linux-stable/tools/testing/selftests/bpf/bench.c
Joanne Koong f44bc543a0 bpf/benchs: Add benchmarks for comparing hashmap lookups w/ vs. w/out bloom filter
This patch adds benchmark tests for comparing the performance of hashmap
lookups without the bloom filter vs. hashmap lookups with the bloom filter.

Checking the bloom filter first for whether the element exists should
overall enable a higher throughput for hashmap lookups, since if the
element does not exist in the bloom filter, we can avoid a costly lookup in
the hashmap.

On average, using 5 hash functions in the bloom filter tended to perform
the best across the widest range of different entry sizes. The benchmark
results using 5 hash functions (running on 8 threads on a machine with one
numa node, and taking the average of 3 runs) were roughly as follows:

value_size = 4 bytes -
	10k entries: 30% faster
	50k entries: 40% faster
	100k entries: 40% faster
	500k entres: 70% faster
	1 million entries: 90% faster
	5 million entries: 140% faster

value_size = 8 bytes -
	10k entries: 30% faster
	50k entries: 40% faster
	100k entries: 50% faster
	500k entres: 80% faster
	1 million entries: 100% faster
	5 million entries: 150% faster

value_size = 16 bytes -
	10k entries: 20% faster
	50k entries: 30% faster
	100k entries: 35% faster
	500k entres: 65% faster
	1 million entries: 85% faster
	5 million entries: 110% faster

value_size = 40 bytes -
	10k entries: 5% faster
	50k entries: 15% faster
	100k entries: 20% faster
	500k entres: 65% faster
	1 million entries: 75% faster
	5 million entries: 120% faster

Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211027234504.30744-6-joannekoong@fb.com
2021-10-28 13:22:49 -07:00

