linux-stable/drivers/gpu/drm/ttm/ttm_bo.c
Linus Torvalds a2d635decb drm pull request for 5.2
-----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJc04M6AAoJEAx081l5xIa+SJgP/0uIgIOM53vPpydgmr+2IEHF
 jbDqrd+mipgNriRVHjDsWdUHCUNtyhB7YEBCMrj3mY0rRFI7FlQQf4lOwYGoHiKP
 4JZg4kwC37997lFXl1uabGj3DmJLtxKL2/D15zCH/uLe+2EDzWznP6NVdFT3WK0P
 YKZQCWT19PWSsLoBRPutWxkmop4AYvkqE0a6vXUlJlFYZK3Bbytx6/179uWKfiX5
 ZkKEEtx1XiDAvcp5gBb6PISurycrBY0e/bkPBnK3ES5vawMbTU5IrmWOrQ4D8yOd
 z9qOVZawZ6+b2XBDgBWjQ9bM7I5R7Il1q/LglYEaFI9+wHUnlUdDSm6ft5/5BiCZ
 fqgkh5Bj2iEsajbSsacoljMOpxpYPqj63mqc+7fAGXF34V+B+9U1bpt8kCbMKowf
 7Abb7IuiCR6vLDapjP6VqTMvdQ4O466OEAN83ULGFTdmMqYYH4AxaIwc+xcAk/aP
 RNq7/RHhh4FRynRAj9fCkGlF3ArnM88gLINwWuEQq4SClWGcvdw7eaHpwWo77c4g
 iccCnTLqSIg5pDVu07AQzzBlW6KulWxh5o72x+Xx+EXWdYUDHQ1SlNs11bSNUBV1
 5MkrzY2GuD+NFEjsXJEDIPOr40mQOyJCXnxq8nXPsz/hD9kHeJPvWn3J3eVKyb5B
 Z6/knNqM0BDn3SaYR/rD
 =YFiQ
 -----END PGP SIGNATURE-----

Merge tag 'drm-next-2019-05-09' of git://anongit.freedesktop.org/drm/drm

Pull drm updates from Dave Airlie:
 "This has two exciting community drivers for ARM Mali accelerators.
  Since ARM has never been open source friendly on the GPU side of the
  house, the community has had to create open source drivers for the
  Mali GPUs. Lima covers the older t4xx and panfrost the newer 6xx/7xx
  series. Well done to all involved and hopefully this will help ARM
  head in the right direction.

  There is also now the ability if you don't have any of the legacy
  drivers enabled (pre-KMS) to remove all the pre-KMS support code from
  the core drm, this saves 10% or so in codesize on my machine.

  i915 also enable Icelake/Elkhart Lake Gen11 GPUs by default, vboxvideo
  moves out of staging.

  There are also some rcar-du patches which crossover with media tree
  but all should be acked by Mauro.

  Summary:

  uapi changes:
   - Colorspace connector property
   - fourcc - new YUV formts
   - timeline sync objects initially merged
   - expose FB_DAMAGE_CLIPS to atomic userspace

  new drivers:
   - vboxvideo: moved out of staging
   - aspeed: ASPEED SoC BMC chip display support
   - lima: ARM Mali4xx GPU acceleration driver support
   - panfrost: ARM Mali6xx/7xx Midgard/Bitfrost acceleration driver support

  core:
   - component helper docs
   - unplugging fixes
   - devm device init
   - MIPI/DSI rate control
   - shmem backed gem objects
   - connector, display_info, edid_quirks cleanups
   - dma_buf fence chain support
   - 64-bit dma-fence seqno comparison fixes
   - move initial fb config code to core
   - gem fence array helpers for Lima
   - ability to remove legacy support code if no drivers requires it (removes 10% of drm.ko size)
   - lease fixes

  ttm:
   - unified DRM_FILE_PAGE_OFFSET handling
   - Account for kernel allocations in kernel zone only

  panel:
   - OSD070T1718-19TS panel support
   - panel-tpo-td028ttec1 backlight support
   - Ronbo RB070D30 MIPI/DSI
   - Feiyang FY07024DI26A30-D MIPI-DSI panel
   - Rocktech jh057n00900 MIPI-DSI panel

  i915:
   - Comet Lake (Gen9) PCI IDs
   - Updated Icelake PCI IDs
   - Elkhartlake (Gen11) support
   - DP MST property addtions
   - plane and watermark fixes
   - Icelake port sync and VEBOX disable fixes
   - struct_mutex usage reduction
   - Icelake gamma fix
   - GuC reset fixes
   - make mmap more asynchronous
   - sound display power well race fixes
   - DDI/MIPI-DSI clocks for Icelake
   - Icelake RPS frequency changing support
   - Icelake workarounds

  amdgpu:
   - Use HMM for userptr
   - vega20 experimental smu11 support
   - RAS support for vega20
   - BACO support for vega12 + fixes for vega20
   - reworked IH interrupt handling
   - amdkfd RAS support
   - Freesync improvements
   - initial timeline sync object support
   - DC Z ordering fixes
   - NV12 planes support
   - colorspace properties for planes=
   - eDP opts if eDP already initialized

  nouveau:
   - misc fixes

  etnaviv:
   - misc fixes

  msm:
   - GPU zap shader support expansion
   - robustness ABI addition

  exynos:
   - Logging cleanups

  tegra:
   - Shared reset fix
   - CPU cache maintenance fix

  cirrus:
   - driver rewritten using simple helpers

  meson:
   - G12A support

  vmwgfx:
   - Resource dirtying management improvements
   - Userspace logging improvements

  virtio:
   - PRIME fixes

  rockchip:
   - rk3066 hdmi support

  sun4i:
   - DSI burst mode support

  vc4:
   - load tracker to detect underflow

  v3d:
   - v3d v4.2 support

  malidp:
   - initial Mali D71 support in komeda driver

  tfp410:
   - omap related improvement

  omapdrm:
   - drm bridge/panel support
   - drop some omap specific panels

  rcar-du:
   - Display writeback support"

