mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
6f93b93b2a
drivers should ensure that tasklets are killed, so that they can't be executed after driver remove is executed, so ensure they are killed. This driver used vchan tasklets, so those need to be killed. Signed-off-by: Vinod Koul <vinod.koul@intel.com> Cc: Jingchang Lu <b35083@freescale.com> Cc: Peter Griffin <peter.griffin@linaro.org>
1107 lines
30 KiB
C
1107 lines
30 KiB
C
/*
|
|
* drivers/dma/fsl-edma.c
|
|
*
|
|
* Copyright 2013-2014 Freescale Semiconductor, Inc.
|
|
*
|
|
* Driver for the Freescale eDMA engine with flexible channel multiplexing
|
|
* capability for DMA request sources. The eDMA block can be found on some
|
|
* Vybrid and Layerscape SoCs.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_dma.h>
|
|
|
|
#include "virt-dma.h"
|
|
|
|
#define EDMA_CR 0x00
|
|
#define EDMA_ES 0x04
|
|
#define EDMA_ERQ 0x0C
|
|
#define EDMA_EEI 0x14
|
|
#define EDMA_SERQ 0x1B
|
|
#define EDMA_CERQ 0x1A
|
|
#define EDMA_SEEI 0x19
|
|
#define EDMA_CEEI 0x18
|
|
#define EDMA_CINT 0x1F
|
|
#define EDMA_CERR 0x1E
|
|
#define EDMA_SSRT 0x1D
|
|
#define EDMA_CDNE 0x1C
|
|
#define EDMA_INTR 0x24
|
|
#define EDMA_ERR 0x2C
|
|
|
|
#define EDMA_TCD_SADDR(x) (0x1000 + 32 * (x))
|
|
#define EDMA_TCD_SOFF(x) (0x1004 + 32 * (x))
|
|
#define EDMA_TCD_ATTR(x) (0x1006 + 32 * (x))
|
|
#define EDMA_TCD_NBYTES(x) (0x1008 + 32 * (x))
|
|
#define EDMA_TCD_SLAST(x) (0x100C + 32 * (x))
|
|
#define EDMA_TCD_DADDR(x) (0x1010 + 32 * (x))
|
|
#define EDMA_TCD_DOFF(x) (0x1014 + 32 * (x))
|
|
#define EDMA_TCD_CITER_ELINK(x) (0x1016 + 32 * (x))
|
|
#define EDMA_TCD_CITER(x) (0x1016 + 32 * (x))
|
|
#define EDMA_TCD_DLAST_SGA(x) (0x1018 + 32 * (x))
|
|
#define EDMA_TCD_CSR(x) (0x101C + 32 * (x))
|
|
#define EDMA_TCD_BITER_ELINK(x) (0x101E + 32 * (x))
|
|
#define EDMA_TCD_BITER(x) (0x101E + 32 * (x))
|
|
|
|
#define EDMA_CR_EDBG BIT(1)
|
|
#define EDMA_CR_ERCA BIT(2)
|
|
#define EDMA_CR_ERGA BIT(3)
|
|
#define EDMA_CR_HOE BIT(4)
|
|
#define EDMA_CR_HALT BIT(5)
|
|
#define EDMA_CR_CLM BIT(6)
|
|
#define EDMA_CR_EMLM BIT(7)
|
|
#define EDMA_CR_ECX BIT(16)
|
|
#define EDMA_CR_CX BIT(17)
|
|
|
|
#define EDMA_SEEI_SEEI(x) ((x) & 0x1F)
|
|
#define EDMA_CEEI_CEEI(x) ((x) & 0x1F)
|
|
#define EDMA_CINT_CINT(x) ((x) & 0x1F)
|
|
#define EDMA_CERR_CERR(x) ((x) & 0x1F)
|
|
|
|
#define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007))
|
|
#define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3)
|
|
#define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8)
|
|
#define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11)
|
|
#define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000)
|
|
#define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100)
|
|
#define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200)
|
|
#define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300)
|
|
#define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500)
|
|
#define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000)
|
|
#define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001)
|
|
#define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002)
|
|
#define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003)
|
|
#define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005)
|
|
|
|
#define EDMA_TCD_SOFF_SOFF(x) (x)
|
|
#define EDMA_TCD_NBYTES_NBYTES(x) (x)
|
|
#define EDMA_TCD_SLAST_SLAST(x) (x)
|
|
#define EDMA_TCD_DADDR_DADDR(x) (x)
|
|
#define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF)
|
|
#define EDMA_TCD_DOFF_DOFF(x) (x)
|
|
#define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x)
|
|
#define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF)
|
|
|
|
#define EDMA_TCD_CSR_START BIT(0)
|
|
#define EDMA_TCD_CSR_INT_MAJOR BIT(1)
|
|
#define EDMA_TCD_CSR_INT_HALF BIT(2)
|
|
#define EDMA_TCD_CSR_D_REQ BIT(3)
|
|
#define EDMA_TCD_CSR_E_SG BIT(4)
|
|
#define EDMA_TCD_CSR_E_LINK BIT(5)
|
|
#define EDMA_TCD_CSR_ACTIVE BIT(6)
|
|
#define EDMA_TCD_CSR_DONE BIT(7)
|
|
|
|
#define EDMAMUX_CHCFG_DIS 0x0
|
|
#define EDMAMUX_CHCFG_ENBL 0x80
|
|
#define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F)
|
|
|
|
#define DMAMUX_NR 2
|
|
|
|
#define FSL_EDMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
|
|
enum fsl_edma_pm_state {
|
|
RUNNING = 0,
|
|
SUSPENDED,
|
|
};
|
|
|
|
struct fsl_edma_hw_tcd {
|
|
__le32 saddr;
|
|
__le16 soff;
|
|
__le16 attr;
|
|
__le32 nbytes;
|