515 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020 Facebook */
#define _GNU_SOURCE
#include <argp.h>
#include <linux/compiler.h>
#include <sys/time.h>
#include <sched.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/sysinfo.h>
#include <sys/resource.h>
#include <signal.h>
#include "bench.h"
#include "testing_helpers.h"
struct env env = {
.warmup_sec = 1,
.duration_sec = 5,
.affinity = false,
.consumer_cnt = 1,
.producer_cnt = 1,
};
static int libbpf_print_fn(enum libbpf_print_level level,
const char *format, va_list args)
{
if (level == LIBBPF_DEBUG && !env.verbose)
return 0;
return vfprintf(stderr, format, args);
}
static int bump_memlock_rlimit(void)
{
struct rlimit rlim_new = {
.rlim_cur = RLIM_INFINITY,
.rlim_max = RLIM_INFINITY,
};
return setrlimit(RLIMIT_MEMLOCK, &rlim_new);
}
void setup_libbpf()
{
int err;
libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
libbpf_set_print(libbpf_print_fn);
err = bump_memlock_rlimit();
if (err)
fprintf(stderr, "failed to increase RLIMIT_MEMLOCK: %d", err);
}
void false_hits_report_progress(int iter, struct bench_res *res, long delta_ns)
{
long total = res->false_hits + res->hits + res->drops;
printf("Iter %3d (%7.3lfus): ",
iter, (delta_ns - 1000000000) / 1000.0);
printf("%ld false hits of %ld total operations. Percentage = %2.2f %%\n",
res->false_hits, total, ((float)res->false_hits / total) * 100);
}
void false_hits_report_final(struct bench_res res[], int res_cnt)
{
long total_hits = 0, total_drops = 0, total_false_hits = 0, total_ops = 0;
int i;
for (i = 0; i < res_cnt; i++) {
total_hits += res[i].hits;
total_false_hits += res[i].false_hits;
total_drops += res[i].drops;
}
total_ops = total_hits + total_false_hits + total_drops;
printf("Summary: %ld false hits of %ld total operations. ",
total_false_hits, total_ops);
printf("Percentage = %2.2f %%\n",
((float)total_false_hits / total_ops) * 100);
}
void hits_drops_report_progress(int iter, struct bench_res *res, long delta_ns)
{
double hits_per_sec, drops_per_sec;
double hits_per_prod;
hits_per_sec = res->hits / 1000000.0 / (delta_ns / 1000000000.0);
hits_per_prod = hits_per_sec / env.producer_cnt;
drops_per_sec = res->drops / 1000000.0 / (delta_ns / 1000000000.0);
printf("Iter %3d (%7.3lfus): ",
iter, (delta_ns - 1000000000) / 1000.0);
printf("hits %8.3lfM/s (%7.3lfM/prod), drops %8.3lfM/s, total operations %8.3lfM/s\n",
hits_per_sec, hits_per_prod, drops_per_sec, hits_per_sec + drops_per_sec);
}
void hits_drops_report_final(struct bench_res res[], int res_cnt)
{
int i;
double hits_mean = 0.0, drops_mean = 0.0, total_ops_mean = 0.0;
double hits_stddev = 0.0, drops_stddev = 0.0, total_ops_stddev = 0.0;
double total_ops;
for (i = 0; i < res_cnt; i++) {
hits_mean += res[i].hits / 1000000.0 / (0.0 + res_cnt);
drops_mean += res[i].drops / 1000000.0 / (0.0 + res_cnt);
}
total_ops_mean = hits_mean + drops_mean;
if (res_cnt > 1) {
for (i = 0; i < res_cnt; i++) {
hits_stddev += (hits_mean - res[i].hits / 1000000.0) *
(hits_mean - res[i].hits / 1000000.0) /
(res_cnt - 1.0);
drops_stddev += (drops_mean - res[i].drops / 1000000.0) *
(drops_mean - res[i].drops / 1000000.0) /
(res_cnt - 1.0);
total_ops = res[i].hits + res[i].drops;
total_ops_stddev += (total_ops_mean - total_ops / 1000000.0) *
(total_ops_mean - total_ops / 1000000.0) /
(res_cnt - 1.0);
}
hits_stddev = sqrt(hits_stddev);
drops_stddev = sqrt(drops_stddev);
total_ops_stddev = sqrt(total_ops_stddev);
}
printf("Summary: hits %8.3lf \u00B1 %5.3lfM/s (%7.3lfM/prod), ",
hits_mean, hits_stddev, hits_mean / env.producer_cnt);
printf("drops %8.3lf \u00B1 %5.3lfM/s, ",
drops_mean, drops_stddev);
printf("total operations %8.3lf \u00B1 %5.3lfM/s\n",
total_ops_mean, total_ops_stddev);
}
const char *argp_program_version = "benchmark";
const char *argp_program_bug_address = "<bpf@vger.kernel.org>";
const char argp_program_doc[] =
"benchmark Generic benchmarking framework.\n"
"\n"
"This tool runs benchmarks.\n"
"\n"
"USAGE: benchmark <bench-name>\n"
"\n"
"EXAMPLES:\n"
" # run 'count-local' benchmark with 1 producer and 1 consumer\n"
" benchmark count-local\n"
" # run 'count-local' with 16 producer and 8 consumer thread, pinned to CPUs\n"
" benchmark -p16 -c8 -a count-local\n";
enum {
ARG_PROD_AFFINITY_SET = 1000,
ARG_CONS_AFFINITY_SET = 1001,
};
static const struct argp_option opts[] = {