* tag 'drm-next-2019-05-09' of git://anongit.freedesktop.org/drm/drm: (1507 commits)
  drm/msm/a6xx: No zap shader is not an error
  drm/cma-helper: Fix drm_gem_cma_free_object()
  drm: Fix timestamp docs for variable refresh properties.
  drm/komeda: Mark the local functions as static
  drm/komeda: Fixed warning: Function parameter or member not described
  drm/komeda: Expose bus_width to Komeda-CORE
  drm/komeda: Add sysfs attribute: core_id and config_id
  drm: add non-desktop quirk for Valve HMDs
  drm/panfrost: Show stored feature registers
  drm/panfrost: Don't scream about deferred probe
  drm/panfrost: Disable PM on probe failure
  drm/panfrost: Set DMA masks earlier
  drm/panfrost: Add sanity checks to submit IOCTL
  drm/etnaviv: initialize idle mask before querying the HW db
  drm: introduce a capability flag for syncobj timeline support
  drm: report consistent errors when checking syncobj capibility
  drm/nouveau/nouveau: forward error generated while resuming objects tree
  drm/nouveau/fb/ramgk104: fix spelling mistake "sucessfully" -> "successfully"
  drm/nouveau/i2c: Disable i2c bus access after ->fini()
  drm/nouveau: Remove duplicate ACPI_VIDEO_NOTIFY_PROBE definition
  ...
2019-05-08 21:35:19 -07:00