|
__le32 slast;
|
|
__le32 daddr;
|
|
__le16 doff;
|
|
__le16 citer;
|
|
__le32 dlast_sga;
|
|
__le16 csr;
|
|
__le16 biter;
|
|
};
|
|
|
|
struct fsl_edma_sw_tcd {
|
|
dma_addr_t ptcd;
|
|
struct fsl_edma_hw_tcd *vtcd;
|
|
};
|
|
|
|
struct fsl_edma_slave_config {
|
|
enum dma_transfer_direction dir;
|
|
enum dma_slave_buswidth addr_width;
|
|
u32 dev_addr;
|
|
u32 burst;
|
|
u32 attr;
|
|
};
|
|
|
|
struct fsl_edma_chan {
|
|
struct virt_dma_chan vchan;
|
|
enum dma_status status;
|
|
enum fsl_edma_pm_state pm_state;
|
|
bool idle;
|
|
u32 slave_id;
|
|
struct fsl_edma_engine *edma;
|
|
struct fsl_edma_desc *edesc;
|
|
struct fsl_edma_slave_config fsc;
|
|
struct dma_pool *tcd_pool;
|
|
};
|
|
|
|
struct fsl_edma_desc {
|
|
struct virt_dma_desc vdesc;
|
|
struct fsl_edma_chan *echan;
|
|
bool iscyclic;
|
|
unsigned int n_tcds;
|
|
struct fsl_edma_sw_tcd tcd[];
|
|
};
|
|
|
|
struct fsl_edma_engine {
|
|
struct dma_device dma_dev;
|
|
void __iomem *membase;
|
|
void __iomem *muxbase[DMAMUX_NR];
|
|
struct clk *muxclk[DMAMUX_NR];
|
|
struct mutex fsl_edma_mutex;
|
|
u32 n_chans;
|
|
int txirq;
|
|
int errirq;
|
|
bool big_endian;
|
|
struct fsl_edma_chan chans[];
|
|
};
|
|
|
|
/*
|
|
* R/W functions for big- or little-endian registers:
|
|
* The eDMA controller's endian is independent of the CPU core's endian.
|
|
* For the big-endian IP module, the offset for 8-bit or 16-bit registers
|
|
* should also be swapped opposite to that in little-endian IP.
|
|
*/
|
|
|
|
static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr)
|
|
{
|
|
if (edma->big_endian)
|
|
return ioread32be(addr);
|
|
else
|
|
return ioread32(addr);
|
|
}
|
|
|
|
static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr)
|
|
{
|
|
/* swap the reg offset for these in big-endian mode */
|
|
if (edma->big_endian)
|
|
iowrite8(val, (void __iomem *)((unsigned long)addr ^ 0x3));
|
|
else
|
|
iowrite8(val, addr);
|
|
}
|
|
|
|
static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr)
|
|
{
|
|
/* swap the reg offset for these in big-endian mode */
|
|
if (edma->big_endian)
|
|
iowrite16be(val, (void __iomem *)((unsigned long)addr ^ 0x2));
|
|
else
|
|
iowrite16(val, addr);
|
|
}
|
|
|
|
static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr)
|
|
{
|
|
if (edma->big_endian)
|
|
iowrite32be(val, addr);
|
|
else
|
|
iowrite32(val, addr);
|
|
}
|
|
|
|
static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan)
|
|
{
|
|
return container_of(chan, struct fsl_edma_chan, vchan.chan);
|
|
}
|
|
|
|
static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd)
|
|
{
|
|
return container_of(vd, struct fsl_edma_desc, vdesc);
|
|
}
|
|
|
|
static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
|
|
{
|
|
void __iomem *addr = fsl_chan->edma->membase;
|
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
|
|
|
edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI);
|
|
edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ);
|
|
}
|
|
|
|
static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
|
|
{
|
|
void __iomem *addr = fsl_chan->edma->membase;
|
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
|
|
|
edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ);
|
|
edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI);
|
|
}
|
|
|
|
static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
|
|
unsigned int slot, bool enable)
|
|
{
|
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
|
void __iomem *muxaddr;
|
|
unsigned chans_per_mux, ch_off;
|
|
|
|
chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR;
|
|
ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
|
|
muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
|
|
slot = EDMAMUX_CHCFG_SOURCE(slot);
|
|
|
|
if (enable)
|
|
iowrite8(EDMAMUX_CHCFG_ENBL | slot, muxaddr + ch_off);
|
|
else
|
|
iowrite8(EDMAMUX_CHCFG_DIS, muxaddr + ch_off);
|
|
}
|
|
|
|
static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
|
|
{
|
|
switch (addr_width) {
|
|
case 1:
|
|
return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
|
|
case 2:
|
|
return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
|
|
case 4:
|
|
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
|
|
case 8:
|
|
return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
|
|
default:
|
|
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
|
|
}
|
|
}
|
|
|
|
static void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
