decrementer, which is better than a large one that
|
|
* causes a hang.
|
|
*/
|
|
kvmppc_set_tb_offset(vcpu, tb_offset);
|
|
if (!kvmppc_get_dec_expires(vcpu) && tb_offset)
|
|
kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset);
|
|
|
|
kvmppc_set_tb_offset(vcpu, tb_offset);
|
|
break;
|
|
}
|
|
case KVM_REG_PPC_LPCR:
|
|
kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
|
|
break;
|
|
case KVM_REG_PPC_LPCR_64:
|
|
kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
|
|
break;
|
|
case KVM_REG_PPC_PPR:
|
|
kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
case KVM_REG_PPC_TFHAR:
|
|
vcpu->arch.tfhar = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TFIAR:
|
|
vcpu->arch.tfiar = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TEXASR:
|
|
vcpu->arch.texasr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
|
|
i = id - KVM_REG_PPC_TM_GPR0;
|
|
vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
|
|
{
|
|
int j;
|
|
i = id - KVM_REG_PPC_TM_VSR0;
|
|
if (i < 32)
|
|
for (j = 0; j < TS_FPRWIDTH; j++)
|
|
vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
|
|
else
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
vcpu->arch.vr_tm.vr[i-32] = val->vval;
|
|
else
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
case KVM_REG_PPC_TM_CR:
|
|
vcpu->arch.cr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_XER:
|
|
vcpu->arch.xer_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_LR:
|
|
vcpu->arch.lr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_CTR:
|
|
vcpu->arch.ctr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_FPSCR:
|
|
vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_AMR:
|
|
vcpu->arch.amr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_PPR:
|
|
vcpu->arch.ppr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_VRSAVE:
|
|
vcpu->arch.vrsave_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_VSCR:
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
|
|
else
|
|
r = - ENXIO;
|
|
break;
|
|
case KVM_REG_PPC_TM_DSCR:
|
|
vcpu->arch.dscr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_TAR:
|
|
vcpu->arch.tar_tm = set_reg_val(id, *val);
|
|
break;
|
|
#endif
|
|
case KVM_REG_PPC_ARCH_COMPAT:
|
|
r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_DEC_EXPIRY:
|
|
kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
case KVM_REG_PPC_ONLINE:
|
|
i = set_reg_val(id, *val);
|
|
if (i && !vcpu->arch.online)
|
|
atomic_inc(&vcpu->arch.vcore->online_count);
|
|
else if (!i && vcpu->arch.online)
|
|
atomic_dec(&vcpu->arch.vcore->online_count);
|
|
vcpu->arch.online = i;
|
|
break;
|
|
case KVM_REG_PPC_PTCR:
|
|
vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_FSCR:
|
|
kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* On POWER9, threads are independent and can be in different partitions.
|
|
* Therefore we consider each thread to be a subcore.
|
|
* There is a restriction that all threads have to be in the same
|
|
* MMU mode (radix or HPT), unfortunately, but since we only support
|
|
* HPT guests on a HPT host so far, that isn't an impediment yet.
|
|
*/
|
|
static int threads_per_vcore(struct kvm *kvm)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
return 1;
|
|
return threads_per_subcore;
|
|
}
|
|
|
|
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
|
|
{
|
|
struct kvmppc_vcore *vcore;
|
|
|
|
vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
|
|
|
|
if (vcore == NULL)
|
|
return NULL;
|
|
|
|
spin_lock_init(&vcore->lock);
|
|
spin_lock_init(&vcore->stoltb_lock);
|
|
rcuwait_init(&vcore->wait);
|
|
vcore->preempt_tb = TB_NIL;
|
|
vcore->lpcr = kvm->arch.lpcr;
|
|
vcore->first_vcpuid = id;
|
|
vcore->kvm = kvm;
|
|
INIT_LIST_HEAD(&vcore->preempt_list);
|
|
|
|
return vcore;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
|
|
static struct debugfs_timings_element {
|
|
const char *name;
|
|
size_t offset;
|
|
} timings[] = {
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
|
|
{"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)},
|
|
{"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
|
|
{"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)},
|
|
{"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)},
|
|
{"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)},
|
|
{"hypercall", offsetof(struct kvm_vcpu, arch.hcall)},
|
|
{"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)},
|
|
#else
|
|
{"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
|
|
{"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
|
|
{"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
|
|
{"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
|
|
{"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
|
|
#endif
|
|
};
|
|
|
|
#define N_TIMINGS (ARRAY_SIZE(timings))
|
|
|
|
struct debugfs_timings_state {
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned int buflen;
|
|
char buf[N_TIMINGS * 100];
|
|
};
|
|
|
|
static int debugfs_timings_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct kvm_vcpu *vcpu = inode->i_private;
|
|
struct debugfs_timings_state *p;
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
kvm_get_kvm(vcpu->kvm);
|
|
p->vcpu = vcpu;
|
|
file->private_data = p;
|
|
|
|
return nonseekable_open(inode, file);
|
|
}
|
|
|
|
static int debugfs_timings_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct debugfs_timings_state *p = file->private_data;
|
|
|
|
kvm_put_kvm(p->vcpu->kvm);
|
|
kfree(p);
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
struct debugfs_timings_state *p = file->private_data;
|
|
struct kvm_vcpu *vcpu = p->vcpu;
|
|
char *s, *buf_end;
|
|
struct kvmhv_tb_accumulator tb;
|
|
u64 count;
|
|
loff_t pos;
|
|
ssize_t n;
|
|
int i, loops;
|
|
bool ok;
|
|
|
|
if (!p->buflen) {
|
|
s = p->buf;
|
|
buf_end = s + sizeof(p->buf);
|
|
for (i = 0; i < N_TIMINGS; ++i) {
|
|
struct kvmhv_tb_accumulator *acc;
|
|
|
|
acc = (struct kvmhv_tb_accumulator *)
|
|
((unsigned long)vcpu + timings[i].offset);
|
|
ok = false;
|
|
for (loops = 0; loops < 1000; ++loops) {
|
|
count = acc->seqcount;
|
|
if (!(count & 1)) {
|
|
smp_rmb();
|
|
tb = *acc;
|
|
smp_rmb();
|
|
if (count == acc->seqcount) {
|
|
ok = true;
|
|
break;
|
|
}
|
|
}
|
|
udelay(1);
|
|
}
|
|
if (!ok)
|
|
snprintf(s, buf_end - s, "%s: stuck\n",
|
|
timings[i].name);
|
|
else
|
|
snprintf(s, buf_end - s,
|
|
"%s: %llu %llu %llu %llu\n",
|
|
timings[i].name, count / 2,
|
|
tb_to_ns(tb.tb_total),
|
|
tb_to_ns(tb.tb_min),
|
|
tb_to_ns(tb.tb_max));
|
|
s += strlen(s);
|
|
}
|
|
p->buflen = s - p->buf;
|
|
}
|
|
|
|
pos = *ppos;
|
|
if (pos >= p->buflen)
|
|
return 0;
|
|
if (len > p->buflen - pos)
|
|
len = p->buflen - pos;
|
|
n = copy_to_user(buf, p->buf + pos, len);
|
|
if (n) {
|
|
if (n == len)
|
|
return -EFAULT;
|
|
len -= n;
|
|
}
|
|
*ppos = pos + len;
|
|
return len;
|
|
}
|
|
|
|
static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
return -EACCES;
|
|
}
|
|
|
|
static const struct file_operations debugfs_timings_ops = {
|
|
.owner = THIS_MODULE,
|
|
.open = debugfs_timings_open,
|
|
.release = debugfs_timings_release,
|
|
.read = debugfs_timings_read,
|
|
.write = debugfs_timings_write,
|
|
.llseek = generic_file_llseek,
|
|
};
|
|
|
|
/* Create a debugfs directory for the vcpu */
|
|
static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
|
|
debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
|
|
&debugfs_timings_ops);
|
|
return 0;
|
|
}
|
|
|
|
#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
|
|
static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
|
|
|
|
static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
int err;
|
|
int core;
|
|
struct kvmppc_vcore *vcore;
|
|
struct kvm *kvm;
|
|
unsigned int id;
|
|
|
|
kvm = vcpu->kvm;
|
|
id = vcpu->vcpu_id;
|
|
|
|
vcpu->arch.shared = &vcpu->arch.shregs;
|
|
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
|
|
/*
|
|
* The shared struct is never shared on HV,
|
|
* so we can always use host endianness
|
|
*/
|
|
#ifdef __BIG_ENDIAN__
|
|
vcpu->arch.shared_big_endian = true;
|
|
#else
|
|
vcpu->arch.shared_big_endian = false;
|
|
#endif
|
|
#endif
|
|
|
|
if (kvmhv_is_nestedv2()) {
|
|
err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
|
|
kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
|
|
kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
|
|
}
|
|
|
|
kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
|
|
/* default to host PVR, since we can't spoof it */
|
|
kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
|
|
spin_lock_init(&vcpu->arch.vpa_update_lock);
|
|
spin_lock_init(&vcpu->arch.tbacct_lock);
|
|
vcpu->arch.busy_preempt = TB_NIL;
|
|
__kvmppc_set_msr_hv(vcpu, MSR_ME);
|
|
vcpu->arch.intr_msr = MSR_SF | MSR_ME;
|
|
|
|
/*
|
|
* Set the default HFSCR for the guest from the host value.
|
|
* This value is only used on POWER9 and later.
|
|
* On >= POWER9, we want to virtualize the doorbell facility, so we
|
|
* don't set the HFSCR_MSGP bit, and that causes those instructions
|
|
* to trap and then we emulate them.
|
|
*/
|
|
kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
|
|
HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
|
|
|
|
/* On POWER10 and later, allow prefixed instructions */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_31))
|
|
kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
|
|
|
|
if (cpu_has_feature(CPU_FTR_HVMODE)) {
|
|
kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
|
|
kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
|
|
#endif
|
|
}
|
|
if (cpu_has_feature(CPU_FTR_TM_COMP))
|
|
vcpu->arch.hfscr |= HFSCR_TM;
|
|
|
|
vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
|
|
|
|
/*
|
|
* PM, EBB, TM are demand-faulted so start with it clear.
|
|
*/
|
|
kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
|
|
|
|
kvmppc_mmu_book3s_hv_init(vcpu);
|
|
|
|
vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
|
|
|
|
init_waitqueue_head(&vcpu->arch.cpu_run);
|
|
|
|
mutex_lock(&kvm->lock);
|
|
vcore = NULL;
|
|
err = -EINVAL;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
|
|
pr_devel("KVM: VCPU ID too high\n");
|
|
core = KVM_MAX_VCORES;
|
|
} else {
|
|
BUG_ON(kvm->arch.smt_mode != 1);
|
|
core = kvmppc_pack_vcpu_id(kvm, id);
|
|
}
|
|
} else {
|
|
core = id / kvm->arch.smt_mode;
|
|
}
|
|
if (core < KVM_MAX_VCORES) {
|
|
vcore = kvm->arch.vcores[core];
|
|
if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
pr_devel("KVM: collision on id %u", id);
|
|
vcore = NULL;
|
|
} else if (!vcore) {
|
|
/*
|
|
* Take mmu_setup_lock for mutual exclusion
|
|
* with kvmppc_update_lpcr().
|
|
*/
|
|
err = -ENOMEM;
|
|
vcore = kvmppc_vcore_create(kvm,
|
|
id & ~(kvm->arch.smt_mode - 1));
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
kvm->arch.vcores[core] = vcore;
|
|
kvm->arch.online_vcores++;
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
}
|
|
}
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
if (!vcore)
|
|
return err;
|
|
|
|
spin_lock(&vcore->lock);
|
|
++vcore->num_threads;
|
|
spin_unlock(&vcore->lock);
|
|
vcpu->arch.vcore = vcore;
|
|
vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
|
|
vcpu->arch.thread_cpu = -1;
|
|
vcpu->arch.prev_cpu = -1;
|
|
|
|
vcpu->arch.cpu_type = KVM_CPU_3S_64;
|
|
kvmppc_sanity_check(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
|
|
unsigned long flags)
|
|
{
|
|
int err;
|
|
int esmt = 0;
|
|
|
|
if (flags)
|
|
return -EINVAL;
|
|
if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
|
|
return -EINVAL;
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
/*
|
|
* On POWER8 (or POWER7), the threading mode is "strict",
|
|
* so we pack smt_mode vcpus per vcore.
|
|
*/
|
|
if (smt_mode > threads_per_subcore)
|
|
return -EINVAL;
|
|
} else {
|
|
/*
|
|
* On POWER9, the threading mode is "loose",
|
|
* so each vcpu gets its own vcore.
|
|
*/
|
|
esmt = smt_mode;
|
|
smt_mode = 1;
|
|
}
|
|
mutex_lock(&kvm->lock);
|
|
err = -EBUSY;
|
|
if (!kvm->arch.online_vcores) {
|
|
kvm->arch.smt_mode = smt_mode;
|
|
kvm->arch.emul_smt_mode = esmt;
|
|
err = 0;
|
|
}
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
|
|
{
|
|
if (vpa->pinned_addr)
|
|
kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
|
|
vpa->dirty);
|
|
}
|
|
|
|
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
|
|
unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
|
|
unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
if (kvmhv_is_nestedv2())
|
|
kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io);
|
|
}
|
|
|
|
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Indicate we want to get back into the guest */
|
|
return 1;
|
|
}
|
|
|
|
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long dec_nsec, now;
|
|
|
|
now = get_tb();
|
|
if (now > kvmppc_dec_expires_host_tb(vcpu)) {
|
|
/* decrementer has already gone negative */
|
|
kvmppc_core_queue_dec(vcpu);
|
|
kvmppc_core_prepare_to_enter(vcpu);
|
|
return;
|
|
}
|
|
dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
|
|
hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
|
|
vcpu->arch.timer_running = 1;
|
|
}
|
|
|
|
extern int __kvmppc_vcore_entry(void);
|
|
|
|
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
|
|
struct kvm_vcpu *vcpu, u64 tb)
|
|
{
|
|
u64 now;
|
|
|
|
if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
|
|
return;
|
|
spin_lock_irq(&vcpu->arch.tbacct_lock);
|
|
now = tb;
|
|
vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
|
|
vcpu->arch.stolen_logged;
|
|
vcpu->arch.busy_preempt = now;
|
|
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
|
|
spin_unlock_irq(&vcpu->arch.tbacct_lock);
|
|
--vc->n_runnable;
|
|
WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
|
|
}
|
|
|
|
static int kvmppc_grab_hwthread(int cpu)
|
|
{
|
|
struct paca_struct *tpaca;
|
|
long timeout = 10000;
|
|
|
|
tpaca = paca_ptrs[cpu];
|
|
|
|
/* Ensure the thread won't go into the kernel if it wakes */
|
|
tpaca->kvm_hstate.kvm_vcpu = NULL;
|
|
tpaca->kvm_hstate.kvm_vcore = NULL;
|
|
tpaca->kvm_hstate.napping = 0;
|
|
smp_wmb();
|
|
tpaca->kvm_hstate.hwthread_req = 1;
|
|
|
|
/*
|
|
* If the thread is already executing in the kernel (e.g. handling
|
|
* a stray interrupt), wait for it to get back to nap mode.