1896 lines
46 KiB
C

/* SPDX-License-Identifier: GPL-2.0 OR MIT */
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#define pr_fmt(fmt) "[TTM] " fmt
#include <drm/ttm/ttm_module.h>
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/atomic.h>
#include <linux/reservation.h>
static void ttm_bo_global_kobj_release(struct kobject *kobj);
/**
* ttm_global_mutex - protecting the global BO state
*/
DEFINE_MUTEX(ttm_global_mutex);
unsigned ttm_bo_glob_use_count;
struct ttm_bo_global ttm_bo_glob;
static struct attribute ttm_bo_count = {
.name = "bo_count",
.mode = S_IRUGO
};
/* default destructor */
static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
{
kfree(bo);
}
static inline int ttm_mem_type_from_place(const struct ttm_place *place,
uint32_t *mem_type)
{
int pos;
pos = ffs(place->flags & TTM_PL_MASK_MEM);
if (unlikely(!pos))
return -EINVAL;
*mem_type = pos - 1;
return 0;
}
static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
int mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
drm_printf(p, " has_type: %d\n", man->has_type);
drm_printf(p, " use_type: %d\n", man->use_type);
drm_printf(p, " flags: 0x%08X\n", man->flags);
drm_printf(p, " gpu_offset: 0x%08llX\n", man->gpu_offset);
drm_printf(p, " size: %llu\n", man->size);
drm_printf(p, " available_caching: 0x%08X\n", man->available_caching);
drm_printf(p, " default_caching: 0x%08X\n", man->default_caching);
if (mem_type != TTM_PL_SYSTEM)
(*man->func->debug)(man, p);
}
static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
struct drm_printer p = drm_debug_printer(TTM_PFX);
int i, ret, mem_type;
drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
bo, bo->mem.num_pages, bo->mem.size >> 10,
bo->mem.size >> 20);
for (i = 0; i < placement->num_placement; i++) {
ret = ttm_mem_type_from_place(&placement->placement[i],
&mem_type);
if (ret)
return;
drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
i, placement->placement[i].flags, mem_type);
ttm_mem_type_debug(bo->bdev, &p, mem_type);
}
}
static ssize_t ttm_bo_global_show(struct kobject *kobj,
struct attribute *attr,
char *buffer)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
return snprintf(buffer, PAGE_SIZE, "%d\n",
atomic_read(&glob->bo_count));
}
static struct attribute *ttm_bo_global_attrs[] = {
&ttm_bo_count,
NULL
};
static const struct sysfs_ops ttm_bo_global_ops = {
.show = &ttm_bo_global_show
};
static struct kobj_type ttm_bo_glob_kobj_type = {
.release = &ttm_bo_global_kobj_release,
.sysfs_ops = &ttm_bo_global_ops,
.default_attrs = ttm_bo_global_attrs
};
static inline uint32_t ttm_bo_type_flags(unsigned type)
{
return 1 << (type);
}
static void ttm_bo_release_list(struct kref *list_kref)
{
struct ttm_buffer_object *bo =
container_of(list_kref, struct ttm_buffer_object, list_kref);
struct ttm_bo_device *bdev = bo->bdev;
size_t acc_size = bo->acc_size;
BUG_ON(kref_read(&bo->list_kref));
BUG_ON(kref_read(&bo->kref));
BUG_ON(atomic_read(&bo->cpu_writers));
BUG_ON(bo->mem.mm_node != NULL);
BUG_ON(!list_empty(&bo->lru));
BUG_ON(!list_empty(&bo->ddestroy));
ttm_tt_destroy(bo->ttm);
atomic_dec(&bo->bdev->glob->bo_count);
dma_fence_put(bo->moving);
reservation_object_fini(&bo->ttm_resv);
mutex_destroy(&bo->wu_mutex);
bo->destroy(bo);
ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
}
void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
reservation_object_assert_held(bo->resv);
if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
BUG_ON(!list_empty(&bo->lru));
man = &bdev->man[bo->mem.mem_type];
list_add_tail(&bo->lru, &man->lru[bo->priority]);
kref_get(&bo->list_kref);
if (bo->ttm && !(bo->ttm->page_flags &
(TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) {
list_add_tail(&bo->swap,
&bdev->glob->swap_lru[bo->priority]);
kref_get(&bo->list_kref);
}
}
}
EXPORT_SYMBOL(ttm_bo_add_to_lru);
static void ttm_bo_ref_bug(struct kref *list_kref)
{
BUG();
}
void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
bool notify = false;
if (!list_empty(&bo->swap)) {
list_del_init(&bo->swap);
kref_put(&bo->list_kref, ttm_bo_ref_bug);
notify = true;
}
if (!list_empty(&bo->lru)) {
list_del_init(&bo->lru);
kref_put(&bo->list_kref, ttm_bo_ref_bug);
notify = true;
}
if (notify && bdev->driver->del_from_lru_notify)
bdev->driver->del_from_lru_notify(bo);
}
void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_global *glob = bo->bdev->glob;
spin_lock(&glob->lru_lock);
ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
}
EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
struct ttm_buffer_object *bo)
{
if (!pos->first)
pos->first = bo;
pos->last = bo;
}
void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
struct ttm_lru_bulk_move *bulk)
{
reservation_object_assert_held(bo->resv);
ttm_bo_del_from_lru(bo);
ttm_bo_add_to_lru(bo);
if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
switch (bo->mem.mem_type) {
case TTM_PL_TT:
ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
break;
case TTM_PL_VRAM:
ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
break;
}
if (bo->ttm && !(bo->ttm->page_flags &
(TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
}
}
EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
{
unsigned i;
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
struct ttm_mem_type_manager *man;
if (!pos->first)
continue;
reservation_object_assert_held(pos->first->resv);
reservation_object_assert_held(pos->last->resv);
man = &pos->first->bdev->man[TTM_PL_TT];
list_bulk_move_tail(&man->lru[i], &pos->first->lru,
&pos->last->lru);
}
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
struct ttm_mem_type_manager *man;
if (!pos->first)
continue;
reservation_object_assert_held(pos->first->resv);
reservation_object_assert_held(pos->last->resv);
man = &pos->first->bdev->man[TTM_PL_VRAM];
list_bulk_move_tail(&man->lru[i], &pos->first->lru,
&pos->last->lru);
}
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
struct list_head *lru;
if (!pos->first)
continue;
reservation_object_assert_held(pos->first->resv);
reservation_object_assert_held(pos->last->resv);
lru = &pos->first->bdev->glob->swap_lru[i];
list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
}
}
EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem, bool evict,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_device *bdev = bo->bdev;
bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
int ret = 0;
if (old_is_pci || new_is_pci ||