struct fsl_edma_desc *fsl_desc;
|
|
int i;
|
|
|
|
fsl_desc = to_fsl_edma_desc(vdesc);
|
|
for (i = 0; i < fsl_desc->n_tcds; i++)
|
|
dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
|
|
fsl_desc->tcd[i].ptcd);
|
|
kfree(fsl_desc);
|
|
}
|
|
|
|
static int fsl_edma_terminate_all(struct dma_chan *chan)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
|
fsl_edma_disable_request(fsl_chan);
|
|
fsl_chan->edesc = NULL;
|
|
fsl_chan->idle = true;
|
|
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
|
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
|
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_edma_pause(struct dma_chan *chan)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
|
if (fsl_chan->edesc) {
|
|
fsl_edma_disable_request(fsl_chan);
|
|
fsl_chan->status = DMA_PAUSED;
|
|
fsl_chan->idle = true;
|
|
}
|
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_edma_resume(struct dma_chan *chan)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
|
if (fsl_chan->edesc) {
|
|
fsl_edma_enable_request(fsl_chan);
|
|
fsl_chan->status = DMA_IN_PROGRESS;
|
|
fsl_chan->idle = false;
|
|
}
|
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_edma_slave_config(struct dma_chan *chan,
|
|
struct dma_slave_config *cfg)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
|
|
fsl_chan->fsc.dir = cfg->direction;
|
|
if (cfg->direction == DMA_DEV_TO_MEM) {
|
|
fsl_chan->fsc.dev_addr = cfg->src_addr;
|
|
fsl_chan->fsc.addr_width = cfg->src_addr_width;
|
|
fsl_chan->fsc.burst = cfg->src_maxburst;
|
|
fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width);
|
|
} else if (cfg->direction == DMA_MEM_TO_DEV) {
|
|
fsl_chan->fsc.dev_addr = cfg->dst_addr;
|
|
fsl_chan->fsc.addr_width = cfg->dst_addr_width;
|
|
fsl_chan->fsc.burst = cfg->dst_maxburst;
|
|
fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
|
|
struct virt_dma_desc *vdesc, bool in_progress)
|
|
{
|
|
struct fsl_edma_desc *edesc = fsl_chan->edesc;
|
|
void __iomem *addr = fsl_chan->edma->membase;
|
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
|
enum dma_transfer_direction dir = fsl_chan->fsc.dir;
|
|
dma_addr_t cur_addr, dma_addr;
|
|
size_t len, size;
|
|
int i;
|
|
|
|
/* calculate the total size in this desc */
|
|
for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
|
|
len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
|
|
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
|
|
|
|
if (!in_progress)
|
|
return len;
|
|
|
|
if (dir == DMA_MEM_TO_DEV)
|
|
cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch));
|
|
else
|
|
cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch));
|
|
|
|
/* figure out the finished and calculate the residue */
|
|
for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
|
|
size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
|
|
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
|
|
if (dir == DMA_MEM_TO_DEV)
|
|
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
|
|
else
|
|
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);
|
|
|
|
len -= size;
|
|
if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
|
|
len += dma_addr + size - cur_addr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie, struct dma_tx_state *txstate)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
enum dma_status status;
|
|
unsigned long flags;
|
|
|
|
status = dma_cookie_status(chan, cookie, txstate);
|
|
if (status == DMA_COMPLETE)
|
|
return status;
|
|
|
|
if (!txstate)
|
|
return fsl_chan->status;
|
|
|
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
|
vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
|
|
if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
|
|
txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true);
|
|
else if (vdesc)
|
|
txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false);
|
|
else
|
|
txstate->residue = 0;
|
|
|
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
|
|
|
return fsl_chan->status;
|
|
}
|
|
|
|
static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan,
|
|
struct fsl_edma_hw_tcd *tcd)
|
|
{
|
|
struct fsl_edma_engine *edma = fsl_chan->edma;
|
|
void __iomem *addr = fsl_chan->edma->membase;
|
|
u32 ch = fsl_chan->vchan.chan.chan_id;
|
|
|
|
/*
|
|
* TCD parameters are stored in struct fsl_edma_hw_tcd in little
|
|
* endian format. However, we need to load the TCD registers in
|
|
* big- or little-endian obeying the eDMA engine model endian.