|
|
* The smp_mb() is to ensure that our setting of hwthread_req
|
|
* is visible before we look at hwthread_state, so if this
|
|
* races with the code at system_reset_pSeries and the thread
|
|
* misses our setting of hwthread_req, we are sure to see its
|
|
* setting of hwthread_state, and vice versa.
|
|
*/
|
|
smp_mb();
|
|
while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
|
|
if (--timeout <= 0) {
|
|
pr_err("KVM: couldn't grab cpu %d\n", cpu);
|
|
return -EBUSY;
|
|
}
|
|
udelay(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_release_hwthread(int cpu)
|
|
{
|
|
struct paca_struct *tpaca;
|
|
|
|
tpaca = paca_ptrs[cpu];
|
|
tpaca->kvm_hstate.hwthread_req = 0;
|
|
tpaca->kvm_hstate.kvm_vcpu = NULL;
|
|
tpaca->kvm_hstate.kvm_vcore = NULL;
|
|
tpaca->kvm_hstate.kvm_split_mode = NULL;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
|
|
|
|
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_nested_guest *nested = vcpu->arch.nested;
|
|
cpumask_t *need_tlb_flush;
|
|
int i;
|
|
|
|
if (nested)
|
|
need_tlb_flush = &nested->need_tlb_flush;
|
|
else
|
|
need_tlb_flush = &kvm->arch.need_tlb_flush;
|
|
|
|
cpu = cpu_first_tlb_thread_sibling(cpu);
|
|
for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
|
|
i += cpu_tlb_thread_sibling_step())
|
|
cpumask_set_cpu(i, need_tlb_flush);
|
|
|
|
/*
|
|
* Make sure setting of bit in need_tlb_flush precedes testing of
|
|
* cpu_in_guest. The matching barrier on the other side is hwsync
|
|
* when switching to guest MMU mode, which happens between
|
|
* cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
|
|
* being tested.
|
|
*/
|
|
smp_mb();
|
|
|
|
for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
|
|
i += cpu_tlb_thread_sibling_step()) {
|
|
struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
|
|
|
|
if (running == kvm)
|
|
smp_call_function_single(i, do_nothing, NULL, 1);
|
|
}
|
|
}
|
|
|
|
static void do_migrate_away_vcpu(void *arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = arg;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
/*
|
|
* If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
|
|
* ptesync sequence on the old CPU before migrating to a new one, in
|
|
* case we interrupted the guest between a tlbie ; eieio ;
|
|
* tlbsync; ptesync sequence.
|
|
*
|
|
* Otherwise, ptesync is sufficient for ordering tlbiel sequences.
|
|
*/
|
|
if (kvm->arch.lpcr & LPCR_GTSE)
|
|
asm volatile("eieio; tlbsync; ptesync");
|
|
else
|
|
asm volatile("ptesync");
|
|
}
|
|
|
|
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
|
|
{
|
|
struct kvm_nested_guest *nested = vcpu->arch.nested;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int prev_cpu;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_HVMODE))
|
|
return;
|
|
|
|
if (nested)
|
|
prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
|
|
else
|
|
prev_cpu = vcpu->arch.prev_cpu;
|
|
|
|
/*
|
|
* With radix, the guest can do TLB invalidations itself,
|
|
* and it could choose to use the local form (tlbiel) if
|
|
* it is invalidating a translation that has only ever been
|
|
* used on one vcpu. However, that doesn't mean it has
|
|
* only ever been used on one physical cpu, since vcpus
|
|
* can move around between pcpus. To cope with this, when
|
|
* a vcpu moves from one pcpu to another, we need to tell
|
|
* any vcpus running on the same core as this vcpu previously
|
|
* ran to flush the TLB.
|
|
*/
|
|
if (prev_cpu != pcpu) {
|
|
if (prev_cpu >= 0) {
|
|
if (cpu_first_tlb_thread_sibling(prev_cpu) !=
|
|
cpu_first_tlb_thread_sibling(pcpu))
|
|
radix_flush_cpu(kvm, prev_cpu, vcpu);
|
|
|
|
smp_call_function_single(prev_cpu,
|
|
do_migrate_away_vcpu, vcpu, 1);
|
|
}
|
|
if (nested)
|
|
nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
|
|
else
|
|
vcpu->arch.prev_cpu = pcpu;
|
|
}
|
|
}
|
|
|
|
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
|
|
{
|
|
int cpu;
|
|
struct paca_struct *tpaca;
|
|
|
|
cpu = vc->pcpu;
|
|
if (vcpu) {
|
|
if (vcpu->arch.timer_running) {
|
|
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
|
|
vcpu->arch.timer_running = 0;
|
|
}
|
|
cpu += vcpu->arch.ptid;
|
|
vcpu->cpu = vc->pcpu;
|
|
vcpu->arch.thread_cpu = cpu;
|
|
}
|
|
tpaca = paca_ptrs[cpu];
|
|
tpaca->kvm_hstate.kvm_vcpu = vcpu;
|
|
tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
|
|
tpaca->kvm_hstate.fake_suspend = 0;
|
|
/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
|
|
smp_wmb();
|
|
tpaca->kvm_hstate.kvm_vcore = vc;
|
|
if (cpu != smp_processor_id())
|
|
kvmppc_ipi_thread(cpu);
|
|
}
|
|
|
|
static void kvmppc_wait_for_nap(int n_threads)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int i, loops;
|
|
|
|
if (n_threads <= 1)
|
|
return;
|
|
for (loops = 0; loops < 1000000; ++loops) {
|
|
/*
|
|
* Check if all threads are finished.
|
|
* We set the vcore pointer when starting a thread
|
|
* and the thread clears it when finished, so we look
|
|
* for any threads that still have a non-NULL vcore ptr.
|
|
*/
|
|
for (i = 1; i < n_threads; ++i)
|
|
if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
|
|
break;
|
|
if (i == n_threads) {
|
|
HMT_medium();
|
|
return;
|
|
}
|
|
HMT_low();
|
|
}
|
|
HMT_medium();
|
|
for (i = 1; i < n_threads; ++i)
|
|
if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
|
|
pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
|
|
}
|
|
|
|
/*
|
|
* Check that we are on thread 0 and that any other threads in
|
|
* this core are off-line. Then grab the threads so they can't
|
|
* enter the kernel.
|
|
*/
|
|
static int on_primary_thread(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int thr;
|
|
|
|
/* Are we on a primary subcore? */
|
|
if (cpu_thread_in_subcore(cpu))
|
|
return 0;
|
|
|
|
thr = 0;
|
|
while (++thr < threads_per_subcore)
|
|
if (cpu_online(cpu + thr))
|
|
return 0;
|
|
|
|
/* Grab all hw threads so they can't go into the kernel */
|
|
for (thr = 1; thr < threads_per_subcore; ++thr) {
|
|
if (kvmppc_grab_hwthread(cpu + thr)) {
|
|
/* Couldn't grab one; let the others go */
|
|
do {
|
|
kvmppc_release_hwthread(cpu + thr);
|
|
} while (--thr > 0);
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A list of virtual cores for each physical CPU.
|
|
* These are vcores that could run but their runner VCPU tasks are
|
|
* (or may be) preempted.
|
|
*/
|
|
struct preempted_vcore_list {
|
|
struct list_head list;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
|
|
|
|
static void init_vcore_lists(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
|
|
spin_lock_init(&lp->lock);
|
|
INIT_LIST_HEAD(&lp->list);
|
|
}
|
|
}
|
|
|
|
static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
|
|
{
|
|
struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
|
|
|
|
WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
|
|
|
|
vc->vcore_state = VCORE_PREEMPT;
|
|
vc->pcpu = smp_processor_id();
|
|
if (vc->num_threads < threads_per_vcore(vc->kvm)) {
|
|
spin_lock(&lp->lock);
|
|
list_add_tail(&vc->preempt_list, &lp->list);
|
|
spin_unlock(&lp->lock);
|
|
}
|
|
|
|
/* Start accumulating stolen time */
|
|
kvmppc_core_start_stolen(vc, mftb());
|
|
}
|
|
|
|
static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
|
|
{
|
|
struct preempted_vcore_list *lp;
|
|
|
|
WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
|
|
|
|
kvmppc_core_end_stolen(vc, mftb());
|
|
if (!list_empty(&vc->preempt_list)) {
|
|
lp = &per_cpu(preempted_vcores, vc->pcpu);
|
|
spin_lock(&lp->lock);
|
|
list_del_init(&vc->preempt_list);
|
|
spin_unlock(&lp->lock);
|
|
}
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
}
|
|
|
|
/*
|
|
* This stores information about the virtual cores currently
|
|
* assigned to a physical core.
|
|
*/
|
|
struct core_info {
|
|
int n_subcores;
|
|
int max_subcore_threads;
|
|
int total_threads;
|
|
int subcore_threads[MAX_SUBCORES];
|
|
struct kvmppc_vcore *vc[MAX_SUBCORES];
|
|
};
|
|
|
|
/*
|
|
* This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
|
|
* respectively in 2-way micro-threading (split-core) mode on POWER8.
|
|
*/
|
|
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
|
|
|
|
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
|
|
{
|
|
memset(cip, 0, sizeof(*cip));
|
|
cip->n_subcores = 1;
|
|
cip->max_subcore_threads = vc->num_threads;
|
|
cip->total_threads = vc->num_threads;
|
|
cip->subcore_threads[0] = vc->num_threads;
|
|
cip->vc[0] = vc;
|
|
}
|
|
|
|
static bool subcore_config_ok(int n_subcores, int n_threads)
|
|
{
|
|
/*
|
|
* POWER9 "SMT4" cores are permanently in what is effectively a 4-way
|
|
* split-core mode, with one thread per subcore.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
return n_subcores <= 4 && n_threads == 1;
|
|
|
|
/* On POWER8, can only dynamically split if unsplit to begin with */
|
|
if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
|
|
return false;
|
|
if (n_subcores > MAX_SUBCORES)
|
|
return false;
|
|
if (n_subcores > 1) {
|
|
if (!(dynamic_mt_modes & 2))
|
|
n_subcores = 4;
|
|
if (n_subcores > 2 && !(dynamic_mt_modes & 4))
|
|
return false;
|
|
}
|
|
|
|
return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
|
|
}
|
|
|
|
static void init_vcore_to_run(struct kvmppc_vcore *vc)
|
|
{
|
|
vc->entry_exit_map = 0;
|
|
vc->in_guest = 0;
|
|
vc->napping_threads = 0;
|
|
vc->conferring_threads = 0;
|
|
vc->tb_offset_applied = 0;
|
|
}
|
|
|
|
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
|
|
{
|
|
int n_threads = vc->num_threads;
|
|
int sub;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
return false;
|
|
|
|
/* In one_vm_per_core mode, require all vcores to be from the same vm */
|
|
if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
|
|
return false;
|
|
|
|
if (n_threads < cip->max_subcore_threads)
|
|
n_threads = cip->max_subcore_threads;
|
|
if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
|
|
return false;
|
|
cip->max_subcore_threads = n_threads;
|
|
|
|
sub = cip->n_subcores;
|
|
++cip->n_subcores;
|
|
cip->total_threads += vc->num_threads;
|
|
cip->subcore_threads[sub] = vc->num_threads;
|
|
cip->vc[sub] = vc;
|
|
init_vcore_to_run(vc);
|
|
list_del_init(&vc->preempt_list);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Work out whether it is possible to piggyback the execution of
|
|
* vcore *pvc onto the execution of the other vcores described in *cip.
|
|
*/
|
|
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
|
|
int target_threads)
|
|
{
|
|
if (cip->total_threads + pvc->num_threads > target_threads)
|
|
return false;
|
|
|
|
return can_dynamic_split(pvc, cip);
|
|
}
|
|
|
|
static void prepare_threads(struct kvmppc_vcore *vc)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
for_each_runnable_thread(i, vcpu, vc) {
|
|
if (signal_pending(vcpu->arch.run_task))
|
|
vcpu->arch.ret = -EINTR;
|
|
else if (vcpu->arch.vpa.update_pending ||
|
|
vcpu->arch.slb_shadow.update_pending ||
|
|
vcpu->arch.dtl.update_pending)
|
|
vcpu->arch.ret = RESUME_GUEST;
|
|
else
|
|
continue;
|
|
kvmppc_remove_runnable(vc, vcpu, mftb());
|
|
wake_up(&vcpu->arch.cpu_run);
|
|
}
|
|
}
|
|
|
|
static void collect_piggybacks(struct core_info *cip, int target_threads)
|
|
{
|
|
struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
|
|
struct kvmppc_vcore *pvc, *vcnext;
|
|
|
|
spin_lock(&lp->lock);
|
|
list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
|
|
if (!spin_trylock(&pvc->lock))
|
|
continue;
|
|
prepare_threads(pvc);
|
|
if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
|
|
list_del_init(&pvc->preempt_list);
|
|
if (pvc->runner == NULL) {
|
|
pvc->vcore_state = VCORE_INACTIVE;
|
|
kvmppc_core_end_stolen(pvc, mftb());
|
|
}
|
|
spin_unlock(&pvc->lock);
|
|
continue;
|
|
}
|
|
if (!can_piggyback(pvc, cip, target_threads)) {
|
|
spin_unlock(&pvc->lock);
|
|
continue;
|
|
}
|
|
kvmppc_core_end_stolen(pvc, mftb());
|
|
pvc->vcore_state = VCORE_PIGGYBACK;
|
|
if (cip->total_threads >= target_threads)
|
|
break;
|
|
}
|
|
spin_unlock(&lp->lock);
|
|
}
|
|
|
|
static bool recheck_signals_and_mmu(struct core_info *cip)
|
|
{
|
|
int sub, i;
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvmppc_vcore *vc;
|
|
|
|
for (sub = 0; sub < cip->n_subcores; ++sub) {
|
|
vc = cip->vc[sub];
|
|
if (!vc->kvm->arch.mmu_ready)
|
|
return true;
|
|
for_each_runnable_thread(i, vcpu, vc)
|
|
if (signal_pending(vcpu->arch.run_task))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
|
|
{
|
|
int still_running = 0, i;
|
|
u64 now;
|
|
long ret;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
spin_lock(&vc->lock);
|
|
now = get_tb();
|
|
for_each_runnable_thread(i, vcpu, vc) {
|
|
/*
|
|
* It's safe to unlock the vcore in the loop here, because
|
|
* for_each_runnable_thread() is safe against removal of
|
|
* the vcpu, and the vcore state is VCORE_EXITING here,
|
|
* so any vcpus becoming runnable will have their arch.trap
|
|
* set to zero and can't actually run in the guest.