((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
ret = ttm_mem_io_lock(old_man, true);
if (unlikely(ret != 0))
goto out_err;
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(old_man);
}
/*
* Create and bind a ttm if required.
*/
if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (bo->ttm == NULL) {
bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
ret = ttm_tt_create(bo, zero);
if (ret)
goto out_err;
}
ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
if (ret)
goto out_err;
if (mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_tt_bind(bo->ttm, mem, ctx);
if (ret)
goto out_err;
}
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, evict, mem);
bo->mem = *mem;
mem->mm_node = NULL;
goto moved;
}
}
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, evict, mem);
if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
ret = ttm_bo_move_ttm(bo, ctx, mem);
else if (bdev->driver->move)
ret = bdev->driver->move(bo, evict, ctx, mem);
else
ret = ttm_bo_move_memcpy(bo, ctx, mem);
if (ret) {
if (bdev->driver->move_notify) {
swap(*mem, bo->mem);
bdev->driver->move_notify(bo, false, mem);
swap(*mem, bo->mem);
}
goto out_err;
}
moved:
if (bo->evicted) {
if (bdev->driver->invalidate_caches) {
ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
if (ret)
pr_err("Can not flush read caches\n");
}
bo->evicted = false;
}
if (bo->mem.mm_node)
bo->offset = (bo->mem.start << PAGE_SHIFT) +
bdev->man[bo->mem.mem_type].gpu_offset;
else
bo->offset = 0;
ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
return 0;
out_err:
new_man = &bdev->man[bo->mem.mem_type];
if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
return ret;
}
/**
* Call bo::reserved.
* Will release GPU memory type usage on destruction.
* This is the place to put in driver specific hooks to release
* driver private resources.
* Will release the bo::reserved lock.
*/
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
if (bo->bdev->driver->move_notify)
bo->bdev->driver->move_notify(bo, false, NULL);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
ttm_bo_mem_put(bo, &bo->mem);
}
static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
{
int r;
if (bo->resv == &bo->ttm_resv)
return 0;
BUG_ON(!reservation_object_trylock(&bo->ttm_resv));
r = reservation_object_copy_fences(&bo->ttm_resv, bo->resv);
if (r)
reservation_object_unlock(&bo->ttm_resv);
return r;
}
static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
{
struct reservation_object_list *fobj;
struct dma_fence *fence;
int i;
fobj = reservation_object_get_list(&bo->ttm_resv);
fence = reservation_object_get_excl(&bo->ttm_resv);
if (fence && !fence->ops->signaled)
dma_fence_enable_sw_signaling(fence);
for (i = 0; fobj && i < fobj->shared_count; ++i) {
fence = rcu_dereference_protected(fobj->shared[i],
reservation_object_held(bo->resv));
if (!fence->ops->signaled)
dma_fence_enable_sw_signaling(fence);
}
}
static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bdev->glob;
int ret;
ret = ttm_bo_individualize_resv(bo);
if (ret) {
/* Last resort, if we fail to allocate memory for the
* fences block for the BO to become idle
*/
reservation_object_wait_timeout_rcu(bo->resv, true, false,
30 * HZ);
spin_lock(&glob->lru_lock);
goto error;
}
spin_lock(&glob->lru_lock);
ret = reservation_object_trylock(bo->resv) ? 0 : -EBUSY;
if (!ret) {
if (reservation_object_test_signaled_rcu(&bo->ttm_resv, true)) {
ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
if (bo->resv != &bo->ttm_resv)
reservation_object_unlock(&bo->ttm_resv);
ttm_bo_cleanup_memtype_use(bo);
reservation_object_unlock(bo->resv);
return;
}
ttm_bo_flush_all_fences(bo);
/*
* Make NO_EVICT bos immediately available to
* shrinkers, now that they are queued for
* destruction.
*/
if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
ttm_bo_add_to_lru(bo);
}
reservation_object_unlock(bo->resv);
}
if (bo->resv != &bo->ttm_resv)
reservation_object_unlock(&bo->ttm_resv);
error:
kref_get(&bo->list_kref);
list_add_tail(&bo->ddestroy, &bdev->ddestroy);
spin_unlock(&glob->lru_lock);
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
/**
* function ttm_bo_cleanup_refs
* If bo idle, remove from delayed- and lru lists, and unref.
* If not idle, do nothing.
*
* Must be called with lru_lock and reservation held, this function
* will drop the lru lock and optionally the reservation lock before returning.
*
* @interruptible Any sleeps should occur interruptibly.
* @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
* @unlock_resv Unlock the reservation lock as well.
*/
static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
bool interruptible, bool no_wait_gpu,
bool unlock_resv)
{
struct ttm_bo_global *glob = bo->bdev->glob;
struct reservation_object *resv;
int ret;
if (unlikely(list_empty(&bo->ddestroy)))
resv = bo->resv;
else
resv = &bo->ttm_resv;
if (reservation_object_test_signaled_rcu(resv, true))
ret = 0;
else
ret = -EBUSY;
if (ret && !no_wait_gpu) {
long lret;
if (unlock_resv)
reservation_object_unlock(bo->resv);
spin_unlock(&glob->lru_lock);
lret = reservation_object_wait_timeout_rcu(resv, true,
interruptible,
30 * HZ);
if (lret < 0)
return lret;
else if (lret == 0)
return -EBUSY;
spin_lock(&glob->lru_lock);
if (unlock_resv && !reservation_object_trylock(bo->resv)) {
/*
* We raced, and lost, someone else holds the reservation now,
* and is probably busy in ttm_bo_cleanup_memtype_use.
*
* Even if it's not the case, because we finished waiting any
* delayed destruction would succeed, so just return success
* here.
*/
spin_unlock(&glob->lru_lock);
return 0;
}
ret = 0;
}
if (ret || unlikely(list_empty(&bo->ddestroy))) {
if (unlock_resv)
reservation_object_unlock(bo->resv);
spin_unlock(&glob->lru_lock);
return ret;
}
ttm_bo_del_from_lru(bo);
list_del_init(&bo->ddestroy);
kref_put(&bo->list_kref, ttm_bo_ref_bug);
spin_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
if (unlock_resv)
reservation_object_unlock(bo->resv);
return 0;
}
/**
* Traverse the delayed list, and call ttm_bo_cleanup_refs on all
* encountered buffers.
*/
static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
{
struct ttm_bo_global *glob = bdev->glob;
struct list_head removed;
bool empty;
INIT_LIST_HEAD(&removed);
spin_lock(&glob->lru_lock);
while (!list_empty(&bdev->ddestroy)) {
struct ttm_buffer_object *bo;
bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
ddestroy);
kref_get(&bo->list_kref);