|
|
*/
|
|
edma_writew(edma, 0, addr + EDMA_TCD_CSR(ch));
|
|
edma_writel(edma, le32_to_cpu(tcd->saddr), addr + EDMA_TCD_SADDR(ch));
|
|
edma_writel(edma, le32_to_cpu(tcd->daddr), addr + EDMA_TCD_DADDR(ch));
|
|
|
|
edma_writew(edma, le16_to_cpu(tcd->attr), addr + EDMA_TCD_ATTR(ch));
|
|
edma_writew(edma, le16_to_cpu(tcd->soff), addr + EDMA_TCD_SOFF(ch));
|
|
|
|
edma_writel(edma, le32_to_cpu(tcd->nbytes), addr + EDMA_TCD_NBYTES(ch));
|
|
edma_writel(edma, le32_to_cpu(tcd->slast), addr + EDMA_TCD_SLAST(ch));
|
|
|
|
edma_writew(edma, le16_to_cpu(tcd->citer), addr + EDMA_TCD_CITER(ch));
|
|
edma_writew(edma, le16_to_cpu(tcd->biter), addr + EDMA_TCD_BITER(ch));
|
|
edma_writew(edma, le16_to_cpu(tcd->doff), addr + EDMA_TCD_DOFF(ch));
|
|
|
|
edma_writel(edma, le32_to_cpu(tcd->dlast_sga), addr + EDMA_TCD_DLAST_SGA(ch));
|
|
|
|
edma_writew(edma, le16_to_cpu(tcd->csr), addr + EDMA_TCD_CSR(ch));
|
|
}
|
|
|
|
static inline
|
|
void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
|
|
u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
|
|
u16 biter, u16 doff, u32 dlast_sga, bool major_int,
|
|
bool disable_req, bool enable_sg)
|
|
{
|
|
u16 csr = 0;
|
|
|
|
/*
|
|
* eDMA hardware SGs require the TCDs to be stored in little
|
|
* endian format irrespective of the register endian model.
|
|
* So we put the value in little endian in memory, waiting
|
|
* for fsl_edma_set_tcd_regs doing the swap.
|
|
*/
|
|
tcd->saddr = cpu_to_le32(src);
|
|
tcd->daddr = cpu_to_le32(dst);
|
|
|
|
tcd->attr = cpu_to_le16(attr);
|
|
|
|
tcd->soff = cpu_to_le16(EDMA_TCD_SOFF_SOFF(soff));
|
|
|
|
tcd->nbytes = cpu_to_le32(EDMA_TCD_NBYTES_NBYTES(nbytes));
|
|
tcd->slast = cpu_to_le32(EDMA_TCD_SLAST_SLAST(slast));
|
|
|
|
tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
|
|
tcd->doff = cpu_to_le16(EDMA_TCD_DOFF_DOFF(doff));
|
|
|
|
tcd->dlast_sga = cpu_to_le32(EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga));
|
|
|
|
tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
|
|
if (major_int)
|
|
csr |= EDMA_TCD_CSR_INT_MAJOR;
|
|
|
|
if (disable_req)
|
|
csr |= EDMA_TCD_CSR_D_REQ;
|
|
|
|
if (enable_sg)
|
|
csr |= EDMA_TCD_CSR_E_SG;
|
|
|
|
tcd->csr = cpu_to_le16(csr);
|
|
}
|
|
|
|
static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
|
|
int sg_len)
|
|
{
|
|
struct fsl_edma_desc *fsl_desc;
|
|
int i;
|
|
|
|
fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len,
|
|
GFP_NOWAIT);
|
|
if (!fsl_desc)
|
|
return NULL;
|
|
|
|
fsl_desc->echan = fsl_chan;
|
|
fsl_desc->n_tcds = sg_len;
|
|
for (i = 0; i < sg_len; i++) {
|
|
fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
|
|
GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
|
|
if (!fsl_desc->tcd[i].vtcd)
|
|
goto err;
|
|
}
|
|
return fsl_desc;
|
|
|
|
err:
|
|
while (--i >= 0)
|
|
dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
|
|
fsl_desc->tcd[i].ptcd);
|
|
kfree(fsl_desc);
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
|
|
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
struct fsl_edma_desc *fsl_desc;
|
|
dma_addr_t dma_buf_next;
|
|
int sg_len, i;
|
|
u32 src_addr, dst_addr, last_sg, nbytes;
|
|
u16 soff, doff, iter;
|
|
|
|
if (!is_slave_direction(fsl_chan->fsc.dir))
|
|
return NULL;
|
|
|
|
sg_len = buf_len / period_len;
|
|
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
|
|
if (!fsl_desc)
|
|
return NULL;
|
|
fsl_desc->iscyclic = true;
|
|
|
|
dma_buf_next = dma_addr;
|
|
nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
|
|
iter = period_len / nbytes;
|
|
|
|
for (i = 0; i < sg_len; i++) {
|
|
if (dma_buf_next >= dma_addr + buf_len)
|
|
dma_buf_next = dma_addr;
|
|
|
|
/* get next sg's physical address */
|
|
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
|
|
|
|
if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