|
|
*/
|
|
spin_unlock(&vc->lock);
|
|
/* cancel pending dec exception if dec is positive */
|
|
if (now < kvmppc_dec_expires_host_tb(vcpu) &&
|
|
kvmppc_core_pending_dec(vcpu))
|
|
kvmppc_core_dequeue_dec(vcpu);
|
|
|
|
trace_kvm_guest_exit(vcpu);
|
|
|
|
ret = RESUME_GUEST;
|
|
if (vcpu->arch.trap)
|
|
ret = kvmppc_handle_exit_hv(vcpu,
|
|
vcpu->arch.run_task);
|
|
|
|
vcpu->arch.ret = ret;
|
|
vcpu->arch.trap = 0;
|
|
|
|
spin_lock(&vc->lock);
|
|
if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
|
|
if (vcpu->arch.pending_exceptions)
|
|
kvmppc_core_prepare_to_enter(vcpu);
|
|
if (vcpu->arch.ceded)
|
|
kvmppc_set_timer(vcpu);
|
|
else
|
|
++still_running;
|
|
} else {
|
|
kvmppc_remove_runnable(vc, vcpu, mftb());
|
|
wake_up(&vcpu->arch.cpu_run);
|
|
}
|
|
}
|
|
if (!is_master) {
|
|
if (still_running > 0) {
|
|
kvmppc_vcore_preempt(vc);
|
|
} else if (vc->runner) {
|
|
vc->vcore_state = VCORE_PREEMPT;
|
|
kvmppc_core_start_stolen(vc, mftb());
|
|
} else {
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
}
|
|
if (vc->n_runnable > 0 && vc->runner == NULL) {
|
|
/* make sure there's a candidate runner awake */
|
|
i = -1;
|
|
vcpu = next_runnable_thread(vc, &i);
|
|
wake_up(&vcpu->arch.cpu_run);
|
|
}
|
|
}
|
|
spin_unlock(&vc->lock);
|
|
}
|
|
|
|
/*
|
|
* Clear core from the list of active host cores as we are about to
|
|
* enter the guest. Only do this if it is the primary thread of the
|
|
* core (not if a subcore) that is entering the guest.
|
|
*/
|
|
static inline int kvmppc_clear_host_core(unsigned int cpu)
|
|
{
|
|
int core;
|
|
|
|
if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
|
|
return 0;
|
|
/*
|
|
* Memory barrier can be omitted here as we will do a smp_wmb()
|
|
* later in kvmppc_start_thread and we need ensure that state is
|
|
* visible to other CPUs only after we enter guest.
|
|
*/
|
|
core = cpu >> threads_shift;
|
|
kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Advertise this core as an active host core since we exited the guest
|
|
* Only need to do this if it is the primary thread of the core that is
|
|
* exiting.
|
|
*/
|
|
static inline int kvmppc_set_host_core(unsigned int cpu)
|
|
{
|
|
int core;
|
|
|
|
if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
|
|
return 0;
|
|
|
|
/*
|
|
* Memory barrier can be omitted here because we do a spin_unlock
|
|
* immediately after this which provides the memory barrier.
|
|
*/
|
|
core = cpu >> threads_shift;
|
|
kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
|
|
return 0;
|
|
}
|
|
|
|
static void set_irq_happened(int trap)
|
|
{
|
|
switch (trap) {
|
|
case BOOK3S_INTERRUPT_EXTERNAL:
|
|
local_paca->irq_happened |= PACA_IRQ_EE;
|
|
break;
|
|
case BOOK3S_INTERRUPT_H_DOORBELL:
|
|
local_paca->irq_happened |= PACA_IRQ_DBELL;
|
|
break;
|
|
case BOOK3S_INTERRUPT_HMI:
|
|
local_paca->irq_happened |= PACA_IRQ_HMI;
|
|
break;
|
|
case BOOK3S_INTERRUPT_SYSTEM_RESET:
|
|
replay_system_reset();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run a set of guest threads on a physical core.
|
|
* Called with vc->lock held.
|
|
*/
|
|
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
int srcu_idx;
|
|
struct core_info core_info;
|
|
struct kvmppc_vcore *pvc;
|
|
struct kvm_split_mode split_info, *sip;
|
|
int split, subcore_size, active;
|
|
int sub;
|
|
bool thr0_done;
|
|
unsigned long cmd_bit, stat_bit;
|
|
int pcpu, thr;
|
|
int target_threads;
|
|
int controlled_threads;
|
|
int trap;
|
|
bool is_power8;
|
|
|
|
if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
|
|
return;
|
|
|
|
/*
|
|
* Remove from the list any threads that have a signal pending
|
|
* or need a VPA update done
|
|
*/
|
|
prepare_threads(vc);
|
|
|
|
/* if the runner is no longer runnable, let the caller pick a new one */
|
|
if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
|
|
return;
|
|
|
|
/*
|
|
* Initialize *vc.
|
|
*/
|
|
init_vcore_to_run(vc);
|
|
vc->preempt_tb = TB_NIL;
|
|
|
|
/*
|
|
* Number of threads that we will be controlling: the same as
|
|
* the number of threads per subcore, except on POWER9,
|
|
* where it's 1 because the threads are (mostly) independent.
|
|
*/
|
|
controlled_threads = threads_per_vcore(vc->kvm);
|
|
|
|
/*
|
|
* Make sure we are running on primary threads, and that secondary
|
|
* threads are offline. Also check if the number of threads in this
|
|
* guest are greater than the current system threads per guest.
|
|
*/
|
|
if ((controlled_threads > 1) &&
|
|
((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
|
|
for_each_runnable_thread(i, vcpu, vc) {
|
|
vcpu->arch.ret = -EBUSY;
|
|
kvmppc_remove_runnable(vc, vcpu, mftb());
|
|
wake_up(&vcpu->arch.cpu_run);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* See if we could run any other vcores on the physical core
|
|
* along with this one.
|
|
*/
|
|
init_core_info(&core_info, vc);
|
|
pcpu = smp_processor_id();
|
|
target_threads = controlled_threads;
|
|
if (target_smt_mode && target_smt_mode < target_threads)
|
|
target_threads = target_smt_mode;
|
|
if (vc->num_threads < target_threads)
|
|
collect_piggybacks(&core_info, target_threads);
|
|
|
|
/*
|
|
* Hard-disable interrupts, and check resched flag and signals.
|
|
* If we need to reschedule or deliver a signal, clean up
|
|
* and return without going into the guest(s).
|
|
* If the mmu_ready flag has been cleared, don't go into the
|
|
* guest because that means a HPT resize operation is in progress.
|
|
*/
|
|
local_irq_disable();
|
|
hard_irq_disable();
|
|
if (lazy_irq_pending() || need_resched() ||
|
|
recheck_signals_and_mmu(&core_info)) {
|
|
local_irq_enable();
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
/* Unlock all except the primary vcore */
|
|
for (sub = 1; sub < core_info.n_subcores; ++sub) {
|
|
pvc = core_info.vc[sub];
|
|
/* Put back on to the preempted vcores list */
|
|
kvmppc_vcore_preempt(pvc);
|
|
spin_unlock(&pvc->lock);
|
|
}
|
|
for (i = 0; i < controlled_threads; ++i)
|
|
kvmppc_release_hwthread(pcpu + i);
|
|
return;
|
|
}
|
|
|
|
kvmppc_clear_host_core(pcpu);
|
|
|
|
/* Decide on micro-threading (split-core) mode */
|
|
subcore_size = threads_per_subcore;
|
|
cmd_bit = stat_bit = 0;
|
|
split = core_info.n_subcores;
|
|
sip = NULL;
|
|
is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
|
|
|
|
if (split > 1) {
|
|
sip = &split_info;
|
|
memset(&split_info, 0, sizeof(split_info));
|
|
for (sub = 0; sub < core_info.n_subcores; ++sub)
|
|
split_info.vc[sub] = core_info.vc[sub];
|
|
|
|
if (is_power8) {
|
|
if (split == 2 && (dynamic_mt_modes & 2)) {
|
|
cmd_bit = HID0_POWER8_1TO2LPAR;
|
|
stat_bit = HID0_POWER8_2LPARMODE;
|
|
} else {
|
|
split = 4;
|
|
cmd_bit = HID0_POWER8_1TO4LPAR;
|
|
stat_bit = HID0_POWER8_4LPARMODE;
|
|
}
|
|
subcore_size = MAX_SMT_THREADS / split;
|
|
split_info.rpr = mfspr(SPRN_RPR);
|
|
split_info.pmmar = mfspr(SPRN_PMMAR);
|
|
split_info.ldbar = mfspr(SPRN_LDBAR);
|
|
split_info.subcore_size = subcore_size;
|
|
} else {
|
|
split_info.subcore_size = 1;
|
|
}
|
|
|
|
/* order writes to split_info before kvm_split_mode pointer */
|
|
smp_wmb();
|
|
}
|
|
|
|
for (thr = 0; thr < controlled_threads; ++thr) {
|
|
struct paca_struct *paca = paca_ptrs[pcpu + thr];
|
|
|
|
paca->kvm_hstate.napping = 0;
|
|
paca->kvm_hstate.kvm_split_mode = sip;
|
|
}
|
|
|
|
/* Initiate micro-threading (split-core) on POWER8 if required */
|
|
if (cmd_bit) {
|
|
unsigned long hid0 = mfspr(SPRN_HID0);
|
|
|
|
hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
|
|
mb();
|
|
mtspr(SPRN_HID0, hid0);
|
|
isync();
|
|
for (;;) {
|
|
hid0 = mfspr(SPRN_HID0);
|
|
if (hid0 & stat_bit)
|
|
break;
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On POWER8, set RWMR register.
|
|
* Since it only affects PURR and SPURR, it doesn't affect
|
|
* the host, so we don't save/restore the host value.
|
|
*/
|
|
if (is_power8) {
|
|
unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
|
|
int n_online = atomic_read(&vc->online_count);
|
|
|
|
/*
|
|
* Use the 8-thread value if we're doing split-core
|
|
* or if the vcore's online count looks bogus.
|
|
*/
|
|
if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
|
|
n_online >= 1 && n_online <= MAX_SMT_THREADS)
|
|
rwmr_val = p8_rwmr_values[n_online];
|
|
mtspr(SPRN_RWMR, rwmr_val);
|
|
}
|
|
|
|
/* Start all the threads */
|
|
active = 0;
|
|
for (sub = 0; sub < core_info.n_subcores; ++sub) {
|
|
thr = is_power8 ? subcore_thread_map[sub] : sub;
|
|
thr0_done = false;
|
|
active |= 1 << thr;
|
|
pvc = core_info.vc[sub];
|
|
pvc->pcpu = pcpu + thr;
|
|
for_each_runnable_thread(i, vcpu, pvc) {
|
|
/*
|
|
* XXX: is kvmppc_start_thread called too late here?
|
|
* It updates vcpu->cpu and vcpu->arch.thread_cpu
|
|
* which are used by kvmppc_fast_vcpu_kick_hv(), but
|
|
* kick is called after new exceptions become available
|
|
* and exceptions are checked earlier than here, by
|
|
* kvmppc_core_prepare_to_enter.
|
|
*/
|
|
kvmppc_start_thread(vcpu, pvc);
|
|
kvmppc_update_vpa_dispatch(vcpu, pvc);
|
|
trace_kvm_guest_enter(vcpu);
|
|
if (!vcpu->arch.ptid)
|
|
thr0_done = true;
|
|
active |= 1 << (thr + vcpu->arch.ptid);
|
|
}
|
|
/*
|
|
* We need to start the first thread of each subcore
|
|
* even if it doesn't have a vcpu.
|
|
*/
|
|
if (!thr0_done)
|
|
kvmppc_start_thread(NULL, pvc);
|
|
}
|
|
|
|
/*
|
|
* Ensure that split_info.do_nap is set after setting
|
|
* the vcore pointer in the PACA of the secondaries.
|
|
*/
|
|
smp_mb();
|
|
|
|
/*
|
|
* When doing micro-threading, poke the inactive threads as well.
|
|
* This gets them to the nap instruction after kvm_do_nap,
|
|
* which reduces the time taken to unsplit later.
|
|
*/
|
|
if (cmd_bit) {
|
|
split_info.do_nap = 1; /* ask secondaries to nap when done */
|
|
for (thr = 1; thr < threads_per_subcore; ++thr)
|
|
if (!(active & (1 << thr)))
|
|
kvmppc_ipi_thread(pcpu + thr);
|
|
}
|
|
|
|
vc->vcore_state = VCORE_RUNNING;
|
|
preempt_disable();
|
|
|
|
trace_kvmppc_run_core(vc, 0);
|
|
|
|
for (sub = 0; sub < core_info.n_subcores; ++sub)
|
|
spin_unlock(&core_info.vc[sub]->lock);
|
|
|
|
guest_timing_enter_irqoff();
|
|
|
|
srcu_idx = srcu_read_lock(&vc->kvm->srcu);
|
|
|
|
guest_state_enter_irqoff();
|
|
this_cpu_disable_ftrace();
|
|
|
|
trap = __kvmppc_vcore_entry();
|
|
|
|
this_cpu_enable_ftrace();
|
|
guest_state_exit_irqoff();
|
|
|
|
srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
|
|
|
|
set_irq_happened(trap);
|
|
|
|
spin_lock(&vc->lock);
|
|
/* prevent other vcpu threads from doing kvmppc_start_thread() now */
|
|
vc->vcore_state = VCORE_EXITING;
|
|
|
|
/* wait for secondary threads to finish writing their state to memory */
|
|
kvmppc_wait_for_nap(controlled_threads);
|
|
|
|
/* Return to whole-core mode if we split the core earlier */
|
|
if (cmd_bit) {
|
|
unsigned long hid0 = mfspr(SPRN_HID0);
|
|
unsigned long loops = 0;
|
|
|
|
hid0 &= ~HID0_POWER8_DYNLPARDIS;
|
|
stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
|
|
mb();
|
|
mtspr(SPRN_HID0, hid0);
|
|
isync();
|
|
for (;;) {
|
|
hid0 = mfspr(SPRN_HID0);
|
|
if (!(hid0 & stat_bit))
|
|
break;
|
|
cpu_relax();
|
|
++loops;
|
|
}
|
|
split_info.do_nap = 0;
|
|
}
|
|
|
|
kvmppc_set_host_core(pcpu);
|
|
|
|
if (!vtime_accounting_enabled_this_cpu()) {
|
|
local_irq_enable();
|
|
/*
|
|
* Service IRQs here before guest_timing_exit_irqoff() so any
|
|
* ticks that occurred while running the guest are accounted to
|
|
* the guest. If vtime accounting is enabled, accounting uses
|
|
* TB rather than ticks, so it can be done without enabling
|
|
* interrupts here, which has the problem that it accounts
|
|
* interrupt processing overhead to the host.