list_move_tail(&bo->ddestroy, &removed);
if (remove_all || bo->resv != &bo->ttm_resv) {
spin_unlock(&glob->lru_lock);
reservation_object_lock(bo->resv, NULL);
spin_lock(&glob->lru_lock);
ttm_bo_cleanup_refs(bo, false, !remove_all, true);
} else if (reservation_object_trylock(bo->resv)) {
ttm_bo_cleanup_refs(bo, false, !remove_all, true);
} else {
spin_unlock(&glob->lru_lock);
}
kref_put(&bo->list_kref, ttm_bo_release_list);
spin_lock(&glob->lru_lock);
}
list_splice_tail(&removed, &bdev->ddestroy);
empty = list_empty(&bdev->ddestroy);
spin_unlock(&glob->lru_lock);
return empty;
}
static void ttm_bo_delayed_workqueue(struct work_struct *work)
{
struct ttm_bo_device *bdev =
container_of(work, struct ttm_bo_device, wq.work);
if (!ttm_bo_delayed_delete(bdev, false))
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
static void ttm_bo_release(struct kref *kref)
{
struct ttm_buffer_object *bo =
container_of(kref, struct ttm_buffer_object, kref);
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
ttm_mem_io_lock(man, false);
ttm_mem_io_free_vm(bo);
ttm_mem_io_unlock(man);
ttm_bo_cleanup_refs_or_queue(bo);
kref_put(&bo->list_kref, ttm_bo_release_list);
}
void ttm_bo_put(struct ttm_buffer_object *bo)
{
kref_put(&bo->kref, ttm_bo_release);
}
EXPORT_SYMBOL(ttm_bo_put);
int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
{
return cancel_delayed_work_sync(&bdev->wq);
}
EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
{
if (resched)
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
static int ttm_bo_evict(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_reg evict_mem;
struct ttm_placement placement;
int ret = 0;
reservation_object_assert_held(bo->resv);
placement.num_placement = 0;
placement.num_busy_placement = 0;
bdev->driver->evict_flags(bo, &placement);
if (!placement.num_placement && !placement.num_busy_placement) {
ret = ttm_bo_pipeline_gutting(bo);
if (ret)
return ret;
return ttm_tt_create(bo, false);
}
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.bus.io_reserved_vm = false;
evict_mem.bus.io_reserved_count = 0;
ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
if (ret) {
if (ret != -ERESTARTSYS) {
pr_err("Failed to find memory space for buffer 0x%p eviction\n",
bo);
ttm_bo_mem_space_debug(bo, &placement);
}
goto out;
}
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
if (unlikely(ret)) {
if (ret != -ERESTARTSYS)
pr_err("Buffer eviction failed\n");
ttm_bo_mem_put(bo, &evict_mem);
goto out;
}
bo->evicted = true;
out:
return ret;
}
bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
const struct ttm_place *place)
{
/* Don't evict this BO if it's outside of the
* requested placement range
*/
if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
(place->lpfn && place->lpfn <= bo->mem.start))
return false;
return true;
}
EXPORT_SYMBOL(ttm_bo_eviction_valuable);
/**
* Check the target bo is allowable to be evicted or swapout, including cases:
*
* a. if share same reservation object with ctx->resv, have assumption
* reservation objects should already be locked, so not lock again and
* return true directly when either the opreation allow_reserved_eviction
* or the target bo already is in delayed free list;
*
* b. Otherwise, trylock it.
*/
static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx, bool *locked)
{
bool ret = false;
*locked = false;
if (bo->resv == ctx->resv) {
reservation_object_assert_held(bo->resv);
if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
|| !list_empty(&bo->ddestroy))
ret = true;
} else {
*locked = reservation_object_trylock(bo->resv);
ret = *locked;
}
return ret;
}
static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
uint32_t mem_type,
const struct ttm_place *place,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_global *glob = bdev->glob;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_buffer_object *bo = NULL;
bool locked = false;
unsigned i;
int ret;
spin_lock(&glob->lru_lock);
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
list_for_each_entry(bo, &man->lru[i], lru) {
if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked))
continue;
if (place && !bdev->driver->eviction_valuable(bo,
place)) {
if (locked)
reservation_object_unlock(bo->resv);
continue;
}
break;
}
/* If the inner loop terminated early, we have our candidate */
if (&bo->lru != &man->lru[i])
break;
bo = NULL;
}
if (!bo) {
spin_unlock(&glob->lru_lock);
return -EBUSY;
}
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
ctx->no_wait_gpu, locked);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ret = ttm_bo_evict(bo, ctx);
if (locked) {
ttm_bo_unreserve(bo);
} else {
spin_lock(&glob->lru_lock);
ttm_bo_add_to_lru(bo);
spin_unlock(&glob->lru_lock);
}
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
if (mem->mm_node)
(*man->func->put_node)(man, mem);
}
EXPORT_SYMBOL(ttm_bo_mem_put);
/**
* Add the last move fence to the BO and reserve a new shared slot.
*/
static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
struct ttm_mem_type_manager *man,
struct ttm_mem_reg *mem)
{
struct dma_fence *fence;
int ret;
spin_lock(&man->move_lock);
fence = dma_fence_get(man->move);
spin_unlock(&man->move_lock);
if (fence) {
reservation_object_add_shared_fence(bo->resv, fence);
ret = reservation_object_reserve_shared(bo->resv, 1);
if (unlikely(ret)) {
dma_fence_put(fence);
return ret;
}
dma_fence_put(bo->moving);
bo->moving = fence;
}
return 0;
}
/**
* Repeatedly evict memory from the LRU for @mem_type until we create enough
* space, or we've evicted everything and there isn't enough space.
*/
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
uint32_t mem_type,
const struct ttm_place *place,
struct ttm_mem_reg *mem,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
int ret;
do {
ret = (*man->func->get_node)(man, bo, place, mem);
if (unlikely(ret != 0))
return ret;
if (mem->mm_node)
break;
ret = ttm_mem_evict_first(bdev, mem_type, place, ctx);
if (unlikely(ret != 0))
return ret;
} while (1);
mem->mem_type = mem_type;
return ttm_bo_add_move_fence(bo, man, mem);
}
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
uint32_t cur_placement,
uint32_t proposed_placement)
{
uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
/**
* Keep current caching if possible.
*/
if ((cur_placement & caching) != 0)
result |= (cur_placement & caching);
else if ((man->default_caching & caching) != 0)
result |= man->default_caching;