|
|
src_addr = dma_buf_next;
|
|
dst_addr = fsl_chan->fsc.dev_addr;
|
|
soff = fsl_chan->fsc.addr_width;
|
|
doff = 0;
|
|
} else {
|
|
src_addr = fsl_chan->fsc.dev_addr;
|
|
dst_addr = dma_buf_next;
|
|
soff = 0;
|
|
doff = fsl_chan->fsc.addr_width;
|
|
}
|
|
|
|
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
|
|
fsl_chan->fsc.attr, soff, nbytes, 0, iter,
|
|
iter, doff, last_sg, true, false, true);
|
|
dma_buf_next += period_len;
|
|
}
|
|
|
|
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
|
|
struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
struct fsl_edma_desc *fsl_desc;
|
|
struct scatterlist *sg;
|
|
u32 src_addr, dst_addr, last_sg, nbytes;
|
|
u16 soff, doff, iter;
|
|
int i;
|
|
|
|
if (!is_slave_direction(fsl_chan->fsc.dir))
|
|
return NULL;
|
|
|
|
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
|
|
if (!fsl_desc)
|
|
return NULL;
|
|
fsl_desc->iscyclic = false;
|
|
|
|
nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
/* get next sg's physical address */
|
|
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
|
|
|
|
if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
|
|
src_addr = sg_dma_address(sg);
|
|
dst_addr = fsl_chan->fsc.dev_addr;
|
|
soff = fsl_chan->fsc.addr_width;
|
|
doff = 0;
|
|
} else {
|
|
src_addr = fsl_chan->fsc.dev_addr;
|
|
dst_addr = sg_dma_address(sg);
|
|
soff = 0;
|
|
doff = fsl_chan->fsc.addr_width;
|
|
}
|
|
|
|
iter = sg_dma_len(sg) / nbytes;
|
|
if (i < sg_len - 1) {
|
|
last_sg = fsl_desc->tcd[(i + 1)].ptcd;
|
|
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
|
|
dst_addr, fsl_chan->fsc.attr, soff,
|
|
nbytes, 0, iter, iter, doff, last_sg,
|
|
false, false, true);
|
|
} else {
|
|
last_sg = 0;
|
|
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
|
|
dst_addr, fsl_chan->fsc.attr, soff,
|
|
nbytes, 0, iter, iter, doff, last_sg,
|
|
true, true, false);
|
|
}
|
|
}
|
|
|
|
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
|
|
}
|
|
|
|
static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
|
|
{
|
|
struct virt_dma_desc *vdesc;
|
|
|
|
vdesc = vchan_next_desc(&fsl_chan->vchan);
|
|
if (!vdesc)
|
|
return;
|
|
fsl_chan->edesc = to_fsl_edma_desc(vdesc);
|
|
fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
|
|
fsl_edma_enable_request(fsl_chan);
|
|
fsl_chan->status = DMA_IN_PROGRESS;
|
|
fsl_chan->idle = false;
|
|
}
|
|
|
|
static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id)
|
|
{
|
|
struct fsl_edma_engine *fsl_edma = dev_id;
|
|
unsigned int intr, ch;
|
|
void __iomem *base_addr;
|
|
struct fsl_edma_chan *fsl_chan;
|
|
|
|
base_addr = fsl_edma->membase;
|
|
|
|
intr = edma_readl(fsl_edma, base_addr + EDMA_INTR);
|
|
if (!intr)
|
|
return IRQ_NONE;
|
|
|
|
for (ch = 0; ch < fsl_edma->n_chans; ch++) {
|
|
if (intr & (0x1 << ch)) {
|
|
edma_writeb(fsl_edma, EDMA_CINT_CINT(ch),
|
|
base_addr + EDMA_CINT);
|
|
|
|
fsl_chan = &fsl_edma->chans[ch];
|
|
|
|
spin_lock(&fsl_chan->vchan.lock);
|
|
if (!fsl_chan->edesc->iscyclic) {
|
|
list_del(&fsl_chan->edesc->vdesc.node);
|
|
vchan_cookie_complete(&fsl_chan->edesc->vdesc);
|
|
fsl_chan->edesc = NULL;
|
|
fsl_chan->status = DMA_COMPLETE;
|
|
fsl_chan->idle = true;
|
|
} else {
|
|
vchan_cyclic_callback(&fsl_chan->edesc->vdesc);
|
|
}
|
|
|
|
if (!fsl_chan->edesc)
|
|
fsl_edma_xfer_desc(fsl_chan);
|
|
|
|
spin_unlock(&fsl_chan->vchan.lock);
|
|
}
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id)
|
|
{
|
|
struct fsl_edma_engine *fsl_edma = dev_id;
|
|
unsigned int err, ch;
|
|
|
|
err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR);
|
|
if (!err)
|
|
return IRQ_NONE;
|
|
|
|
for (ch = 0; ch < fsl_edma->n_chans; ch++) {
|
|
if (err & (0x1 << ch)) {
|
|
fsl_edma_disable_request(&fsl_edma->chans[ch]);
|
|
edma_writeb(fsl_edma, EDMA_CERR_CERR(ch),