{ "list", 'l', NULL, 0, "List available benchmarks"},
{ "duration", 'd', "SEC", 0, "Duration of benchmark, seconds"},
{ "warmup", 'w', "SEC", 0, "Warm-up period, seconds"},
{ "producers", 'p', "NUM", 0, "Number of producer threads"},
{ "consumers", 'c', "NUM", 0, "Number of consumer threads"},
{ "verbose", 'v', NULL, 0, "Verbose debug output"},
{ "affinity", 'a', NULL, 0, "Set consumer/producer thread affinity"},
{ "prod-affinity", ARG_PROD_AFFINITY_SET, "CPUSET", 0,
"Set of CPUs for producer threads; implies --affinity"},
{ "cons-affinity", ARG_CONS_AFFINITY_SET, "CPUSET", 0,
"Set of CPUs for consumer threads; implies --affinity"},
{},
};
extern struct argp bench_ringbufs_argp;
extern struct argp bench_bloom_map_argp;
static const struct argp_child bench_parsers[] = {
{ &bench_ringbufs_argp, 0, "Ring buffers benchmark", 0 },
{ &bench_bloom_map_argp, 0, "Bloom filter map benchmark", 0 },
{},
};
static error_t parse_arg(int key, char *arg, struct argp_state *state)
{
static int pos_args;
switch (key) {
case 'v':
env.verbose = true;
break;
case 'l':
env.list = true;
break;
case 'd':
env.duration_sec = strtol(arg, NULL, 10);
if (env.duration_sec <= 0) {
fprintf(stderr, "Invalid duration: %s\n", arg);
argp_usage(state);
}
break;
case 'w':
env.warmup_sec = strtol(arg, NULL, 10);
if (env.warmup_sec <= 0) {
fprintf(stderr, "Invalid warm-up duration: %s\n", arg);
argp_usage(state);
}
break;
case 'p':
env.producer_cnt = strtol(arg, NULL, 10);
if (env.producer_cnt <= 0) {
fprintf(stderr, "Invalid producer count: %s\n", arg);
argp_usage(state);
}
break;
case 'c':
env.consumer_cnt = strtol(arg, NULL, 10);
if (env.consumer_cnt <= 0) {
fprintf(stderr, "Invalid consumer count: %s\n", arg);
argp_usage(state);
}
break;
case 'a':
env.affinity = true;
break;
case ARG_PROD_AFFINITY_SET:
env.affinity = true;
if (parse_num_list(arg, &env.prod_cpus.cpus,
&env.prod_cpus.cpus_len)) {
fprintf(stderr, "Invalid format of CPU set for producers.");
argp_usage(state);
}
break;
case ARG_CONS_AFFINITY_SET:
env.affinity = true;
if (parse_num_list(arg, &env.cons_cpus.cpus,
&env.cons_cpus.cpus_len)) {
fprintf(stderr, "Invalid format of CPU set for consumers.");
argp_usage(state);
}
break;
case ARGP_KEY_ARG:
if (pos_args++) {
fprintf(stderr,
"Unrecognized positional argument: %s\n", arg);
argp_usage(state);
}
env.bench_name = strdup(arg);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static void parse_cmdline_args(int argc, char **argv)
{
static const struct argp argp = {
.options = opts,
.parser = parse_arg,
.doc = argp_program_doc,
.children = bench_parsers,
};
if (argp_parse(&argp, argc, argv, 0, NULL, NULL))
exit(1);
if (!env.list && !env.bench_name) {
argp_help(&argp, stderr, ARGP_HELP_DOC, "bench");
exit(1);
}
}
static void collect_measurements(long delta_ns);
static __u64 last_time_ns;
static void sigalarm_handler(int signo)
{
long new_time_ns = get_time_ns();
long delta_ns = new_time_ns - last_time_ns;
collect_measurements(delta_ns);
last_time_ns = new_time_ns;
}
/* set up periodic 1-second timer */
static void setup_timer()
{
static struct sigaction sigalarm_action = {
.sa_handler = sigalarm_handler,
};
struct itimerval timer_settings = {};
int err;
last_time_ns = get_time_ns();
err = sigaction(SIGALRM, &sigalarm_action, NULL);
if (err < 0) {
fprintf(stderr, "failed to install SIGALRM handler: %d\n", -errno);
exit(1);
}
timer_settings.it_interval.tv_sec = 1;
timer_settings.it_value.tv_sec = 1;
err = setitimer(ITIMER_REAL, &timer_settings, NULL);
if (err < 0) {
fprintf(stderr, "failed to arm interval timer: %d\n", -errno);
exit(1);
}
}
static void set_thread_affinity(pthread_t thread, int cpu)
{
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(cpu, &cpuset);
if (pthread_setaffinity_np(thread, sizeof(cpuset), &cpuset)) {
fprintf(stderr, "setting affinity to CPU #%d failed: %d\n",
cpu, errno);
exit(1);
}
}
static int next_cpu(struct cpu_set *cpu_set)
{
if (cpu_set->cpus) {
int i;
/* find next available CPU */
for (i = cpu_set->next_cpu; i < cpu_set->cpus_len; i++) {
if (cpu_set->cpus[i]) {
cpu_set->next_cpu = i + 1;
return i;
}
}
fprintf(stderr, "Not enough CPUs specified, need CPU #%d or higher.\n", i);
exit(1);
}
return cpu_set->next_cpu++;
}
static struct bench_state {
int res_cnt;
struct bench_res *results;
pthread_t *consumers;
pthread_t *producers;
} state;