else if ((TTM_PL_FLAG_CACHED & caching) != 0)
result |= TTM_PL_FLAG_CACHED;
else if ((TTM_PL_FLAG_WC & caching) != 0)
result |= TTM_PL_FLAG_WC;
else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
result |= TTM_PL_FLAG_UNCACHED;
return result;
}
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
uint32_t mem_type,
const struct ttm_place *place,
uint32_t *masked_placement)
{
uint32_t cur_flags = ttm_bo_type_flags(mem_type);
if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
return false;
if ((place->flags & man->available_caching) == 0)
return false;
cur_flags |= (place->flags & man->available_caching);
*masked_placement = cur_flags;
return true;
}
/**
* Creates space for memory region @mem according to its type.
*
* This function first searches for free space in compatible memory types in
* the priority order defined by the driver. If free space isn't found, then
* ttm_bo_mem_force_space is attempted in priority order to evict and find
* space.
*/
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_mem_reg *mem,
struct ttm_operation_ctx *ctx)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
uint32_t mem_type = TTM_PL_SYSTEM;
uint32_t cur_flags = 0;
bool type_found = false;
bool type_ok = false;
bool has_erestartsys = false;
int i, ret;
ret = reservation_object_reserve_shared(bo->resv, 1);
if (unlikely(ret))
return ret;
mem->mm_node = NULL;
for (i = 0; i < placement->num_placement; ++i) {
const struct ttm_place *place = &placement->placement[i];
ret = ttm_mem_type_from_place(place, &mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
if (!man->has_type || !man->use_type)
continue;
type_ok = ttm_bo_mt_compatible(man, mem_type, place,
&cur_flags);
if (!type_ok)
continue;
type_found = true;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, place->flags,
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM)
break;
ret = (*man->func->get_node)(man, bo, place, mem);
if (unlikely(ret))
return ret;
if (mem->mm_node) {
ret = ttm_bo_add_move_fence(bo, man, mem);
if (unlikely(ret)) {
(*man->func->put_node)(man, mem);
return ret;
}
break;
}
}
if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
return 0;
}
for (i = 0; i < placement->num_busy_placement; ++i) {
const struct ttm_place *place = &placement->busy_placement[i];
ret = ttm_mem_type_from_place(place, &mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
if (!man->has_type || !man->use_type)
continue;
if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
continue;
type_found = true;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, place->flags,
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
mem->mm_node = NULL;
return 0;
}
ret = ttm_bo_mem_force_space(bo, mem_type, place, mem, ctx);
if (ret == 0 && mem->mm_node) {
mem->placement = cur_flags;
return 0;
}
if (ret == -ERESTARTSYS)
has_erestartsys = true;
}
if (!type_found) {
pr_err(TTM_PFX "No compatible memory type found\n");
return -EINVAL;
}
return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
}
EXPORT_SYMBOL(ttm_bo_mem_space);
static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_operation_ctx *ctx)
{
int ret = 0;
struct ttm_mem_reg mem;
reservation_object_assert_held(bo->resv);
mem.num_pages = bo->num_pages;
mem.size = mem.num_pages << PAGE_SHIFT;
mem.page_alignment = bo->mem.page_alignment;
mem.bus.io_reserved_vm = false;
mem.bus.io_reserved_count = 0;
/*
* Determine where to move the buffer.
*/
ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
if (ret)
goto out_unlock;
ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
out_unlock:
if (ret && mem.mm_node)
ttm_bo_mem_put(bo, &mem);
return ret;
}
static bool ttm_bo_places_compat(const struct ttm_place *places,
unsigned num_placement,
struct ttm_mem_reg *mem,
uint32_t *new_flags)
{
unsigned i;
for (i = 0; i < num_placement; i++) {
const struct ttm_place *heap = &places[i];
if (mem->mm_node && (mem->start < heap->fpfn ||
(heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
continue;
*new_flags = heap->flags;
if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
(*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
(!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
(mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
return true;
}
return false;
}
bool ttm_bo_mem_compat(struct ttm_placement *placement,
struct ttm_mem_reg *mem,
uint32_t *new_flags)
{
if (ttm_bo_places_compat(placement->placement, placement->num_placement,
mem, new_flags))
return true;
if ((placement->busy_placement != placement->placement ||
placement->num_busy_placement > placement->num_placement) &&
ttm_bo_places_compat(placement->busy_placement,
placement->num_busy_placement,
mem, new_flags))
return true;
return false;
}
EXPORT_SYMBOL(ttm_bo_mem_compat);
int ttm_bo_validate(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_operation_ctx *ctx)
{
int ret;
uint32_t new_flags;
reservation_object_assert_held(bo->resv);
/*
* Check whether we need to move buffer.
*/
if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
ret = ttm_bo_move_buffer(bo, placement, ctx);
if (ret)
return ret;
} else {
/*
* Use the access and other non-mapping-related flag bits from
* the compatible memory placement flags to the active flags
*/
ttm_flag_masked(&bo->mem.placement, new_flags,
~TTM_PL_MASK_MEMTYPE);
}
/*
* We might need to add a TTM.
*/
if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
ret = ttm_tt_create(bo, true);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_validate);
int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
struct ttm_buffer_object *bo,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
struct ttm_operation_ctx *ctx,
size_t acc_size,
struct sg_table *sg,
struct reservation_object *resv,
void (*destroy) (struct ttm_buffer_object *))
{
int ret = 0;
unsigned long num_pages;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
bool locked;
ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
if (ret) {
pr_err("Out of kernel memory\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
return -ENOMEM;
}
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (num_pages == 0) {
pr_err("Illegal buffer object size\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
ttm_mem_global_free(mem_glob, acc_size);
return -EINVAL;
}
bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
kref_init(&bo->kref);
kref_init(&bo->list_kref);
atomic_set(&bo->cpu_writers, 0);
INIT_LIST_HEAD(&bo->lru);