|
|
*/
|
|
local_irq_disable();
|
|
}
|
|
guest_timing_exit_irqoff();
|
|
|
|
local_irq_enable();
|
|
|
|
/* Let secondaries go back to the offline loop */
|
|
for (i = 0; i < controlled_threads; ++i) {
|
|
kvmppc_release_hwthread(pcpu + i);
|
|
if (sip && sip->napped[i])
|
|
kvmppc_ipi_thread(pcpu + i);
|
|
}
|
|
|
|
spin_unlock(&vc->lock);
|
|
|
|
/* make sure updates to secondary vcpu structs are visible now */
|
|
smp_mb();
|
|
|
|
preempt_enable();
|
|
|
|
for (sub = 0; sub < core_info.n_subcores; ++sub) {
|
|
pvc = core_info.vc[sub];
|
|
post_guest_process(pvc, pvc == vc);
|
|
}
|
|
|
|
spin_lock(&vc->lock);
|
|
|
|
out:
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
trace_kvmppc_run_core(vc, 1);
|
|
}
|
|
|
|
static inline bool hcall_is_xics(unsigned long req)
|
|
{
|
|
return req == H_EOI || req == H_CPPR || req == H_IPI ||
|
|
req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
|
|
}
|
|
|
|
static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
|
|
if (lp) {
|
|
u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
|
|
lp->yield_count = cpu_to_be32(yield_count);
|
|
vcpu->arch.vpa.dirty = 1;
|
|
}
|
|
}
|
|
|
|
static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit,
|
|
unsigned long lpcr, u64 *tb)
|
|
{
|
|
struct kvmhv_nestedv2_io *io;
|
|
unsigned long msr, i;
|
|
int trap;
|
|
long rc;
|
|
|
|
io = &vcpu->arch.nestedv2_io;
|
|
|
|
msr = mfmsr();
|
|
kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
|
|
if (lazy_irq_pending())
|
|
return 0;
|
|
|
|
rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit);
|
|
if (rc < 0)
|
|
return -EINVAL;
|
|
|
|
kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr);
|
|
|
|
accumulate_time(vcpu, &vcpu->arch.in_guest);
|
|
rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id,
|
|
&trap, &i);
|
|
|
|
if (rc != H_SUCCESS) {
|
|
pr_err("KVM Guest Run VCPU hcall failed\n");
|
|
if (rc == H_INVALID_ELEMENT_ID)
|
|
pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i);
|
|
else if (rc == H_INVALID_ELEMENT_SIZE)
|
|
pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i);
|
|
else if (rc == H_INVALID_ELEMENT_VALUE)
|
|
pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i);
|
|
return -EINVAL;
|
|
}
|
|
accumulate_time(vcpu, &vcpu->arch.guest_exit);
|
|
|
|
*tb = mftb();
|
|
kvmppc_gsm_reset(io->vcpu_message);
|
|
kvmppc_gsm_reset(io->vcore_message);
|
|
kvmppc_gsbm_zero(&io->valids);
|
|
|
|
rc = kvmhv_nestedv2_parse_output(vcpu);
|
|
if (rc < 0)
|
|
return -EINVAL;
|
|
|
|
timer_rearm_host_dec(*tb);
|
|
|
|
return trap;
|
|
}
|
|
|
|
/* call our hypervisor to load up HV regs and go */
|
|
static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
|
|
{
|
|
unsigned long host_psscr;
|
|
unsigned long msr;
|
|
struct hv_guest_state hvregs;
|
|
struct p9_host_os_sprs host_os_sprs;
|
|
s64 dec;
|
|
int trap;
|
|
|
|
msr = mfmsr();
|
|
|
|
save_p9_host_os_sprs(&host_os_sprs);
|
|
|
|
/*
|
|
* We need to save and restore the guest visible part of the
|
|
* psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
|
|
* doesn't do this for us. Note only required if pseries since
|
|
* this is done in kvmhv_vcpu_entry_p9() below otherwise.
|
|
*/
|
|
host_psscr = mfspr(SPRN_PSSCR_PR);
|
|
|
|
kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
|
|
if (lazy_irq_pending())
|
|
return 0;
|
|
|
|
if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
|
|
msr = mfmsr(); /* TM restore can update msr */
|
|
|
|
if (vcpu->arch.psscr != host_psscr)
|
|
mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
|
|
|
|
kvmhv_save_hv_regs(vcpu, &hvregs);
|
|
hvregs.lpcr = lpcr;
|
|
hvregs.amor = ~0;
|
|
vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
|
|
hvregs.version = HV_GUEST_STATE_VERSION;
|
|
if (vcpu->arch.nested) {
|
|
hvregs.lpid = vcpu->arch.nested->shadow_lpid;
|
|
hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
|
|
} else {
|
|
hvregs.lpid = vcpu->kvm->arch.lpid;
|
|
hvregs.vcpu_token = vcpu->vcpu_id;
|
|
}
|
|
hvregs.hdec_expiry = time_limit;
|
|
|
|
/*
|
|
* When setting DEC, we must always deal with irq_work_raise
|
|
* via NMI vs setting DEC. The problem occurs right as we
|
|
* switch into guest mode if a NMI hits and sets pending work
|
|
* and sets DEC, then that will apply to the guest and not
|
|
* bring us back to the host.
|
|
*
|
|
* irq_work_raise could check a flag (or possibly LPCR[HDICE]
|
|
* for example) and set HDEC to 1? That wouldn't solve the
|
|
* nested hv case which needs to abort the hcall or zero the
|
|
* time limit.
|
|
*
|
|
* XXX: Another day's problem.
|
|
*/
|
|
mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
|
|
|
|
mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
|
|
mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
|
|
switch_pmu_to_guest(vcpu, &host_os_sprs);
|
|
accumulate_time(vcpu, &vcpu->arch.in_guest);
|
|
trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
|
|
__pa(&vcpu->arch.regs));
|
|
accumulate_time(vcpu, &vcpu->arch.guest_exit);
|
|
kvmhv_restore_hv_return_state(vcpu, &hvregs);
|
|
switch_pmu_to_host(vcpu, &host_os_sprs);
|
|
vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
|
|
vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
|
|
vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
|
|
vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
|
|
|
|
store_vcpu_state(vcpu);
|
|
|
|
dec = mfspr(SPRN_DEC);
|
|
if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
|
|
dec = (s32) dec;
|
|
*tb = mftb();
|
|
vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu));
|
|
|
|
timer_rearm_host_dec(*tb);
|
|
|
|
restore_p9_host_os_sprs(vcpu, &host_os_sprs);
|
|
if (vcpu->arch.psscr != host_psscr)
|
|
mtspr(SPRN_PSSCR_PR, host_psscr);
|
|
|
|
return trap;
|
|
}
|
|
|
|
/*
|
|
* Guest entry for POWER9 and later CPUs.
|
|
*/
|
|
static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
|
|
unsigned long lpcr, u64 *tb)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_nested_guest *nested = vcpu->arch.nested;
|
|
u64 next_timer;
|
|
int trap;
|
|
|
|
next_timer = timer_get_next_tb();
|
|
if (*tb >= next_timer)
|
|
return BOOK3S_INTERRUPT_HV_DECREMENTER;
|
|
if (next_timer < time_limit)
|
|
time_limit = next_timer;
|
|
else if (*tb >= time_limit) /* nested time limit */
|
|
return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
|
|
|
|
vcpu->arch.ceded = 0;
|
|
|
|
vcpu_vpa_increment_dispatch(vcpu);
|
|
|
|
if (kvmhv_on_pseries()) {
|
|
if (kvmhv_is_nestedv1())
|
|
trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
|
|
else
|
|
trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb);
|
|
|
|
/* H_CEDE has to be handled now, not later */
|
|
if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
|
|
kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
|
|
kvmppc_cede(vcpu);
|
|
kvmppc_set_gpr(vcpu, 3, 0);
|
|
trap = 0;
|
|
}
|
|
|
|
} else if (nested) {
|
|
__this_cpu_write(cpu_in_guest, kvm);
|
|
trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
|
|
__this_cpu_write(cpu_in_guest, NULL);
|
|
|
|
} else {
|
|
kvmppc_xive_push_vcpu(vcpu);
|
|
|
|
__this_cpu_write(cpu_in_guest, kvm);
|
|
trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
|
|
__this_cpu_write(cpu_in_guest, NULL);
|
|
|
|
if (trap == BOOK3S_INTERRUPT_SYSCALL &&
|
|
!(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
|
|
unsigned long req = kvmppc_get_gpr(vcpu, 3);
|
|
|
|
/*
|
|
* XIVE rearm and XICS hcalls must be handled
|
|
* before xive context is pulled (is this
|
|
* true?)
|
|
*/
|
|
if (req == H_CEDE) {
|
|
/* H_CEDE has to be handled now */
|
|
kvmppc_cede(vcpu);
|
|
if (!kvmppc_xive_rearm_escalation(vcpu)) {
|
|
/*
|
|
* Pending escalation so abort
|
|
* the cede.
|
|
*/
|
|
vcpu->arch.ceded = 0;
|
|
}
|
|
kvmppc_set_gpr(vcpu, 3, 0);
|
|
trap = 0;
|
|
|
|
} else if (req == H_ENTER_NESTED) {
|
|
/*
|
|
* L2 should not run with the L1
|
|
* context so rearm and pull it.
|
|
*/
|
|
if (!kvmppc_xive_rearm_escalation(vcpu)) {
|
|
/*
|
|
* Pending escalation so abort
|
|
* H_ENTER_NESTED.
|
|
*/
|
|
kvmppc_set_gpr(vcpu, 3, 0);
|
|
trap = 0;
|
|
}
|
|
|
|
} else if (hcall_is_xics(req)) {
|
|
int ret;
|
|
|
|
ret = kvmppc_xive_xics_hcall(vcpu, req);
|
|
if (ret != H_TOO_HARD) {
|
|
kvmppc_set_gpr(vcpu, 3, ret);
|
|
trap = 0;
|
|
}
|
|
}
|
|
}
|
|
kvmppc_xive_pull_vcpu(vcpu);
|
|
|
|
if (kvm_is_radix(kvm))
|
|
vcpu->arch.slb_max = 0;
|
|
}
|
|
|
|
vcpu_vpa_increment_dispatch(vcpu);
|
|
|
|
return trap;
|
|
}
|
|
|
|
/*
|
|
* Wait for some other vcpu thread to execute us, and
|
|
* wake us up when we need to handle something in the host.
|
|
*/
|
|
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
|
|
struct kvm_vcpu *vcpu, int wait_state)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
|
|
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
|
|
spin_unlock(&vc->lock);
|
|
schedule();
|
|
spin_lock(&vc->lock);
|
|
}
|
|
finish_wait(&vcpu->arch.cpu_run, &wait);
|
|
}
|
|
|
|
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
|
|
{
|
|
if (!halt_poll_ns_grow)
|
|
return;
|
|
|
|
vc->halt_poll_ns *= halt_poll_ns_grow;
|
|
if (vc->halt_poll_ns < halt_poll_ns_grow_start)
|
|
vc->halt_poll_ns = halt_poll_ns_grow_start;
|
|
}
|
|
|
|
static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
|
|
{
|
|
if (halt_poll_ns_shrink == 0)
|
|
vc->halt_poll_ns = 0;
|
|
else
|
|
vc->halt_poll_ns /= halt_poll_ns_shrink;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_XICS
|
|
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!xics_on_xive())
|
|
return false;
|
|
return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
|
|
vcpu->arch.xive_saved_state.cppr;
|
|
}
|
|
#else
|
|
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_KVM_XICS */
|
|
|
|
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
|
|
kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check to see if any of the runnable vcpus on the vcore have pending
|
|
* exceptions or are no longer ceded
|
|
*/
|
|
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
for_each_runnable_thread(i, vcpu, vc) {
|
|
if (kvmppc_vcpu_check_block(vcpu))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* All the vcpus in this vcore are idle, so wait for a decrementer
|
|
* or external interrupt to one of the vcpus. vc->lock is held.
|
|
*/
|
|
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
|
|
{
|
|
ktime_t cur, start_poll, start_wait;
|
|
int do_sleep = 1;
|
|
u64 block_ns;
|
|
|
|
WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
|
|
|
|
/* Poll for pending exceptions and ceded state */
|
|
cur = start_poll = ktime_get();
|
|
if (vc->halt_poll_ns) {
|
|
ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
|
|
++vc->runner->stat.generic.halt_attempted_poll;
|
|
|
|
vc->vcore_state = VCORE_POLLING;
|
|
spin_unlock(&vc->lock);
|
|
|
|
do {
|
|
if (kvmppc_vcore_check_block(vc)) {
|
|
do_sleep = 0;
|
|
break;
|
|
}
|
|
cur = ktime_get();
|
|
} while (kvm_vcpu_can_poll(cur, stop));
|
|
|
|
spin_lock(&vc->lock);
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
|
|
if (!do_sleep) {
|
|
++vc->runner->stat.generic.halt_successful_poll;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
prepare_to_rcuwait(&vc->wait);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (kvmppc_vcore_check_block(vc)) {
|
|
finish_rcuwait(&vc->wait);
|
|
do_sleep = 0;
|
|
/* If we polled, count this as a successful poll */
|
|
if (vc->halt_poll_ns)
|
|
++vc->runner->stat.generic.halt_successful_poll;
|
|
goto out;
|
|
}
|
|
|
|
start_wait = ktime_get();
|
|
|
|
vc->vcore_state = VCORE_SLEEPING;
|
|
trace_kvmppc_vcore_blocked(vc->runner, 0);
|
|
spin_unlock(&vc->lock);
|
|
schedule();
|
|
finish_rcuwait(&vc->wait);
|
|
spin_lock(&vc->lock);
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
trace_kvmppc_vcore_blocked(vc->runner, 1);
|
|
++vc->runner->stat.halt_successful_wait;
|
|
|
|
cur = ktime_get();
|
|
|
|
out:
|
|
block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
|
|
|
|
/* Attribute wait time */
|
|
if (do_sleep) {
|
|
vc->runner->stat.generic.halt_wait_ns +=
|
|
ktime_to_ns(cur) - ktime_to_ns(start_wait);
|
|
KVM_STATS_LOG_HIST_UPDATE(
|
|
vc->runner->stat.generic.halt_wait_hist,
|
|
ktime_to_ns(cur) - ktime_to_ns(start_wait));
|
|
/* Attribute failed poll time */
|
|
if (vc->halt_poll_ns) {
|
|
vc->runner->stat.generic.halt_poll_fail_ns +=
|
|
ktime_to_ns(start_wait) -
|
|
ktime_to_ns(start_poll);
|
|
KVM_STATS_LOG_HIST_UPDATE(
|
|
vc->runner->stat.generic.halt_poll_fail_hist,
|
|
ktime_to_ns(start_wait) -
|
|
ktime_to_ns(start_poll));
|
|
}
|
|
} else {
|
|
/* Attribute successful poll time */
|
|
if (vc->halt_poll_ns) {
|
|
vc->runner->stat.generic.halt_poll_success_ns +=
|
|
ktime_to_ns(cur) -
|
|
ktime_to_ns(start_poll);
|
|
KVM_STATS_LOG_HIST_UPDATE(
|
|
vc->runner->stat.generic.halt_poll_success_hist,
|
|
ktime_to_ns(cur) - ktime_to_ns(start_poll));
|
|
}
|
|
}
|
|
|
|
/* Adjust poll time */
|
|
if (halt_poll_ns) {
|
|
if (block_ns <= vc->halt_poll_ns)
|
|
;
|
|
/* We slept and blocked for longer than the max halt time */
|
|
else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
|
|
shrink_halt_poll_ns(vc);
|
|
/* We slept and our poll time is too small */
|
|
else if (vc->halt_poll_ns < halt_poll_ns &&
|
|
block_ns < halt_poll_ns)
|
|
grow_halt_poll_ns(vc);
|
|
if (vc->halt_poll_ns > halt_poll_ns)
|
|
vc->halt_poll_ns = halt_poll_ns;
|
|
} else
|
|
vc->halt_poll_ns = 0;
|
|
|
|
trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
|
|
}
|
|
|
|
/*
|
|
* This never fails for a radix guest, as none of the operations it does
|
|
* for a radix guest can fail or have a way to report failure.