const struct bench *bench = NULL;
extern const struct bench bench_count_global;
extern const struct bench bench_count_local;
extern const struct bench bench_rename_base;
extern const struct bench bench_rename_kprobe;
extern const struct bench bench_rename_kretprobe;
extern const struct bench bench_rename_rawtp;
extern const struct bench bench_rename_fentry;
extern const struct bench bench_rename_fexit;
extern const struct bench bench_trig_base;
extern const struct bench bench_trig_tp;
extern const struct bench bench_trig_rawtp;
extern const struct bench bench_trig_kprobe;
extern const struct bench bench_trig_fentry;
extern const struct bench bench_trig_fentry_sleep;
extern const struct bench bench_trig_fmodret;
extern const struct bench bench_rb_libbpf;
extern const struct bench bench_rb_custom;
extern const struct bench bench_pb_libbpf;
extern const struct bench bench_pb_custom;
extern const struct bench bench_bloom_lookup;
extern const struct bench bench_bloom_update;
extern const struct bench bench_bloom_false_positive;
extern const struct bench bench_hashmap_without_bloom;
extern const struct bench bench_hashmap_with_bloom;
static const struct bench *benchs[] = {
&bench_count_global,
&bench_count_local,
&bench_rename_base,
&bench_rename_kprobe,
&bench_rename_kretprobe,
&bench_rename_rawtp,
&bench_rename_fentry,
&bench_rename_fexit,
&bench_trig_base,
&bench_trig_tp,
&bench_trig_rawtp,
&bench_trig_kprobe,
&bench_trig_fentry,
&bench_trig_fentry_sleep,
&bench_trig_fmodret,
&bench_rb_libbpf,
&bench_rb_custom,
&bench_pb_libbpf,
&bench_pb_custom,
&bench_bloom_lookup,
&bench_bloom_update,
&bench_bloom_false_positive,
&bench_hashmap_without_bloom,
&bench_hashmap_with_bloom,
};
static void setup_benchmark()
{
int i, err;
if (!env.bench_name) {
fprintf(stderr, "benchmark name is not specified\n");
exit(1);
}
for (i = 0; i < ARRAY_SIZE(benchs); i++) {
if (strcmp(benchs[i]->name, env.bench_name) == 0) {
bench = benchs[i];
break;
}
}
if (!bench) {
fprintf(stderr, "benchmark '%s' not found\n", env.bench_name);
exit(1);
}
printf("Setting up benchmark '%s'...\n", bench->name);
state.producers = calloc(env.producer_cnt, sizeof(*state.producers));
state.consumers = calloc(env.consumer_cnt, sizeof(*state.consumers));
state.results = calloc(env.duration_sec + env.warmup_sec + 2,
sizeof(*state.results));
if (!state.producers || !state.consumers || !state.results)
exit(1);
if (bench->validate)
bench->validate();
if (bench->setup)
bench->setup();
for (i = 0; i < env.consumer_cnt; i++) {
err = pthread_create(&state.consumers[i], NULL,
bench->consumer_thread, (void *)(long)i);
if (err) {
fprintf(stderr, "failed to create consumer thread #%d: %d\n",
i, -errno);
exit(1);
}
if (env.affinity)
set_thread_affinity(state.consumers[i],
next_cpu(&env.cons_cpus));
}
/* unless explicit producer CPU list is specified, continue after
* last consumer CPU
*/
if (!env.prod_cpus.cpus)
env.prod_cpus.next_cpu = env.cons_cpus.next_cpu;
for (i = 0; i < env.producer_cnt; i++) {
err = pthread_create(&state.producers[i], NULL,
bench->producer_thread, (void *)(long)i);
if (err) {
fprintf(stderr, "failed to create producer thread #%d: %d\n",
i, -errno);
exit(1);
}
if (env.affinity)
set_thread_affinity(state.producers[i],
next_cpu(&env.prod_cpus));
}
printf("Benchmark '%s' started.\n", bench->name);
}
static pthread_mutex_t bench_done_mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t bench_done = PTHREAD_COND_INITIALIZER;
static void collect_measurements(long delta_ns) {
int iter = state.res_cnt++;
struct bench_res *res = &state.results[iter];
bench->measure(res);
if (bench->report_progress)
bench->report_progress(iter, res, delta_ns);
if (iter == env.duration_sec + env.warmup_sec) {
pthread_mutex_lock(&bench_done_mtx);
pthread_cond_signal(&bench_done);
pthread_mutex_unlock(&bench_done_mtx);
}
}
int main(int argc, char **argv)
{
parse_cmdline_args(argc, argv);
if (env.list) {
int i;
printf("Available benchmarks:\n");
for (i = 0; i < ARRAY_SIZE(benchs); i++) {
printf("- %s\n", benchs[i]->name);
}
return 0;
}
setup_benchmark();
setup_timer();
pthread_mutex_lock(&bench_done_mtx);
pthread_cond_wait(&bench_done, &bench_done_mtx);
pthread_mutex_unlock(&bench_done_mtx);
if (bench->report_final)
/* skip first sample */
bench->report_final(state.results + env.warmup_sec,
state.res_cnt - env.warmup_sec);
return 0;
}