INIT_LIST_HEAD(&bo->ddestroy);
INIT_LIST_HEAD(&bo->swap);
INIT_LIST_HEAD(&bo->io_reserve_lru);
mutex_init(&bo->wu_mutex);
bo->bdev = bdev;
bo->type = type;
bo->num_pages = num_pages;
bo->mem.size = num_pages << PAGE_SHIFT;
bo->mem.mem_type = TTM_PL_SYSTEM;
bo->mem.num_pages = bo->num_pages;
bo->mem.mm_node = NULL;
bo->mem.page_alignment = page_alignment;
bo->mem.bus.io_reserved_vm = false;
bo->mem.bus.io_reserved_count = 0;
bo->moving = NULL;
bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
bo->acc_size = acc_size;
bo->sg = sg;
if (resv) {
bo->resv = resv;
reservation_object_assert_held(bo->resv);
} else {
bo->resv = &bo->ttm_resv;
}
reservation_object_init(&bo->ttm_resv);
atomic_inc(&bo->bdev->glob->bo_count);
drm_vma_node_reset(&bo->vma_node);
/*
* For ttm_bo_type_device buffers, allocate
* address space from the device.
*/
if (bo->type == ttm_bo_type_device ||
bo->type == ttm_bo_type_sg)
ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
bo->mem.num_pages);
/* passed reservation objects should already be locked,
* since otherwise lockdep will be angered in radeon.
*/
if (!resv) {
locked = reservation_object_trylock(bo->resv);
WARN_ON(!locked);
}
if (likely(!ret))
ret = ttm_bo_validate(bo, placement, ctx);
if (unlikely(ret)) {
if (!resv)
ttm_bo_unreserve(bo);
ttm_bo_put(bo);
return ret;
}
if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
spin_lock(&bdev->glob->lru_lock);
ttm_bo_add_to_lru(bo);
spin_unlock(&bdev->glob->lru_lock);
}
return ret;
}
EXPORT_SYMBOL(ttm_bo_init_reserved);
int ttm_bo_init(struct ttm_bo_device *bdev,
struct ttm_buffer_object *bo,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
size_t acc_size,
struct sg_table *sg,
struct reservation_object *resv,
void (*destroy) (struct ttm_buffer_object *))
{
struct ttm_operation_ctx ctx = { interruptible, false };
int ret;
ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
page_alignment, &ctx, acc_size,
sg, resv, destroy);
if (ret)
return ret;
if (!resv)
ttm_bo_unreserve(bo);
return 0;
}
EXPORT_SYMBOL(ttm_bo_init);
size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += ttm_round_pot(npages * sizeof(void *));
size += ttm_round_pot(sizeof(struct ttm_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_acc_size);
size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
size += ttm_round_pot(sizeof(struct ttm_dma_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_dma_acc_size);
int ttm_bo_create(struct ttm_bo_device *bdev,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo;
size_t acc_size;
int ret;
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (unlikely(bo == NULL))
return -ENOMEM;
acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
interruptible, acc_size,
NULL, NULL, NULL);
if (likely(ret == 0))
*p_bo = bo;
return ret;
}
EXPORT_SYMBOL(ttm_bo_create);
static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
unsigned mem_type)
{
struct ttm_operation_ctx ctx = {
.interruptible = false,
.no_wait_gpu = false,
.flags = TTM_OPT_FLAG_FORCE_ALLOC
};
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_bo_global *glob = bdev->glob;
struct dma_fence *fence;
int ret;
unsigned i;
/*
* Can't use standard list traversal since we're unlocking.
*/
spin_lock(&glob->lru_lock);
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
while (!list_empty(&man->lru[i])) {
spin_unlock(&glob->lru_lock);
ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx);
if (ret)
return ret;
spin_lock(&glob->lru_lock);
}
}
spin_unlock(&glob->lru_lock);
spin_lock(&man->move_lock);
fence = dma_fence_get(man->move);
spin_unlock(&man->move_lock);
if (fence) {
ret = dma_fence_wait(fence, false);
dma_fence_put(fence);
if (ret)
return ret;
}
return 0;
}
int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man;
int ret = -EINVAL;
if (mem_type >= TTM_NUM_MEM_TYPES) {
pr_err("Illegal memory type %d\n", mem_type);
return ret;
}
man = &bdev->man[mem_type];
if (!man->has_type) {
pr_err("Trying to take down uninitialized memory manager type %u\n",
mem_type);
return ret;
}
man->use_type = false;
man->has_type = false;
ret = 0;
if (mem_type > 0) {
ret = ttm_bo_force_list_clean(bdev, mem_type);
if (ret) {
pr_err("Cleanup eviction failed\n");
return ret;
}
ret = (*man->func->takedown)(man);
}
dma_fence_put(man->move);
man->move = NULL;
return ret;
}
EXPORT_SYMBOL(ttm_bo_clean_mm);
int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
pr_err("Illegal memory manager memory type %u\n", mem_type);
return -EINVAL;
}
if (!man->has_type) {
pr_err("Memory type %u has not been initialized\n", mem_type);
return 0;
}
return ttm_bo_force_list_clean(bdev, mem_type);
}
EXPORT_SYMBOL(ttm_bo_evict_mm);
int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
unsigned long p_size)
{
int ret;
struct ttm_mem_type_manager *man;
unsigned i;
BUG_ON(type >= TTM_NUM_MEM_TYPES);
man = &bdev->man[type];
BUG_ON(man->has_type);
man->io_reserve_fastpath = true;
man->use_io_reserve_lru = false;
mutex_init(&man->io_reserve_mutex);
spin_lock_init(&man->move_lock);
INIT_LIST_HEAD(&man->io_reserve_lru);
ret = bdev->driver->init_mem_type(bdev, type, man);
if (ret)
return ret;
man->bdev = bdev;
if (type != TTM_PL_SYSTEM) {
ret = (*man->func->init)(man, p_size);
if (ret)
return ret;
}
man->has_type = true;
man->use_type = true;
man->size = p_size;
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
INIT_LIST_HEAD(&man->lru[i]);
man->move = NULL;
return 0;
}
EXPORT_SYMBOL(ttm_bo_init_mm);
static void ttm_bo_global_kobj_release(struct kobject *kobj)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
__free_page(glob->dummy_read_page);
}
static void ttm_bo_global_release(void)
{
struct ttm_bo_global *glob = &ttm_bo_glob;
mutex_lock(&ttm_global_mutex);
if (--ttm_bo_glob_use_count > 0)
goto out;
kobject_del(&glob->kobj);
kobject_put(&glob->kobj);
ttm_mem_global_release(&ttm_mem_glob);
memset(glob, 0, sizeof(*glob));
out:
mutex_unlock(&ttm_global_mutex);
}
static int ttm_bo_global_init(void)
{
struct ttm_bo_global *glob = &ttm_bo_glob;
int ret = 0;
unsigned i;
mutex_lock(&ttm_global_mutex);
if (++ttm_bo_glob_use_count > 1)
goto out;
ret = ttm_mem_global_init(&ttm_mem_glob);
if (ret)
goto out;
spin_lock_init(&glob->lru_lock);
glob->mem_glob = &ttm_mem_glob;
glob->mem_glob->bo_glob = glob;
glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
if (unlikely(glob->dummy_read_page == NULL)) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
INIT_LIST_HEAD(&glob->swap_lru[i]);