|
|
fsl_edma->membase + EDMA_CERR);
|
|
fsl_edma->chans[ch].status = DMA_ERROR;
|
|
fsl_edma->chans[ch].idle = true;
|
|
}
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id)
|
|
{
|
|
if (fsl_edma_tx_handler(irq, dev_id) == IRQ_HANDLED)
|
|
return IRQ_HANDLED;
|
|
|
|
return fsl_edma_err_handler(irq, dev_id);
|
|
}
|
|
|
|
static void fsl_edma_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
|
|
|
if (unlikely(fsl_chan->pm_state != RUNNING)) {
|
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
|
/* cannot submit due to suspend */
|
|
return;
|
|
}
|
|
|
|
if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
|
|
fsl_edma_xfer_desc(fsl_chan);
|
|
|
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
|
}
|
|
|
|
static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
struct fsl_edma_engine *fsl_edma = ofdma->of_dma_data;
|
|
struct dma_chan *chan, *_chan;
|
|
struct fsl_edma_chan *fsl_chan;
|
|
unsigned long chans_per_mux = fsl_edma->n_chans / DMAMUX_NR;
|
|
|
|
if (dma_spec->args_count != 2)
|
|
return NULL;
|
|
|
|
mutex_lock(&fsl_edma->fsl_edma_mutex);
|
|
list_for_each_entry_safe(chan, _chan, &fsl_edma->dma_dev.channels, device_node) {
|
|
if (chan->client_count)
|
|
continue;
|
|
if ((chan->chan_id / chans_per_mux) == dma_spec->args[0]) {
|
|
chan = dma_get_slave_channel(chan);
|
|
if (chan) {
|
|
chan->device->privatecnt++;
|
|
fsl_chan = to_fsl_edma_chan(chan);
|
|
fsl_chan->slave_id = dma_spec->args[1];
|
|
fsl_edma_chan_mux(fsl_chan, fsl_chan->slave_id,
|
|
true);
|
|
mutex_unlock(&fsl_edma->fsl_edma_mutex);
|
|
return chan;
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&fsl_edma->fsl_edma_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
static int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
|
|
fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
|
|
sizeof(struct fsl_edma_hw_tcd),
|
|
32, 0);
|
|
return 0;
|
|
}
|
|
|
|
static void fsl_edma_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
|
fsl_edma_disable_request(fsl_chan);
|
|
fsl_edma_chan_mux(fsl_chan, 0, false);
|
|
fsl_chan->edesc = NULL;
|
|
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
|
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
|
|
|
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
|
|
dma_pool_destroy(fsl_chan->tcd_pool);
|
|
fsl_chan->tcd_pool = NULL;
|
|
}
|
|
|
|
static int
|
|
fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma)
|
|
{
|
|
int ret;
|
|
|
|
fsl_edma->txirq = platform_get_irq_byname(pdev, "edma-tx");
|
|
if (fsl_edma->txirq < 0) {
|
|
dev_err(&pdev->dev, "Can't get edma-tx irq.\n");
|
|
return fsl_edma->txirq;
|
|
}
|
|
|
|
fsl_edma->errirq = platform_get_irq_byname(pdev, "edma-err");
|
|
if (fsl_edma->errirq < 0) {
|
|
dev_err(&pdev->dev, "Can't get edma-err irq.\n");
|
|
return fsl_edma->errirq;
|
|
}
|
|
|
|
if (fsl_edma->txirq == fsl_edma->errirq) {
|
|
ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
|
|
fsl_edma_irq_handler, 0, "eDMA", fsl_edma);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Can't register eDMA IRQ.\n");
|
|
return ret;
|
|
}
|
|
} else {
|
|
ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
|
|
fsl_edma_tx_handler, 0, "eDMA tx", fsl_edma);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Can't register eDMA tx IRQ.\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = devm_request_irq(&pdev->dev, fsl_edma->errirq,
|
|
fsl_edma_err_handler, 0, "eDMA err", fsl_edma);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Can't register eDMA err IRQ.\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fsl_edma_irq_exit(
|
|
struct platform_device *pdev, struct fsl_edma_engine *fsl_edma)
|
|
{
|
|
if (fsl_edma->txirq == fsl_edma->errirq) {
|
|
devm_free_irq(&pdev->dev, fsl_edma->txirq, fsl_edma);
|
|
} else {
|