|
|
*/
|
|
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r = 0;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
if (!kvm->arch.mmu_ready) {
|
|
if (!kvm_is_radix(kvm))
|
|
r = kvmppc_hv_setup_htab_rma(vcpu);
|
|
if (!r) {
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
kvmppc_setup_partition_table(kvm);
|
|
kvm->arch.mmu_ready = 1;
|
|
}
|
|
}
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
int n_ceded, i, r;
|
|
struct kvmppc_vcore *vc;
|
|
struct kvm_vcpu *v;
|
|
|
|
trace_kvmppc_run_vcpu_enter(vcpu);
|
|
|
|
run->exit_reason = 0;
|
|
vcpu->arch.ret = RESUME_GUEST;
|
|
vcpu->arch.trap = 0;
|
|
kvmppc_update_vpas(vcpu);
|
|
|
|
/*
|
|
* Synchronize with other threads in this virtual core
|
|
*/
|
|
vc = vcpu->arch.vcore;
|
|
spin_lock(&vc->lock);
|
|
vcpu->arch.ceded = 0;
|
|
vcpu->arch.run_task = current;
|
|
vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
|
|
vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
|
|
vcpu->arch.busy_preempt = TB_NIL;
|
|
WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
|
|
++vc->n_runnable;
|
|
|
|
/*
|
|
* This happens the first time this is called for a vcpu.
|
|
* If the vcore is already running, we may be able to start
|
|
* this thread straight away and have it join in.
|
|
*/
|
|
if (!signal_pending(current)) {
|
|
if ((vc->vcore_state == VCORE_PIGGYBACK ||
|
|
vc->vcore_state == VCORE_RUNNING) &&
|
|
!VCORE_IS_EXITING(vc)) {
|
|
kvmppc_update_vpa_dispatch(vcpu, vc);
|
|
kvmppc_start_thread(vcpu, vc);
|
|
trace_kvm_guest_enter(vcpu);
|
|
} else if (vc->vcore_state == VCORE_SLEEPING) {
|
|
rcuwait_wake_up(&vc->wait);
|
|
}
|
|
|
|
}
|
|
|
|
while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
|
|
!signal_pending(current)) {
|
|
/* See if the MMU is ready to go */
|
|
if (!vcpu->kvm->arch.mmu_ready) {
|
|
spin_unlock(&vc->lock);
|
|
r = kvmhv_setup_mmu(vcpu);
|
|
spin_lock(&vc->lock);
|
|
if (r) {
|
|
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
run->fail_entry.
|
|
hardware_entry_failure_reason = 0;
|
|
vcpu->arch.ret = r;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
|
|
kvmppc_vcore_end_preempt(vc);
|
|
|
|
if (vc->vcore_state != VCORE_INACTIVE) {
|
|
kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
|
|
continue;
|
|
}
|
|
for_each_runnable_thread(i, v, vc) {
|
|
kvmppc_core_prepare_to_enter(v);
|
|
if (signal_pending(v->arch.run_task)) {
|
|
kvmppc_remove_runnable(vc, v, mftb());
|
|
v->stat.signal_exits++;
|
|
v->run->exit_reason = KVM_EXIT_INTR;
|
|
v->arch.ret = -EINTR;
|
|
wake_up(&v->arch.cpu_run);
|
|
}
|
|
}
|
|
if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
|
|
break;
|
|
n_ceded = 0;
|
|
for_each_runnable_thread(i, v, vc) {
|
|
if (!kvmppc_vcpu_woken(v))
|
|
n_ceded += v->arch.ceded;
|
|
else
|
|
v->arch.ceded = 0;
|
|
}
|
|
vc->runner = vcpu;
|
|
if (n_ceded == vc->n_runnable) {
|
|
kvmppc_vcore_blocked(vc);
|
|
} else if (need_resched()) {
|
|
kvmppc_vcore_preempt(vc);
|
|
/* Let something else run */
|
|
cond_resched_lock(&vc->lock);
|
|
if (vc->vcore_state == VCORE_PREEMPT)
|
|
kvmppc_vcore_end_preempt(vc);
|
|
} else {
|
|
kvmppc_run_core(vc);
|
|
}
|
|
vc->runner = NULL;
|
|
}
|
|
|
|
while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
|
|
(vc->vcore_state == VCORE_RUNNING ||
|
|
vc->vcore_state == VCORE_EXITING ||
|
|
vc->vcore_state == VCORE_PIGGYBACK))
|
|
kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
|
|
|
|
if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
|
|
kvmppc_vcore_end_preempt(vc);
|
|
|
|
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
|
|
kvmppc_remove_runnable(vc, vcpu, mftb());
|
|
vcpu->stat.signal_exits++;
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
vcpu->arch.ret = -EINTR;
|
|
}
|
|
|
|
if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
|
|
/* Wake up some vcpu to run the core */
|
|
i = -1;
|
|
v = next_runnable_thread(vc, &i);
|
|
wake_up(&v->arch.cpu_run);
|
|
}
|
|
|
|
trace_kvmppc_run_vcpu_exit(vcpu);
|
|
spin_unlock(&vc->lock);
|
|
return vcpu->arch.ret;
|
|
}
|
|
|
|
int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
|
|
unsigned long lpcr)
|
|
{
|
|
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
|
|
struct kvm_run *run = vcpu->run;
|
|
int trap, r, pcpu;
|
|
int srcu_idx;
|
|
struct kvmppc_vcore *vc;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_nested_guest *nested = vcpu->arch.nested;
|
|
unsigned long flags;
|
|
u64 tb;
|
|
|
|
trace_kvmppc_run_vcpu_enter(vcpu);
|
|
|
|
run->exit_reason = 0;
|
|
vcpu->arch.ret = RESUME_GUEST;
|
|
vcpu->arch.trap = 0;
|
|
|
|
vc = vcpu->arch.vcore;
|
|
vcpu->arch.ceded = 0;
|
|
vcpu->arch.run_task = current;
|
|
vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
|
|
|
|
/* See if the MMU is ready to go */
|
|
if (unlikely(!kvm->arch.mmu_ready)) {
|
|
r = kvmhv_setup_mmu(vcpu);
|
|
if (r) {
|
|
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
run->fail_entry.hardware_entry_failure_reason = 0;
|
|
vcpu->arch.ret = r;
|
|
return r;
|
|
}
|
|
}
|
|
|
|
if (need_resched())
|
|
cond_resched();
|
|
|
|
kvmppc_update_vpas(vcpu);
|
|
|
|
preempt_disable();
|
|
pcpu = smp_processor_id();
|
|
if (kvm_is_radix(kvm))
|
|
kvmppc_prepare_radix_vcpu(vcpu, pcpu);
|
|
|
|
/* flags save not required, but irq_pmu has no disable/enable API */
|
|
powerpc_local_irq_pmu_save(flags);
|
|
|
|
vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
|
|
|
|
if (signal_pending(current))
|
|
goto sigpend;
|
|
if (need_resched() || !kvm->arch.mmu_ready)
|
|
goto out;
|
|
|
|
vcpu->cpu = pcpu;
|
|
vcpu->arch.thread_cpu = pcpu;
|
|
vc->pcpu = pcpu;
|
|
local_paca->kvm_hstate.kvm_vcpu = vcpu;
|
|
local_paca->kvm_hstate.ptid = 0;
|
|
local_paca->kvm_hstate.fake_suspend = 0;
|
|
|
|
/*
|
|
* Orders set cpu/thread_cpu vs testing for pending interrupts and
|
|
* doorbells below. The other side is when these fields are set vs
|
|
* kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
|
|
* kick a vCPU to notice the pending interrupt.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (!nested) {
|
|
kvmppc_core_prepare_to_enter(vcpu);
|
|
if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
|
|
&vcpu->arch.pending_exceptions) ||
|
|
xive_interrupt_pending(vcpu)) {
|
|
/*
|
|
* For nested HV, don't synthesize but always pass MER,
|
|
* the L0 will be able to optimise that more
|
|
* effectively than manipulating registers directly.
|
|
*/
|
|
if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE))
|
|
kvmppc_inject_interrupt_hv(vcpu,
|
|
BOOK3S_INTERRUPT_EXTERNAL, 0);
|
|
else
|
|
lpcr |= LPCR_MER;
|
|
}
|
|
} else if (vcpu->arch.pending_exceptions ||
|
|
vcpu->arch.doorbell_request ||
|
|
xive_interrupt_pending(vcpu)) {
|
|
vcpu->arch.ret = RESUME_HOST;
|
|
goto out;
|
|
}
|
|
|
|
if (vcpu->arch.timer_running) {
|
|
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
|
|
vcpu->arch.timer_running = 0;
|
|
}
|
|
|
|
tb = mftb();
|
|
|
|
kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu));
|
|
|
|
trace_kvm_guest_enter(vcpu);
|
|
|
|
guest_timing_enter_irqoff();
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
guest_state_enter_irqoff();
|
|
this_cpu_disable_ftrace();
|
|
|
|
trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
|
|
vcpu->arch.trap = trap;
|
|
|
|
this_cpu_enable_ftrace();
|
|
guest_state_exit_irqoff();
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
set_irq_happened(trap);
|
|
|
|
vcpu->cpu = -1;
|
|
vcpu->arch.thread_cpu = -1;
|
|
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
|
|
|
|
if (!vtime_accounting_enabled_this_cpu()) {
|
|
powerpc_local_irq_pmu_restore(flags);
|
|
/*
|
|
* Service IRQs here before guest_timing_exit_irqoff() so any
|
|
* ticks that occurred while running the guest are accounted to
|
|
* the guest. If vtime accounting is enabled, accounting uses
|
|
* TB rather than ticks, so it can be done without enabling
|
|
* interrupts here, which has the problem that it accounts
|
|
* interrupt processing overhead to the host.
|
|
*/
|
|
powerpc_local_irq_pmu_save(flags);
|
|
}
|
|
guest_timing_exit_irqoff();
|
|
|
|
powerpc_local_irq_pmu_restore(flags);
|
|
|
|
preempt_enable();
|
|
|
|
/*
|
|
* cancel pending decrementer exception if DEC is now positive, or if
|
|
* entering a nested guest in which case the decrementer is now owned
|
|
* by L2 and the L1 decrementer is provided in hdec_expires
|
|
*/
|
|
if (!kvmhv_is_nestedv2() && kvmppc_core_pending_dec(vcpu) &&
|
|
((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
|
|
(trap == BOOK3S_INTERRUPT_SYSCALL &&
|
|
kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
|
|
kvmppc_core_dequeue_dec(vcpu);
|
|
|
|
trace_kvm_guest_exit(vcpu);
|
|
r = RESUME_GUEST;
|
|
if (trap) {
|
|
if (!nested)
|
|
r = kvmppc_handle_exit_hv(vcpu, current);
|
|
else
|
|
r = kvmppc_handle_nested_exit(vcpu);
|
|
}
|
|
vcpu->arch.ret = r;
|
|
|
|
if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
|
|
kvmppc_set_timer(vcpu);
|
|
|
|
prepare_to_rcuwait(wait);
|
|
for (;;) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (signal_pending(current)) {
|
|
vcpu->stat.signal_exits++;
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
vcpu->arch.ret = -EINTR;
|
|
break;
|
|
}
|
|
|
|
if (kvmppc_vcpu_check_block(vcpu))
|
|
break;
|
|
|
|
trace_kvmppc_vcore_blocked(vcpu, 0);
|
|
schedule();
|
|
trace_kvmppc_vcore_blocked(vcpu, 1);
|
|
}
|
|
finish_rcuwait(wait);
|
|
}
|
|
vcpu->arch.ceded = 0;
|
|
|
|
done:
|
|
trace_kvmppc_run_vcpu_exit(vcpu);
|
|
|
|
return vcpu->arch.ret;
|
|
|
|
sigpend:
|
|
vcpu->stat.signal_exits++;
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
vcpu->arch.ret = -EINTR;
|
|
out:
|
|
vcpu->cpu = -1;
|
|
vcpu->arch.thread_cpu = -1;
|
|
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
|
|
powerpc_local_irq_pmu_restore(flags);
|
|
preempt_enable();
|
|
goto done;
|
|
}
|
|
|
|
static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
int r;
|
|
int srcu_idx;
|
|
struct kvm *kvm;
|
|
unsigned long msr;
|
|
|
|
start_timing(vcpu, &vcpu->arch.vcpu_entry);
|
|
|
|
if (!vcpu->arch.sane) {
|
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* No need to go into the guest when all we'll do is come back out */
|
|
if (signal_pending(current)) {
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
return -EINTR;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* Don't allow entry with a suspended transaction, because
|
|
* the guest entry/exit code will lose it.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
|
|
(current->thread.regs->msr & MSR_TM)) {
|
|
if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
|
|
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
run->fail_entry.hardware_entry_failure_reason = 0;
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Force online to 1 for the sake of old userspace which doesn't
|
|
* set it.
|
|
*/
|
|
if (!vcpu->arch.online) {
|
|
atomic_inc(&vcpu->arch.vcore->online_count);
|
|
vcpu->arch.online = 1;
|
|
}
|
|
|
|
kvmppc_core_prepare_to_enter(vcpu);
|
|
|
|
kvm = vcpu->kvm;
|
|
atomic_inc(&kvm->arch.vcpus_running);
|
|
/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
|
|
smp_mb();
|
|
|
|
msr = 0;
|
|
if (IS_ENABLED(CONFIG_PPC_FPU))
|
|
msr |= MSR_FP;
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
msr |= MSR_VEC;
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
msr |= MSR_VSX;
|
|
if ((cpu_has_feature(CPU_FTR_TM) ||
|
|
cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
|
|
(kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
|
|
msr |= MSR_TM;
|
|
msr = msr_check_and_set(msr);
|
|
|
|
kvmppc_save_user_regs();
|
|
|
|
kvmppc_save_current_sprs();
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
vcpu->arch.waitp = &vcpu->arch.vcore->wait;
|
|
vcpu->arch.pgdir = kvm->mm->pgd;
|
|
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
|
|
|
|
do {
|
|
accumulate_time(vcpu, &vcpu->arch.guest_entry);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
|
|
vcpu->arch.vcore->lpcr);
|
|
else
|
|
r = kvmppc_run_vcpu(vcpu);
|
|
|
|
if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
|
|
accumulate_time(vcpu, &vcpu->arch.hcall);
|
|
|
|
if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
|
|
/*
|
|
* These should have been caught reflected
|
|
* into the guest by now. Final sanity check:
|
|
* don't allow userspace to execute hcalls in
|
|
* the hypervisor.