INIT_LIST_HEAD(&glob->device_list);
atomic_set(&glob->bo_count, 0);
ret = kobject_init_and_add(
&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
if (unlikely(ret != 0))
kobject_put(&glob->kobj);
out:
mutex_unlock(&ttm_global_mutex);
return ret;
}
int ttm_bo_device_release(struct ttm_bo_device *bdev)
{
int ret = 0;
unsigned i = TTM_NUM_MEM_TYPES;
struct ttm_mem_type_manager *man;
struct ttm_bo_global *glob = bdev->glob;
while (i--) {
man = &bdev->man[i];
if (man->has_type) {
man->use_type = false;
if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
ret = -EBUSY;
pr_err("DRM memory manager type %d is not clean\n",
i);
}
man->has_type = false;
}
}
mutex_lock(&ttm_global_mutex);
list_del(&bdev->device_list);
mutex_unlock(&ttm_global_mutex);
cancel_delayed_work_sync(&bdev->wq);
if (ttm_bo_delayed_delete(bdev, true))
pr_debug("Delayed destroy list was clean\n");
spin_lock(&glob->lru_lock);
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
if (list_empty(&bdev->man[0].lru[0]))
pr_debug("Swap list %d was clean\n", i);
spin_unlock(&glob->lru_lock);
drm_vma_offset_manager_destroy(&bdev->vma_manager);
if (!ret)
ttm_bo_global_release();
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_release);
int ttm_bo_device_init(struct ttm_bo_device *bdev,
struct ttm_bo_driver *driver,
struct address_space *mapping,
bool need_dma32)
{
struct ttm_bo_global *glob = &ttm_bo_glob;
int ret;
ret = ttm_bo_global_init();
if (ret)
return ret;
bdev->driver = driver;
memset(bdev->man, 0, sizeof(bdev->man));
/*
* Initialize the system memory buffer type.
* Other types need to be driver / IOCTL initialized.
*/
ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
if (unlikely(ret != 0))
goto out_no_sys;
drm_vma_offset_manager_init(&bdev->vma_manager,
DRM_FILE_PAGE_OFFSET_START,
DRM_FILE_PAGE_OFFSET_SIZE);
INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
INIT_LIST_HEAD(&bdev->ddestroy);
bdev->dev_mapping = mapping;
bdev->glob = glob;
bdev->need_dma32 = need_dma32;
mutex_lock(&ttm_global_mutex);
list_add_tail(&bdev->device_list, &glob->device_list);
mutex_unlock(&ttm_global_mutex);
return 0;
out_no_sys:
ttm_bo_global_release();
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_init);
/*
* buffer object vm functions.
*/
bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (mem->mem_type == TTM_PL_SYSTEM)
return false;
if (man->flags & TTM_MEMTYPE_FLAG_CMA)
return false;
if (mem->placement & TTM_PL_FLAG_CACHED)
return false;
}
return true;
}
void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
ttm_mem_io_free_vm(bo);
}
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
ttm_mem_io_lock(man, false);
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(man);
}
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
int ttm_bo_wait(struct ttm_buffer_object *bo,
bool interruptible, bool no_wait)
{
long timeout = 15 * HZ;
if (no_wait) {
if (reservation_object_test_signaled_rcu(bo->resv, true))
return 0;
else
return -EBUSY;
}
timeout = reservation_object_wait_timeout_rcu(bo->resv, true,
interruptible, timeout);
if (timeout < 0)
return timeout;
if (timeout == 0)
return -EBUSY;
reservation_object_add_excl_fence(bo->resv, NULL);
return 0;
}
EXPORT_SYMBOL(ttm_bo_wait);
int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
{
int ret = 0;
/*
* Using ttm_bo_reserve makes sure the lru lists are updated.
*/
ret = ttm_bo_reserve(bo, true, no_wait, NULL);
if (unlikely(ret != 0))
return ret;
ret = ttm_bo_wait(bo, true, no_wait);
if (likely(ret == 0))
atomic_inc(&bo->cpu_writers);
ttm_bo_unreserve(bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
{
atomic_dec(&bo->cpu_writers);
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
/**
* A buffer object shrink method that tries to swap out the first
* buffer object on the bo_global::swap_lru list.
*/
int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
{
struct ttm_buffer_object *bo;
int ret = -EBUSY;
bool locked;
unsigned i;
spin_lock(&glob->lru_lock);
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
list_for_each_entry(bo, &glob->swap_lru[i], swap) {
if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked)) {
ret = 0;
break;
}
}
if (!ret)
break;
}
if (ret) {
spin_unlock(&glob->lru_lock);
return ret;
}
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
ret = ttm_bo_cleanup_refs(bo, false, false, locked);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
/**
* Move to system cached
*/
if (bo->mem.mem_type != TTM_PL_SYSTEM ||
bo->ttm->caching_state != tt_cached) {
struct ttm_operation_ctx ctx = { false, false };
struct ttm_mem_reg evict_mem;
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
evict_mem.mem_type = TTM_PL_SYSTEM;
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
if (unlikely(ret != 0))
goto out;
}
/**
* Make sure BO is idle.
*/
ret = ttm_bo_wait(bo, false, false);
if (unlikely(ret != 0))
goto out;
ttm_bo_unmap_virtual(bo);
/**
* Swap out. Buffer will be swapped in again as soon as
* anyone tries to access a ttm page.
*/
if (bo->bdev->driver->swap_notify)
bo->bdev->driver->swap_notify(bo);
ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
out:
/**
*
* Unreserve without putting on LRU to avoid swapping out an
* already swapped buffer.
*/
if (locked)
reservation_object_unlock(bo->resv);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
EXPORT_SYMBOL(ttm_bo_swapout);
void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
{
struct ttm_operation_ctx ctx = {
.interruptible = false,
.no_wait_gpu = false
};
while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
;
}
EXPORT_SYMBOL(ttm_bo_swapout_all);
/**
* ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
* unreserved
*
* @bo: Pointer to buffer
*/
int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
{
int ret;
/*
* In the absense of a wait_unlocked API,
* Use the bo::wu_mutex to avoid triggering livelocks due to
* concurrent use of this function. Note that this use of
* bo::wu_mutex can go away if we change locking order to
* mmap_sem -> bo::reserve.
*/
ret = mutex_lock_interruptible(&bo->wu_mutex);
if (unlikely(ret != 0))
return -ERESTARTSYS;
if (!ww_mutex_is_locked(&bo->resv->lock))
goto out_unlock;
ret = reservation_object_lock_interruptible(bo->resv, NULL);
if (ret == -EINTR)
ret = -ERESTARTSYS;
if (unlikely(ret != 0))
goto out_unlock;
reservation_object_unlock(bo->resv);
out_unlock:
mutex_unlock(&bo->wu_mutex);
return ret;
}