|
devm_free_irq(&pdev->dev, fsl_edma->txirq, fsl_edma);
|
|
devm_free_irq(&pdev->dev, fsl_edma->errirq, fsl_edma);
|
|
}
|
|
}
|
|
|
|
static void fsl_disable_clocks(struct fsl_edma_engine *fsl_edma)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DMAMUX_NR; i++)
|
|
clk_disable_unprepare(fsl_edma->muxclk[i]);
|
|
}
|
|
|
|
static int fsl_edma_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct fsl_edma_engine *fsl_edma;
|
|
struct fsl_edma_chan *fsl_chan;
|
|
struct resource *res;
|
|
int len, chans;
|
|
int ret, i;
|
|
|
|
ret = of_property_read_u32(np, "dma-channels", &chans);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Can't get dma-channels.\n");
|
|
return ret;
|
|
}
|
|
|
|
len = sizeof(*fsl_edma) + sizeof(*fsl_chan) * chans;
|
|
fsl_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
|
|
if (!fsl_edma)
|
|
return -ENOMEM;
|
|
|
|
fsl_edma->n_chans = chans;
|
|
mutex_init(&fsl_edma->fsl_edma_mutex);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
fsl_edma->membase = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(fsl_edma->membase))
|
|
return PTR_ERR(fsl_edma->membase);
|
|
|
|
for (i = 0; i < DMAMUX_NR; i++) {
|
|
char clkname[32];
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 1 + i);
|
|
fsl_edma->muxbase[i] = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(fsl_edma->muxbase[i]))
|
|
return PTR_ERR(fsl_edma->muxbase[i]);
|
|
|
|
sprintf(clkname, "dmamux%d", i);
|
|
fsl_edma->muxclk[i] = devm_clk_get(&pdev->dev, clkname);
|
|
if (IS_ERR(fsl_edma->muxclk[i])) {
|
|
dev_err(&pdev->dev, "Missing DMAMUX block clock.\n");
|
|
return PTR_ERR(fsl_edma->muxclk[i]);
|
|
}
|
|
|
|
ret = clk_prepare_enable(fsl_edma->muxclk[i]);
|
|
if (ret) {
|
|
/* disable only clks which were enabled on error */
|
|
for (; i >= 0; i--)
|
|
clk_disable_unprepare(fsl_edma->muxclk[i]);
|
|
|
|
dev_err(&pdev->dev, "DMAMUX clk block failed.\n");
|
|
return ret;
|
|
}
|
|
|
|
}
|
|
|
|
fsl_edma->big_endian = of_property_read_bool(np, "big-endian");
|
|
|
|
INIT_LIST_HEAD(&fsl_edma->dma_dev.channels);
|
|
for (i = 0; i < fsl_edma->n_chans; i++) {
|
|
struct fsl_edma_chan *fsl_chan = &fsl_edma->chans[i];
|
|
|
|
fsl_chan->edma = fsl_edma;
|
|
fsl_chan->pm_state = RUNNING;
|
|
fsl_chan->slave_id = 0;
|
|
fsl_chan->idle = true;
|
|
fsl_chan->vchan.desc_free = fsl_edma_free_desc;
|
|
vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev);
|
|
|
|
edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i));
|
|
fsl_edma_chan_mux(fsl_chan, 0, false);
|
|
}
|
|
|
|
edma_writel(fsl_edma, ~0, fsl_edma->membase + EDMA_INTR);
|
|
ret = fsl_edma_irq_init(pdev, fsl_edma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dma_cap_set(DMA_PRIVATE, fsl_edma->dma_dev.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, fsl_edma->dma_dev.cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, fsl_edma->dma_dev.cap_mask);
|
|
|
|
fsl_edma->dma_dev.dev = &pdev->dev;
|
|
fsl_edma->dma_dev.device_alloc_chan_resources
|
|
= fsl_edma_alloc_chan_resources;
|
|
fsl_edma->dma_dev.device_free_chan_resources
|
|
= fsl_edma_free_chan_resources;
|
|
fsl_edma->dma_dev.device_tx_status = fsl_edma_tx_status;
|
|
fsl_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg;
|
|
fsl_edma->dma_dev.device_prep_dma_cyclic = fsl_edma_prep_dma_cyclic;
|
|
fsl_edma->dma_dev.device_config = fsl_edma_slave_config;
|
|
fsl_edma->dma_dev.device_pause = fsl_edma_pause;
|
|
fsl_edma->dma_dev.device_resume = fsl_edma_resume;
|
|
fsl_edma->dma_dev.device_terminate_all = fsl_edma_terminate_all;
|
|
fsl_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending;
|
|
|
|
fsl_edma->dma_dev.src_addr_widths = FSL_EDMA_BUSWIDTHS;
|
|
fsl_edma->dma_dev.dst_addr_widths = FSL_EDMA_BUSWIDTHS;
|
|
fsl_edma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