|
|
*/
|
|
r = RESUME_GUEST;
|
|
continue;
|
|
}
|
|
trace_kvm_hcall_enter(vcpu);
|
|
r = kvmppc_pseries_do_hcall(vcpu);
|
|
trace_kvm_hcall_exit(vcpu, r);
|
|
kvmppc_core_prepare_to_enter(vcpu);
|
|
} else if (r == RESUME_PAGE_FAULT) {
|
|
accumulate_time(vcpu, &vcpu->arch.pg_fault);
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
r = kvmppc_book3s_hv_page_fault(vcpu,
|
|
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
} else if (r == RESUME_PASSTHROUGH) {
|
|
if (WARN_ON(xics_on_xive()))
|
|
r = H_SUCCESS;
|
|
else
|
|
r = kvmppc_xics_rm_complete(vcpu, 0);
|
|
}
|
|
} while (is_kvmppc_resume_guest(r));
|
|
accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
|
|
|
|
vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
|
|
atomic_dec(&kvm->arch.vcpus_running);
|
|
|
|
srr_regs_clobbered();
|
|
|
|
end_timing(vcpu);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
|
|
int shift, int sllp)
|
|
{
|
|
(*sps)->page_shift = shift;
|
|
(*sps)->slb_enc = sllp;
|
|
(*sps)->enc[0].page_shift = shift;
|
|
(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
|
|
/*
|
|
* Add 16MB MPSS support (may get filtered out by userspace)
|
|
*/
|
|
if (shift != 24) {
|
|
int penc = kvmppc_pgsize_lp_encoding(shift, 24);
|
|
if (penc != -1) {
|
|
(*sps)->enc[1].page_shift = 24;
|
|
(*sps)->enc[1].pte_enc = penc;
|
|
}
|
|
}
|
|
(*sps)++;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
|
|
struct kvm_ppc_smmu_info *info)
|
|
{
|
|
struct kvm_ppc_one_seg_page_size *sps;
|
|
|
|
/*
|
|
* POWER7, POWER8 and POWER9 all support 32 storage keys for data.
|
|
* POWER7 doesn't support keys for instruction accesses,
|
|
* POWER8 and POWER9 do.
|
|
*/
|
|
info->data_keys = 32;
|
|
info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
|
|
|
|
/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
|
|
info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
|
|
info->slb_size = 32;
|
|
|
|
/* We only support these sizes for now, and no muti-size segments */
|
|
sps = &info->sps[0];
|
|
kvmppc_add_seg_page_size(&sps, 12, 0);
|
|
kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
|
|
kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
|
|
|
|
/* If running as a nested hypervisor, we don't support HPT guests */
|
|
if (kvmhv_on_pseries())
|
|
info->flags |= KVM_PPC_NO_HASH;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get (and clear) the dirty memory log for a memory slot.
|
|
*/
|
|
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
|
|
struct kvm_dirty_log *log)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int r;
|
|
unsigned long n, i;
|
|
unsigned long *buf, *p;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = -EINVAL;
|
|
if (log->slot >= KVM_USER_MEM_SLOTS)
|
|
goto out;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
memslot = id_to_memslot(slots, log->slot);
|
|
r = -ENOENT;
|
|
if (!memslot || !memslot->dirty_bitmap)
|
|
goto out;
|
|
|
|
/*
|
|
* Use second half of bitmap area because both HPT and radix
|
|
* accumulate bits in the first half.
|
|
*/
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
buf = memslot->dirty_bitmap + n / sizeof(long);
|
|
memset(buf, 0, n);
|
|
|
|
if (kvm_is_radix(kvm))
|
|
r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
|
|
else
|
|
r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
|
|
if (r)
|
|
goto out;
|
|
|
|
/*
|
|
* We accumulate dirty bits in the first half of the
|
|
* memslot's dirty_bitmap area, for when pages are paged
|
|
* out or modified by the host directly. Pick up these
|
|
* bits and add them to the map.
|
|
*/
|
|
p = memslot->dirty_bitmap;
|
|
for (i = 0; i < n / sizeof(long); ++i)
|
|
buf[i] |= xchg(&p[i], 0);
|
|
|
|
/* Harvest dirty bits from VPA and DTL updates */
|
|
/* Note: we never modify the SLB shadow buffer areas */
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
|
|
kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
}
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(log->dirty_bitmap, buf, n))
|
|
goto out;
|
|
|
|
r = 0;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
|
|
{
|
|
vfree(slot->arch.rmap);
|
|
slot->arch.rmap = NULL;
|
|
}
|
|
|
|
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
|
|
const struct kvm_memory_slot *old,
|
|
struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
if (change == KVM_MR_CREATE) {
|
|
unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
|
|
|
|
if ((size >> PAGE_SHIFT) > totalram_pages())
|
|
return -ENOMEM;
|
|
|
|
new->arch.rmap = vzalloc(size);
|
|
if (!new->arch.rmap)
|
|
return -ENOMEM;
|
|
} else if (change != KVM_MR_DELETE) {
|
|
new->arch.rmap = old->arch.rmap;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
|
|
struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
/*
|
|
* If we are creating or modifying a memslot, it might make
|
|
* some address that was previously cached as emulated
|
|
* MMIO be no longer emulated MMIO, so invalidate
|
|
* all the caches of emulated MMIO translations.
|
|
*/
|
|
if (change != KVM_MR_DELETE)
|
|
atomic64_inc(&kvm->arch.mmio_update);
|
|
|
|
/*
|
|
* For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
|
|
* have already called kvm_arch_flush_shadow_memslot() to
|
|
* flush shadow mappings. For KVM_MR_CREATE we have no
|
|
* previous mappings. So the only case to handle is
|
|
* KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
|
|
* has been changed.
|
|
* For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
|
|
* to get rid of any THP PTEs in the partition-scoped page tables
|
|
* so we can track dirtiness at the page level; we flush when
|
|
* clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
|
|
* using THP PTEs.
|
|
*/
|
|
if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
|
|
((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
|
|
kvmppc_radix_flush_memslot(kvm, old);
|
|
/*
|
|
* If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
|
|
*/
|
|
if (!kvm->arch.secure_guest)
|
|
return;
|
|
|
|
switch (change) {
|
|
case KVM_MR_CREATE:
|
|
/*
|
|
* @TODO kvmppc_uvmem_memslot_create() can fail and
|
|
* return error. Fix this.
|
|
*/
|
|
kvmppc_uvmem_memslot_create(kvm, new);
|
|
break;
|
|
case KVM_MR_DELETE:
|
|
kvmppc_uvmem_memslot_delete(kvm, old);
|
|
break;
|
|
default:
|
|
/* TODO: Handle KVM_MR_MOVE */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update LPCR values in kvm->arch and in vcores.
|
|
* Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
|
|
* of kvm->arch.lpcr update).
|
|
*/
|
|
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
|
|
{
|
|
long int i;
|
|
u32 cores_done = 0;
|
|
|
|
if ((kvm->arch.lpcr & mask) == lpcr)
|
|
return;
|
|
|
|
kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
|
|
|
|
for (i = 0; i < KVM_MAX_VCORES; ++i) {
|
|
struct kvmppc_vcore *vc = kvm->arch.vcores[i];
|
|
if (!vc)
|
|
continue;
|
|
|
|
spin_lock(&vc->lock);
|
|
vc->lpcr = (vc->lpcr & ~mask) | lpcr;
|
|
verify_lpcr(kvm, vc->lpcr);
|
|
spin_unlock(&vc->lock);
|
|
if (++cores_done >= kvm->arch.online_vcores)
|
|
break;
|
|
}
|
|
|
|
if (kvmhv_is_nestedv2()) {
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
|
|
}
|
|
}
|
|
}
|
|
|
|
void kvmppc_setup_partition_table(struct kvm *kvm)
|
|
{
|
|
unsigned long dw0, dw1;
|
|
|
|
if (!kvm_is_radix(kvm)) {
|
|
/* PS field - page size for VRMA */
|
|
dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
|
|
((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
|
|
/* HTABSIZE and HTABORG fields */
|
|
dw0 |= kvm->arch.sdr1;
|
|
|
|
/* Second dword as set by userspace */
|
|
dw1 = kvm->arch.process_table;
|
|
} else {
|
|
dw0 = PATB_HR | radix__get_tree_size() |
|
|
__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
|
|
dw1 = PATB_GR | kvm->arch.process_table;
|
|
}
|
|
kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
|
|
}
|
|
|
|
/*
|
|
* Set up HPT (hashed page table) and RMA (real-mode area).
|
|
* Must be called with kvm->arch.mmu_setup_lock held.
|
|
*/
|
|
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
|
|
{
|
|
int err = 0;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long hva;
|
|
struct kvm_memory_slot *memslot;
|
|
struct vm_area_struct *vma;
|
|
unsigned long lpcr = 0, senc;
|
|
unsigned long psize, porder;
|
|
int srcu_idx;
|
|
|
|
/* Allocate hashed page table (if not done already) and reset it */
|
|
if (!kvm->arch.hpt.virt) {
|
|
int order = KVM_DEFAULT_HPT_ORDER;
|
|
struct kvm_hpt_info info;
|
|
|
|
err = kvmppc_allocate_hpt(&info, order);
|
|
/* If we get here, it means userspace didn't specify a
|
|
* size explicitly. So, try successively smaller
|
|
* sizes if the default failed. */
|
|
while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
|
|
err = kvmppc_allocate_hpt(&info, order);
|
|
|
|
if (err < 0) {
|
|
pr_err("KVM: Couldn't alloc HPT\n");
|
|
goto out;
|
|
}
|
|
|
|
kvmppc_set_hpt(kvm, &info);
|
|
}
|
|
|
|
/* Look up the memslot for guest physical address 0 */
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
memslot = gfn_to_memslot(kvm, 0);
|
|
|
|
/* We must have some memory at 0 by now */
|
|
err = -EINVAL;
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
|
goto out_srcu;
|
|
|
|
/* Look up the VMA for the start of this memory slot */
|
|
hva = memslot->userspace_addr;
|
|
mmap_read_lock(kvm->mm);
|
|
vma = vma_lookup(kvm->mm, hva);
|
|
if (!vma || (vma->vm_flags & VM_IO))
|
|
goto up_out;
|
|
|
|
psize = vma_kernel_pagesize(vma);
|
|
|
|
mmap_read_unlock(kvm->mm);
|
|
|
|
/* We can handle 4k, 64k or 16M pages in the VRMA */
|
|
if (psize >= 0x1000000)
|
|
psize = 0x1000000;
|
|
else if (psize >= 0x10000)
|
|
psize = 0x10000;
|
|
else
|
|
psize = 0x1000;
|
|
porder = __ilog2(psize);
|
|
|
|
senc = slb_pgsize_encoding(psize);
|
|
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
|
|
(VRMA_VSID << SLB_VSID_SHIFT_1T);
|
|
/* Create HPTEs in the hash page table for the VRMA */
|
|
kvmppc_map_vrma(vcpu, memslot, porder);
|
|
|
|
/* Update VRMASD field in the LPCR */
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
/* the -4 is to account for senc values starting at 0x10 */
|
|
lpcr = senc << (LPCR_VRMASD_SH - 4);
|
|
kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
|
|
}
|
|
|
|
/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
|
|
smp_wmb();
|
|
err = 0;
|
|
out_srcu:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
out:
|
|
return err;
|
|
|
|
up_out:
|
|
mmap_read_unlock(kvm->mm);
|
|
goto out_srcu;
|
|
}
|
|
|
|
/*
|
|
* Must be called with kvm->arch.mmu_setup_lock held and
|
|
* mmu_ready = 0 and no vcpus running.
|
|
*/
|
|
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
|
|
{
|
|
unsigned long lpcr, lpcr_mask;
|
|
|
|
if (nesting_enabled(kvm))
|
|
kvmhv_release_all_nested(kvm);
|
|
kvmppc_rmap_reset(kvm);
|
|
kvm->arch.process_table = 0;
|
|
/* Mutual exclusion with kvm_unmap_gfn_range etc. */
|
|
spin_lock(&kvm->mmu_lock);
|
|
kvm->arch.radix = 0;
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvmppc_free_radix(kvm);
|
|
|
|
lpcr = LPCR_VPM1;
|
|
lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_31))
|
|
lpcr_mask |= LPCR_HAIL;
|
|
kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Must be called with kvm->arch.mmu_setup_lock held and
|
|
* mmu_ready = 0 and no vcpus running.
|
|
*/
|
|
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
|
|
{
|
|
unsigned long lpcr, lpcr_mask;
|
|
int err;
|
|
|
|
err = kvmppc_init_vm_radix(kvm);
|
|
if (err)
|
|
return err;
|
|
kvmppc_rmap_reset(kvm);
|
|
/* Mutual exclusion with kvm_unmap_gfn_range etc. */
|
|
spin_lock(&kvm->mmu_lock);
|
|
kvm->arch.radix = 1;
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvmppc_free_hpt(&kvm->arch.hpt);
|
|
|
|
lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
|
|
lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
|
|
lpcr_mask |= LPCR_HAIL;
|
|
if (cpu_has_feature(CPU_FTR_HVMODE) &&
|
|
(kvm->arch.host_lpcr & LPCR_HAIL))
|
|
lpcr |= LPCR_HAIL;
|
|
}
|
|
kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_XICS
|
|
/*
|
|
* Allocate a per-core structure for managing state about which cores are
|
|
* running in the host versus the guest and for exchanging data between
|
|
* real mode KVM and CPU running in the host.
|
|
* This is only done for the first VM.
|
|
* The allocated structure stays even if all VMs have stopped.
|
|
* It is only freed when the kvm-hv module is unloaded.
|
|
* It's OK for this routine to fail, we just don't support host
|
|
* core operations like redirecting H_IPI wakeups.
|
|
*/
|
|
void kvmppc_alloc_host_rm_ops(void)
|
|
{
|
|
struct kvmppc_host_rm_ops *ops;
|
|
unsigned long l_ops;
|
|
int cpu, core;
|
|
int size;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
return;
|
|
|
|
/* Not the first time here ? */
|
|
if (kvmppc_host_rm_ops_hv != NULL)
|
|
return;
|
|
|
|
ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
|
|
if (!ops)
|
|
return;
|
|
|
|
size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
|
|
ops->rm_core = kzalloc(size, GFP_KERNEL);
|
|
|
|
if (!ops->rm_core) {
|
|
kfree(ops);
|
|
return;
|
|
}
|
|
|
|
cpus_read_lock();
|
|
|
|
for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
|
|
if (!cpu_online(cpu))
|
|
continue;
|
|
|
|
core = cpu >> threads_shift;
|
|
ops->rm_core[core].rm_state.in_host = 1;
|
|
}
|
|
|
|
ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
|
|
|
|
/*
|
|
* Make the contents of the kvmppc_host_rm_ops structure visible
|
|
* to other CPUs before we assign it to the global variable.
|
|
* Do an atomic assignment (no locks used here), but if someone
|
|
* beats us to it, just free our copy and return.
|
|
*/
|
|
smp_wmb();
|
|
l_ops = (unsigned long) ops;
|
|
|
|
if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
|
|
cpus_read_unlock();
|
|
kfree(ops->rm_core);
|
|
kfree(ops);
|
|
return;
|
|
}
|
|
|
|
cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
|
|
"ppc/kvm_book3s:prepare",
|
|
kvmppc_set_host_core,
|
|
kvmppc_clear_host_core);
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
void kvmppc_free_host_rm_ops(void)
|
|
{
|
|
if (kvmppc_host_rm_ops_hv) {
|
|
cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
|
|
kfree(kvmppc_host_rm_ops_hv->rm_core);
|
|
kfree(kvmppc_host_rm_ops_hv);
|
|
kvmppc_host_rm_ops_hv = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
|
|
{
|
|
unsigned long lpcr, lpid;
|
|
int ret;
|
|
|
|
mutex_init(&kvm->arch.uvmem_lock);
|
|
INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
|
|
mutex_init(&kvm->arch.mmu_setup_lock);
|
|
|
|
/* Allocate the guest's logical partition ID */
|
|
|
|
if (!kvmhv_is_nestedv2()) {
|
|
lpid = kvmppc_alloc_lpid();
|
|
if ((long)lpid < 0)
|
|
return -ENOMEM;
|
|
kvm->arch.lpid = lpid;
|
|
}
|
|
|
|
kvmppc_alloc_host_rm_ops();
|
|
|
|
kvmhv_vm_nested_init(kvm);
|
|
|
|
if (kvmhv_is_nestedv2()) {
|
|
long rc;
|
|
unsigned long guest_id;
|
|
|
|
rc = plpar_guest_create(0, &guest_id);
|
|
|
|
if (rc != H_SUCCESS)
|
|
pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc);
|
|
|
|
switch (rc) {
|
|
case H_PARAMETER:
|
|
case H_FUNCTION:
|
|
case H_STATE:
|
|
return -EINVAL;
|
|
case H_NOT_ENOUGH_RESOURCES:
|
|
case H_ABORTED:
|
|
return -ENOMEM;
|
|
case H_AUTHORITY:
|
|
return -EPERM;
|
|
case H_NOT_AVAILABLE:
|
|
return -EBUSY;
|
|
}
|
|
kvm->arch.lpid = guest_id;
|
|
}
|
|
|
|
|
|
/*
|
|
* Since we don't flush the TLB when tearing down a VM,
|
|
* and this lpid might have previously been used,
|
|
* make sure we flush on each core before running the new VM.
|
|
* On POWER9, the tlbie in mmu_partition_table_set_entry()
|
|
* does this flush for us.
|
|
*/
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
cpumask_setall(&kvm->arch.need_tlb_flush);
|
|
|
|
/* Start out with the default set of hcalls enabled */
|
|
memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
|
|
sizeof(kvm->arch.enabled_hcalls));
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
|
|
|
|
/* Init LPCR for virtual RMA mode */
|
|
if (cpu_has_feature(CPU_FTR_HVMODE)) {
|
|
kvm->arch.host_lpid = mfspr(SPRN_LPID);
|
|
kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
|
|
lpcr &= LPCR_PECE | LPCR_LPES;
|
|
} else {
|
|
/*
|
|
* The L2 LPES mode will be set by the L0 according to whether
|
|
* or not it needs to take external interrupts in HV mode.
|
|
*/
|
|
lpcr = 0;
|
|
}
|
|
lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
|
|
LPCR_VPM0 | LPCR_VPM1;
|
|
kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
|
|
(VRMA_VSID << SLB_VSID_SHIFT_1T);
|
|
/* On POWER8 turn on online bit to enable PURR/SPURR */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
lpcr |= LPCR_ONL;
|
|
/*
|
|
* On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
|
|
* Set HVICE bit to enable hypervisor virtualization interrupts.
|
|
* Set HEIC to prevent OS interrupts to go to hypervisor (should
|
|
* be unnecessary but better safe than sorry in case we re-enable
|
|
* EE in HV mode with this LPCR still set)
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
lpcr &= ~LPCR_VPM0;
|
|
lpcr |= LPCR_HVICE | LPCR_HEIC;
|
|
|
|
/*
|
|
* If xive is enabled, we route 0x500 interrupts directly
|
|
* to the guest.
|
|
*/
|
|
if (xics_on_xive())
|
|
lpcr |= LPCR_LPES;
|
|
}
|
|
|
|
/*
|
|
* If the host uses radix, the guest starts out as radix.
|
|
*/
|
|
if (radix_enabled()) {
|
|
kvm->arch.radix = 1;
|
|
kvm->arch.mmu_ready = 1;
|
|
lpcr &= ~LPCR_VPM1;
|
|
lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
|
|
if (cpu_has_feature(CPU_FTR_HVMODE) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_31) &&
|
|
(kvm->arch.host_lpcr & LPCR_HAIL))
|
|
lpcr |= LPCR_HAIL;
|
|
ret = kvmppc_init_vm_radix(kvm);
|
|
if (ret) {
|
|
if (kvmhv_is_nestedv2())
|
|
plpar_guest_delete(0, kvm->arch.lpid);
|
|
else
|
|
kvmppc_free_lpid(kvm->arch.lpid);
|
|
return ret;
|
|
}
|
|
kvmppc_setup_partition_table(kvm);
|
|
}
|
|
|
|
verify_lpcr(kvm, lpcr);
|
|
kvm->arch.lpcr = lpcr;
|
|
|
|
/* Initialization for future HPT resizes */
|
|
kvm->arch.resize_hpt = NULL;
|
|
|
|
/*
|
|
* Work out how many sets the TLB has, for the use of
|
|
* the TLB invalidation loop in book3s_hv_rmhandlers.S.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
|
|
/*
|
|
* P10 will flush all the congruence class with a single tlbiel
|
|
*/
|
|
kvm->arch.tlb_sets = 1;
|
|
} else if (radix_enabled())
|
|
kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
|
|
else if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
|
|
else if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
|
|
else
|
|
kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
|
|
|
|
/*
|
|
* Track that we now have a HV mode VM active. This blocks secondary
|
|
* CPU threads from coming online.
|
|
*/
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
kvm_hv_vm_activated();
|
|
|
|
/*
|
|
* Initialize smt_mode depending on processor.
|
|
* POWER8 and earlier have to use "strict" threading, where
|
|
* all vCPUs in a vcore have to run on the same (sub)core,
|
|
* whereas on POWER9 the threads can each run a different
|
|
* guest.
|
|
*/
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
kvm->arch.smt_mode = threads_per_subcore;
|
|
else
|
|
kvm->arch.smt_mode = 1;
|
|
kvm->arch.emul_smt_mode = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
|
|
{
|
|
kvmppc_mmu_debugfs_init(kvm);
|
|
if (radix_enabled())
|
|
kvmhv_radix_debugfs_init(kvm);
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_free_vcores(struct kvm *kvm)
|
|
{
|
|
long int i;
|
|
|
|
for (i = 0; i < KVM_MAX_VCORES; ++i)
|
|
kfree(kvm->arch.vcores[i]);
|
|
kvm->arch.online_vcores = 0;
|
|
}
|
|
|
|
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
|
|
{
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
kvm_hv_vm_deactivated();
|
|
|
|
kvmppc_free_vcores(kvm);
|
|
|
|
|
|
if (kvm_is_radix(kvm))
|
|
kvmppc_free_radix(kvm);
|
|
else
|
|
kvmppc_free_hpt(&kvm->arch.hpt);
|
|
|
|
/* Perform global invalidation and return lpid to the pool */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
if (nesting_enabled(kvm))
|
|
kvmhv_release_all_nested(kvm);
|
|
kvm->arch.process_table = 0;
|
|
if (kvm->arch.secure_guest)
|
|
uv_svm_terminate(kvm->arch.lpid);
|
|
if (!kvmhv_is_nestedv2())
|
|
kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
|
|
}
|
|
|
|
if (kvmhv_is_nestedv2()) {
|
|
kvmhv_flush_lpid(kvm->arch.lpid);
|
|
plpar_guest_delete(0, kvm->arch.lpid);
|
|
} else {
|
|
kvmppc_free_lpid(kvm->arch.lpid);
|
|
}
|
|
|
|
kvmppc_free_pimap(kvm);
|
|
}
|
|
|
|
/* We don't need to emulate any privileged instructions or dcbz */
|
|
static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
|
|
unsigned int inst, int *advance)
|
|
{
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
|
|
ulong spr_val)
|
|
{
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
|
|
ulong *spr_val)
|
|
{
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
static int kvmppc_core_check_processor_compat_hv(void)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_HVMODE) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_206))
|
|
return 0;
|
|
|
|
/* POWER9 in radix mode is capable of being a nested hypervisor. */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
|
|
return 0;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_XICS
|
|
|
|
void kvmppc_free_pimap(struct kvm *kvm)
|
|
{
|
|
kfree(kvm->arch.pimap);
|
|
}
|
|
|
|
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
|
|
{
|
|
return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
|
|
}
|
|
|
|
static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
|
|
{
|
|
struct irq_desc *desc;
|
|
struct kvmppc_irq_map *irq_map;
|
|
struct kvmppc_passthru_irqmap *pimap;
|
|
struct irq_chip *chip;
|
|
int i, rc = 0;
|
|
struct irq_data *host_data;
|
|
|
|
if (!kvm_irq_bypass)
|
|
return 1;
|
|
|
|
desc = irq_to_desc(host_irq);
|
|
if (!desc)
|
|
return -EIO;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
pimap = kvm->arch.pimap;
|
|
if (pimap == NULL) {
|
|
/* First call, allocate structure to hold IRQ map */
|
|
pimap = kvmppc_alloc_pimap();
|
|
if (pimap == NULL) {
|
|
mutex_unlock(&kvm->lock);
|
|
return -ENOMEM;
|
|
}
|
|
kvm->arch.pimap = pimap;
|
|
}
|
|
|
|
/*
|
|
* For now, we only support interrupts for which the EOI operation
|
|
* is an OPAL call followed by a write to XIRR, since that's
|
|
* what our real-mode EOI code does, or a XIVE interrupt
|
|
*/
|
|
chip = irq_data_get_irq_chip(&desc->irq_data);
|
|
if (!chip || !is_pnv_opal_msi(chip)) {
|
|
pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
|
|
host_irq, guest_gsi);
|
|
mutex_unlock(&kvm->lock);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/*
|
|
* See if we already have an entry for this guest IRQ number.
|
|
* If it's mapped to a hardware IRQ number, that's an error,
|
|
* otherwise re-use this entry.
|
|
*/
|
|
for (i = 0; i < pimap->n_mapped; i++) {
|
|
if (guest_gsi == pimap->mapped[i].v_hwirq) {
|
|
if (pimap->mapped[i].r_hwirq) {
|
|
mutex_unlock(&kvm->lock);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == KVMPPC_PIRQ_MAPPED) {
|
|
mutex_unlock(&kvm->lock);
|
|
return -EAGAIN; /* table is full */
|
|
}
|
|
|
|
irq_map = &pimap->mapped[i];
|
|
|
|
irq_map->v_hwirq = guest_gsi;
|
|
irq_map->desc = desc;
|
|
|
|
/*
|
|
* Order the above two stores before the next to serialize with
|
|
* the KVM real mode handler.
|
|
*/
|
|
smp_wmb();
|
|
|
|
/*
|
|
* The 'host_irq' number is mapped in the PCI-MSI domain but
|
|
* the underlying calls, which will EOI the interrupt in real
|
|
* mode, need an HW IRQ number mapped in the XICS IRQ domain.
|
|
*/
|
|
host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
|
|
irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
|
|
|
|
if (i == pimap->n_mapped)
|
|
pimap->n_mapped++;
|
|
|
|
if (xics_on_xive())
|
|
rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
|
|
else
|
|
kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
|
|
if (rc)
|
|
irq_map->r_hwirq = 0;
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
|
|
{
|
|
struct irq_desc *desc;
|
|
struct kvmppc_passthru_irqmap *pimap;
|
|
int i, rc = 0;
|
|
|
|
if (!kvm_irq_bypass)
|
|
return 0;
|
|
|
|
desc = irq_to_desc(host_irq);
|
|
if (!desc)
|
|
return -EIO;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
if (!kvm->arch.pimap)
|
|
goto unlock;
|
|
|
|
pimap = kvm->arch.pimap;
|
|
|
|
for (i = 0; i < pimap->n_mapped; i++) {
|
|
if (guest_gsi == pimap->mapped[i].v_hwirq)
|
|
break;
|
|
}
|
|
|
|
if (i == pimap->n_mapped) {
|
|
mutex_unlock(&kvm->lock);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (xics_on_xive())
|
|
rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
|
|
else
|
|
kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
|
|
|
|
/* invalidate the entry (what to do on error from the above ?) */
|
|
pimap->mapped[i].r_hwirq = 0;
|
|
|
|
/*
|
|
* We don't free this structure even when the count goes to
|
|
* zero. The structure is freed when we destroy the VM.
|
|
*/
|
|
unlock:
|
|
mutex_unlock(&kvm->lock);
|
|
return rc;
|
|
}
|
|
|
|
static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
int ret = 0;
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
irqfd->producer = prod;
|
|
|
|
ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
|
|
if (ret)
|
|
pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
|
|
prod->irq, irqfd->gsi, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
int ret;
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
irqfd->producer = NULL;
|
|
|
|
/*
|
|
* When producer of consumer is unregistered, we change back to
|
|
* default external interrupt handling mode - KVM real mode
|
|
* will switch back to host.
|
|
*/
|
|
ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
|
|
if (ret)
|
|
pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
|
|
prod->irq, irqfd->gsi, ret);
|
|
}
|
|
#endif
|
|
|
|
static int kvm_arch_vm_ioctl_hv(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm __maybe_unused = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
|
|
switch (ioctl) {
|
|
|
|
case KVM_PPC_ALLOCATE_HTAB: {
|
|
u32 htab_order;
|
|
|
|
/* If we're a nested hypervisor, we currently only support radix */
|
|
if (kvmhv_on_pseries()) {
|
|
r = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
r = -EFAULT;
|
|
if (get_user(htab_order, (u32 __user *)argp))
|
|
break;
|
|
r = kvmppc_alloc_reset_hpt(kvm, htab_order);
|
|
if (r)
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
|
|
case KVM_PPC_GET_HTAB_FD: {
|
|
struct kvm_get_htab_fd ghf;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&ghf, argp, sizeof(ghf)))
|
|
break;
|
|
r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
|
|
break;
|
|
}
|
|
|
|
case KVM_PPC_RESIZE_HPT_PREPARE: {
|
|
struct kvm_ppc_resize_hpt rhpt;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
|
|
break;
|
|
|
|
r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
|
|
break;
|
|
}
|
|
|
|
case KVM_PPC_RESIZE_HPT_COMMIT: {
|
|
struct kvm_ppc_resize_hpt rhpt;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
|
|
break;
|
|
|
|
r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
r = -ENOTTY;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* List of hcall numbers to enable by default.