|
|
platform_set_drvdata(pdev, fsl_edma);
|
|
|
|
ret = dma_async_device_register(&fsl_edma->dma_dev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev,
|
|
"Can't register Freescale eDMA engine. (%d)\n", ret);
|
|
fsl_disable_clocks(fsl_edma);
|
|
return ret;
|
|
}
|
|
|
|
ret = of_dma_controller_register(np, fsl_edma_xlate, fsl_edma);
|
|
if (ret) {
|
|
dev_err(&pdev->dev,
|
|
"Can't register Freescale eDMA of_dma. (%d)\n", ret);
|
|
dma_async_device_unregister(&fsl_edma->dma_dev);
|
|
fsl_disable_clocks(fsl_edma);
|
|
return ret;
|
|
}
|
|
|
|
/* enable round robin arbitration */
|
|
edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fsl_edma_cleanup_vchan(struct dma_device *dmadev)
|
|
{
|
|
struct fsl_edma_chan *chan, *_chan;
|
|
|
|
list_for_each_entry_safe(chan, _chan,
|
|
&dmadev->channels, vchan.chan.device_node) {
|
|
list_del(&chan->vchan.chan.device_node);
|
|
tasklet_kill(&chan->vchan.task);
|
|
}
|
|
}
|
|
|
|
static int fsl_edma_remove(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct fsl_edma_engine *fsl_edma = platform_get_drvdata(pdev);
|
|
|
|
fsl_edma_irq_exit(pdev, fsl_edma);
|
|
fsl_edma_cleanup_vchan(&fsl_edma->dma_dev);
|
|
of_dma_controller_free(np);
|
|
dma_async_device_unregister(&fsl_edma->dma_dev);
|
|
fsl_disable_clocks(fsl_edma);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_edma_suspend_late(struct device *dev)
|
|
{
|
|
struct fsl_edma_engine *fsl_edma = dev_get_drvdata(dev);
|
|
struct fsl_edma_chan *fsl_chan;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
for (i = 0; i < fsl_edma->n_chans; i++) {
|
|
fsl_chan = &fsl_edma->chans[i];
|
|
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
|
|
/* Make sure chan is idle or will force disable. */
|
|
if (unlikely(!fsl_chan->idle)) {
|
|
dev_warn(dev, "WARN: There is non-idle channel.");
|
|
fsl_edma_disable_request(fsl_chan);
|
|
fsl_edma_chan_mux(fsl_chan, 0, false);
|
|
}
|
|
|
|
fsl_chan->pm_state = SUSPENDED;
|
|
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_edma_resume_early(struct device *dev)
|
|
{
|
|
struct fsl_edma_engine *fsl_edma = dev_get_drvdata(dev);
|
|
struct fsl_edma_chan *fsl_chan;
|
|
int i;
|
|
|
|
for (i = 0; i < fsl_edma->n_chans; i++) {
|
|
fsl_chan = &fsl_edma->chans[i];
|
|
fsl_chan->pm_state = RUNNING;
|
|
edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i));
|
|
if (fsl_chan->slave_id != 0)
|
|
fsl_edma_chan_mux(fsl_chan, fsl_chan->slave_id, true);
|
|
}
|
|
|
|
edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA,
|
|
fsl_edma->membase + EDMA_CR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* eDMA provides the service to others, so it should be suspend late
|
|
* and resume early. When eDMA suspend, all of the clients should stop
|
|
* the DMA data transmission and let the channel idle.
|
|
*/
|
|
static const struct dev_pm_ops fsl_edma_pm_ops = {
|
|
.suspend_late = fsl_edma_suspend_late,
|
|
.resume_early = fsl_edma_resume_early,
|
|
};
|
|
|
|
static const struct of_device_id fsl_edma_dt_ids[] = {
|
|
{ .compatible = "fsl,vf610-edma", },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsl_edma_dt_ids);
|
|
|
|
static struct platform_driver fsl_edma_driver = {
|
|
.driver = {
|
|
.name = "fsl-edma",
|
|
.of_match_table = fsl_edma_dt_ids,
|
|
.pm = &fsl_edma_pm_ops,
|
|
},
|
|
.probe = fsl_edma_probe,
|
|
.remove = fsl_edma_remove,
|
|
};
|
|
|
|
static int __init fsl_edma_init(void)
|
|
{
|
|
return platform_driver_register(&fsl_edma_driver);
|
|
}
|
|
subsys_initcall(fsl_edma_init);
|
|
|
|
static void __exit fsl_edma_exit(void)
|
|
{
|
|
platform_driver_unregister(&fsl_edma_driver);
|
|
}
|
|
module_exit(fsl_edma_exit);
|
|
|
|
MODULE_ALIAS("platform:fsl-edma");
|
|
MODULE_DESCRIPTION("Freescale eDMA engine driver");
|
|
MODULE_LICENSE("GPL v2");
|