|
|
* For compatibility with old userspace, we enable by default
|
|
* all hcalls that were implemented before the hcall-enabling
|
|
* facility was added. Note this list should not include H_RTAS.
|
|
*/
|
|
static unsigned int default_hcall_list[] = {
|
|
H_REMOVE,
|
|
H_ENTER,
|
|
H_READ,
|
|
H_PROTECT,
|
|
H_BULK_REMOVE,
|
|
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
|
H_GET_TCE,
|
|
H_PUT_TCE,
|
|
#endif
|
|
H_SET_DABR,
|
|
H_SET_XDABR,
|
|
H_CEDE,
|
|
H_PROD,
|
|
H_CONFER,
|
|
H_REGISTER_VPA,
|
|
#ifdef CONFIG_KVM_XICS
|
|
H_EOI,
|
|
H_CPPR,
|
|
H_IPI,
|
|
H_IPOLL,
|
|
H_XIRR,
|
|
H_XIRR_X,
|
|
#endif
|
|
0
|
|
};
|
|
|
|
static void init_default_hcalls(void)
|
|
{
|
|
int i;
|
|
unsigned int hcall;
|
|
|
|
for (i = 0; default_hcall_list[i]; ++i) {
|
|
hcall = default_hcall_list[i];
|
|
WARN_ON(!kvmppc_hcall_impl_hv(hcall));
|
|
__set_bit(hcall / 4, default_enabled_hcalls);
|
|
}
|
|
}
|
|
|
|
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
|
|
{
|
|
unsigned long lpcr;
|
|
int radix;
|
|
int err;
|
|
|
|
/* If not on a POWER9, reject it */
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
return -ENODEV;
|
|
|
|
/* If any unknown flags set, reject it */
|
|
if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
|
|
return -EINVAL;
|
|
|
|
/* GR (guest radix) bit in process_table field must match */
|
|
radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
|
|
if (!!(cfg->process_table & PATB_GR) != radix)
|
|
return -EINVAL;
|
|
|
|
/* Process table size field must be reasonable, i.e. <= 24 */
|
|
if ((cfg->process_table & PRTS_MASK) > 24)
|
|
return -EINVAL;
|
|
|
|
/* We can change a guest to/from radix now, if the host is radix */
|
|
if (radix && !radix_enabled())
|
|
return -EINVAL;
|
|
|
|
/* If we're a nested hypervisor, we currently only support radix */
|
|
if (kvmhv_on_pseries() && !radix)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
if (radix != kvm_is_radix(kvm)) {
|
|
if (kvm->arch.mmu_ready) {
|
|
kvm->arch.mmu_ready = 0;
|
|
/* order mmu_ready vs. vcpus_running */
|
|
smp_mb();
|
|
if (atomic_read(&kvm->arch.vcpus_running)) {
|
|
kvm->arch.mmu_ready = 1;
|
|
err = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
if (radix)
|
|
err = kvmppc_switch_mmu_to_radix(kvm);
|
|
else
|
|
err = kvmppc_switch_mmu_to_hpt(kvm);
|
|
if (err)
|
|
goto out_unlock;
|
|
}
|
|
|
|
kvm->arch.process_table = cfg->process_table;
|
|
kvmppc_setup_partition_table(kvm);
|
|
|
|
lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
|
|
kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
|
|
err = 0;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
return err;
|
|
}
|
|
|
|
static int kvmhv_enable_nested(struct kvm *kvm)
|
|
{
|
|
if (!nested)
|
|
return -EPERM;
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
return -ENODEV;
|
|
if (!radix_enabled())
|
|
return -ENODEV;
|
|
if (kvmhv_is_nestedv2())
|
|
return -ENODEV;
|
|
|
|
/* kvm == NULL means the caller is testing if the capability exists */
|
|
if (kvm)
|
|
kvm->arch.nested_enable = true;
|
|
return 0;
|
|
}
|
|
|
|
static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
|
|
int size)
|
|
{
|
|
int rc = -EINVAL;
|
|
|
|
if (kvmhv_vcpu_is_radix(vcpu)) {
|
|
rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
|
|
|
|
if (rc > 0)
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
/* For now quadrants are the only way to access nested guest memory */
|
|
if (rc && vcpu->arch.nested)
|
|
rc = -EAGAIN;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
|
|
int size)
|
|
{
|
|
int rc = -EINVAL;
|
|
|
|
if (kvmhv_vcpu_is_radix(vcpu)) {
|
|
rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
|
|
|
|
if (rc > 0)
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
/* For now quadrants are the only way to access nested guest memory */
|
|
if (rc && vcpu->arch.nested)
|
|
rc = -EAGAIN;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
|
|
{
|
|
unpin_vpa(kvm, vpa);
|
|
vpa->gpa = 0;
|
|
vpa->pinned_addr = NULL;
|
|
vpa->dirty = false;
|
|
vpa->update_pending = 0;
|
|
}
|
|
|
|
/*
|
|
* Enable a guest to become a secure VM, or test whether
|
|
* that could be enabled.
|
|
* Called when the KVM_CAP_PPC_SECURE_GUEST capability is
|
|
* tested (kvm == NULL) or enabled (kvm != NULL).
|
|
*/
|
|
static int kvmhv_enable_svm(struct kvm *kvm)
|
|
{
|
|
if (!kvmppc_uvmem_available())
|
|
return -EINVAL;
|
|
if (kvm)
|
|
kvm->arch.svm_enabled = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* IOCTL handler to turn off secure mode of guest
|
|
*
|
|
* - Release all device pages
|
|
* - Issue ucall to terminate the guest on the UV side
|
|
* - Unpin the VPA pages.
|
|
* - Reinit the partition scoped page tables
|
|
*/
|
|
static int kvmhv_svm_off(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int mmu_was_ready;
|
|
int srcu_idx;
|
|
int ret = 0;
|
|
unsigned long i;
|
|
|
|
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
|
|
return ret;
|
|
|
|
mutex_lock(&kvm->arch.mmu_setup_lock);
|
|
mmu_was_ready = kvm->arch.mmu_ready;
|
|
if (kvm->arch.mmu_ready) {
|
|
kvm->arch.mmu_ready = 0;
|
|
/* order mmu_ready vs. vcpus_running */
|
|
smp_mb();
|
|
if (atomic_read(&kvm->arch.vcpus_running)) {
|
|
kvm->arch.mmu_ready = 1;
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
|
|
struct kvm_memory_slot *memslot;
|
|
struct kvm_memslots *slots = __kvm_memslots(kvm, i);
|
|
int bkt;
|
|
|
|
if (!slots)
|
|
continue;
|
|
|
|
kvm_for_each_memslot(memslot, bkt, slots) {
|
|
kvmppc_uvmem_drop_pages(memslot, kvm, true);
|
|
uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
|
|
}
|
|
}
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
ret = uv_svm_terminate(kvm->arch.lpid);
|
|
if (ret != U_SUCCESS) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* When secure guest is reset, all the guest pages are sent
|
|
* to UV via UV_PAGE_IN before the non-boot vcpus get a
|
|
* chance to run and unpin their VPA pages. Unpinning of all
|
|
* VPA pages is done here explicitly so that VPA pages
|
|
* can be migrated to the secure side.
|
|
*
|
|
* This is required to for the secure SMP guest to reboot
|
|
* correctly.
|
|
*/
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
unpin_vpa_reset(kvm, &vcpu->arch.dtl);
|
|
unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
|
|
unpin_vpa_reset(kvm, &vcpu->arch.vpa);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
}
|
|
|
|
kvmppc_setup_partition_table(kvm);
|
|
kvm->arch.secure_guest = 0;
|
|
kvm->arch.mmu_ready = mmu_was_ready;
|
|
out:
|
|
mutex_unlock(&kvm->arch.mmu_setup_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int kvmhv_enable_dawr1(struct kvm *kvm)
|
|
{
|
|
if (!cpu_has_feature(CPU_FTR_DAWR1))
|
|
return -ENODEV;
|
|
|
|
/* kvm == NULL means the caller is testing if the capability exists */
|
|
if (kvm)
|
|
kvm->arch.dawr1_enabled = true;
|
|
return 0;
|
|
}
|
|
|
|
static bool kvmppc_hash_v3_possible(void)
|
|
{
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
return false;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_HVMODE))
|
|
return false;
|
|
|
|
/*
|
|
* POWER9 chips before version 2.02 can't have some threads in
|
|
* HPT mode and some in radix mode on the same core.
|
|
*/
|
|
if (radix_enabled()) {
|
|
unsigned int pvr = mfspr(SPRN_PVR);
|
|
if ((pvr >> 16) == PVR_POWER9 &&
|
|
(((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
|
|
((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct kvmppc_ops kvm_ops_hv = {
|
|
.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
|
|
.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
|
|
.get_one_reg = kvmppc_get_one_reg_hv,
|
|
.set_one_reg = kvmppc_set_one_reg_hv,
|
|
.vcpu_load = kvmppc_core_vcpu_load_hv,
|
|
.vcpu_put = kvmppc_core_vcpu_put_hv,
|
|
.inject_interrupt = kvmppc_inject_interrupt_hv,
|
|
.set_msr = kvmppc_set_msr_hv,
|
|
.vcpu_run = kvmppc_vcpu_run_hv,
|
|
.vcpu_create = kvmppc_core_vcpu_create_hv,
|
|
.vcpu_free = kvmppc_core_vcpu_free_hv,
|
|
.check_requests = kvmppc_core_check_requests_hv,
|
|
.get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
|
|
.flush_memslot = kvmppc_core_flush_memslot_hv,
|
|
.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
|
|
.commit_memory_region = kvmppc_core_commit_memory_region_hv,
|
|
.unmap_gfn_range = kvm_unmap_gfn_range_hv,
|
|
.age_gfn = kvm_age_gfn_hv,
|
|
.test_age_gfn = kvm_test_age_gfn_hv,
|
|
.set_spte_gfn = kvm_set_spte_gfn_hv,
|
|
.free_memslot = kvmppc_core_free_memslot_hv,
|
|
.init_vm = kvmppc_core_init_vm_hv,
|
|
.destroy_vm = kvmppc_core_destroy_vm_hv,
|
|
.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
|
|
.emulate_op = kvmppc_core_emulate_op_hv,
|
|
.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
|
|
.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
|
|
.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
|
|
.arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
|
|
.hcall_implemented = kvmppc_hcall_impl_hv,
|
|
#ifdef CONFIG_KVM_XICS
|
|
.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
|
|
.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
|
|
#endif
|
|
.configure_mmu = kvmhv_configure_mmu,
|
|
.get_rmmu_info = kvmhv_get_rmmu_info,
|
|
.set_smt_mode = kvmhv_set_smt_mode,
|
|
.enable_nested = kvmhv_enable_nested,
|
|
.load_from_eaddr = kvmhv_load_from_eaddr,
|
|
.store_to_eaddr = kvmhv_store_to_eaddr,
|
|
.enable_svm = kvmhv_enable_svm,
|
|
.svm_off = kvmhv_svm_off,
|
|
.enable_dawr1 = kvmhv_enable_dawr1,
|
|
.hash_v3_possible = kvmppc_hash_v3_possible,
|
|
.create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
|
|
.create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
|
|
};
|
|
|
|
static int kvm_init_subcore_bitmap(void)
|
|
{
|
|
int i, j;
|
|
int nr_cores = cpu_nr_cores();
|
|
struct sibling_subcore_state *sibling_subcore_state;
|
|
|
|
for (i = 0; i < nr_cores; i++) {
|
|
int first_cpu = i * threads_per_core;
|
|
int node = cpu_to_node(first_cpu);
|
|
|
|
/* Ignore if it is already allocated. */
|
|
if (paca_ptrs[first_cpu]->sibling_subcore_state)
|
|
continue;
|
|
|
|
sibling_subcore_state =
|
|
kzalloc_node(sizeof(struct sibling_subcore_state),
|
|
GFP_KERNEL, node);
|
|
if (!sibling_subcore_state)
|
|
return -ENOMEM;
|
|
|
|
|
|
for (j = 0; j < threads_per_core; j++) {
|
|
int cpu = first_cpu + j;
|
|
|
|
paca_ptrs[cpu]->sibling_subcore_state =
|
|
sibling_subcore_state;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kvmppc_radix_possible(void)
|
|
{
|
|
return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
|
|
}
|
|
|
|
static int kvmppc_book3s_init_hv(void)
|
|
{
|
|
int r;
|
|
|
|
if (!tlbie_capable) {
|
|
pr_err("KVM-HV: Host does not support TLBIE\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* FIXME!! Do we need to check on all cpus ?
|
|
*/
|
|
r = kvmppc_core_check_processor_compat_hv();
|
|
if (r < 0)
|
|
return -ENODEV;
|
|
|
|
r = kvmhv_nested_init();
|
|
if (r)
|
|
return r;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
r = kvm_init_subcore_bitmap();
|
|
if (r)
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* We need a way of accessing the XICS interrupt controller,
|
|
* either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
|
|
* indirectly, via OPAL.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
if (!xics_on_xive() && !kvmhv_on_pseries() &&
|
|
!local_paca->kvm_hstate.xics_phys) {
|
|
struct device_node *np;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
|
|
if (!np) {
|
|
pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
|
|
r = -ENODEV;
|
|
goto err;
|
|
}
|
|
/* presence of intc confirmed - node can be dropped again */
|
|
of_node_put(np);
|
|
}
|
|
#endif
|
|
|
|
init_default_hcalls();
|
|
|
|
init_vcore_lists();
|
|
|
|
r = kvmppc_mmu_hv_init();
|
|
if (r)
|
|
goto err;
|
|
|
|
if (kvmppc_radix_possible()) {
|
|
r = kvmppc_radix_init();
|
|
if (r)
|
|
goto err;
|
|
}
|
|
|
|
r = kvmppc_uvmem_init();
|
|
if (r < 0) {
|
|
pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
|
|
return r;
|
|
}
|
|
|
|
kvm_ops_hv.owner = THIS_MODULE;
|
|
kvmppc_hv_ops = &kvm_ops_hv;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
kvmhv_nested_exit();
|
|
kvmppc_radix_exit();
|
|
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_book3s_exit_hv(void)
|
|
{
|
|
kvmppc_uvmem_free();
|
|
kvmppc_free_host_rm_ops();
|
|
if (kvmppc_radix_possible())
|
|
kvmppc_radix_exit();
|
|
kvmppc_hv_ops = NULL;
|
|
kvmhv_nested_exit();
|
|
}
|
|
|
|
module_init(kvmppc_book3s_init_hv);
|
|
module_exit(kvmppc_book3s_exit_hv);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS_MISCDEV(KVM_MINOR);
|
|
MODULE_ALIAS("devname:kvm");
|