linux-stable/lib/sbitmap.c
Omar Sandoval 6c0ca7ae29 sbitmap: fix wakeup hang after sbq resize
When we resize a struct sbitmap_queue, we update the wakeup batch size,
but we don't update the wait count in the struct sbq_wait_states. If we
resized down from a size which could use a bigger batch size, these
counts could be too large and cause us to miss necessary wakeups. To fix
this, update the wait counts when we resize (ensuring some careful
memory ordering so that it's safe w.r.t. concurrent clears).

This also fixes a theoretical issue where two threads could end up
bumping the wait count up by the batch size, which could also
potentially lead to hangs.

Reported-by: Martin Raiber <martin@urbackup.org>
Fixes: e3a2b3f931 ("blk-mq: allow changing of queue depth through sysfs")
Fixes: 2971c35f35 ("blk-mq: bitmap tag: fix race on blk_mq_bitmap_tags::wake_cnt")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-01-18 13:41:55 -07:00

379 lines
9 KiB
C

/*
* Copyright (C) 2016 Facebook
* Copyright (C) 2013-2014 Jens Axboe
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <linux/random.h>
#include <linux/sbitmap.h>
int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
gfp_t flags, int node)
{
unsigned int bits_per_word;
unsigned int i;
if (shift < 0) {
shift = ilog2(BITS_PER_LONG);
/*
* If the bitmap is small, shrink the number of bits per word so
* we spread over a few cachelines, at least. If less than 4
* bits, just forget about it, it's not going to work optimally
* anyway.
*/
if (depth >= 4) {
while ((4U << shift) > depth)
shift--;
}
}
bits_per_word = 1U << shift;
if (bits_per_word > BITS_PER_LONG)
return -EINVAL;
sb->shift = shift;
sb->depth = depth;
sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
if (depth == 0) {
sb->map = NULL;
return 0;
}
sb->map = kzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node);
if (!sb->map)
return -ENOMEM;
for (i = 0; i < sb->map_nr; i++) {
sb->map[i].depth = min(depth, bits_per_word);
depth -= sb->map[i].depth;
}
return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_init_node);
void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
{
unsigned int bits_per_word = 1U << sb->shift;
unsigned int i;
sb->depth = depth;
sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
for (i = 0; i < sb->map_nr; i++) {
sb->map[i].depth = min(depth, bits_per_word);
depth -= sb->map[i].depth;
}
}
EXPORT_SYMBOL_GPL(sbitmap_resize);
static int __sbitmap_get_word(struct sbitmap_word *word, unsigned int hint,
bool wrap)
{
unsigned int orig_hint = hint;
int nr;
while (1) {
nr = find_next_zero_bit(&word->word, word->depth, hint);
if (unlikely(nr >= word->depth)) {
/*
* We started with an offset, and we didn't reset the
* offset to 0 in a failure case, so start from 0 to
* exhaust the map.
*/
if (orig_hint && hint && wrap) {
hint = orig_hint = 0;
continue;
}
return -1;
}
if (!test_and_set_bit(nr, &word->word))
break;
hint = nr + 1;
if (hint >= word->depth - 1)
hint = 0;
}
return nr;
}
int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
{
unsigned int i, index;
int nr = -1;
index = SB_NR_TO_INDEX(sb, alloc_hint);
for (i = 0; i < sb->map_nr; i++) {
nr = __sbitmap_get_word(&sb->map[index],
SB_NR_TO_BIT(sb, alloc_hint),
!round_robin);
if (nr != -1) {
nr += index << sb->shift;
break;
}
/* Jump to next index. */
index++;
alloc_hint = index << sb->shift;
if (index >= sb->map_nr) {
index = 0;
alloc_hint = 0;
}
}
return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get);
bool sbitmap_any_bit_set(const struct sbitmap *sb)
{
unsigned int i;
for (i = 0; i < sb->map_nr; i++) {
if (sb->map[i].word)
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
bool sbitmap_any_bit_clear(const struct sbitmap *sb)
{
unsigned int i;
for (i = 0; i < sb->map_nr; i++) {
const struct sbitmap_word *word = &sb->map[i];
unsigned long ret;
ret = find_first_zero_bit(&word->word, word->depth);
if (ret < word->depth)
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear);
unsigned int sbitmap_weight(const struct sbitmap *sb)
{
unsigned int i, weight = 0;
for (i = 0; i < sb->map_nr; i++) {
const struct sbitmap_word *word = &sb->map[i];
weight += bitmap_weight(&word->word, word->depth);
}
return weight;
}
EXPORT_SYMBOL_GPL(sbitmap_weight);
static unsigned int sbq_calc_wake_batch(unsigned int depth)
{
unsigned int wake_batch;
/*
* For each batch, we wake up one queue. We need to make sure that our
* batch size is small enough that the full depth of the bitmap is
* enough to wake up all of the queues.
*/
wake_batch = SBQ_WAKE_BATCH;
if (wake_batch > depth / SBQ_WAIT_QUEUES)
wake_batch = max(1U, depth / SBQ_WAIT_QUEUES);
return wake_batch;
}
int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
int shift, bool round_robin, gfp_t flags, int node)
{
int ret;
int i;
ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
if (ret)
return ret;
sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
if (!sbq->alloc_hint) {
sbitmap_free(&sbq->sb);
return -ENOMEM;
}
if (depth && !round_robin) {
for_each_possible_cpu(i)
*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
}
sbq->wake_batch = sbq_calc_wake_batch(depth);
atomic_set(&sbq->wake_index, 0);
sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
if (!sbq->ws) {
free_percpu(sbq->alloc_hint);
sbitmap_free(&sbq->sb);
return -ENOMEM;
}
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
init_waitqueue_head(&sbq->ws[i].wait);
atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
}
sbq->round_robin = round_robin;
return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
{
unsigned int wake_batch = sbq_calc_wake_batch(depth);
int i;
if (sbq->wake_batch != wake_batch) {
WRITE_ONCE(sbq->wake_batch, wake_batch);
/*
* Pairs with the memory barrier in sbq_wake_up() to ensure that
* the batch size is updated before the wait counts.
*/
smp_mb__before_atomic();
for (i = 0; i < SBQ_WAIT_QUEUES; i++)
atomic_set(&sbq->ws[i].wait_cnt, 1);
}
sbitmap_resize(&sbq->sb, depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
int __sbitmap_queue_get(struct sbitmap_queue *sbq)
{
unsigned int hint, depth;
int nr;
hint = this_cpu_read(*sbq->alloc_hint);
depth = READ_ONCE(sbq->sb.depth);
if (unlikely(hint >= depth)) {
hint = depth ? prandom_u32() % depth : 0;
this_cpu_write(*sbq->alloc_hint, hint);
}
nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
if (nr == -1) {
/* If the map is full, a hint won't do us much good. */
this_cpu_write(*sbq->alloc_hint, 0);
} else if (nr == hint || unlikely(sbq->round_robin)) {
/* Only update the hint if we used it. */
hint = nr + 1;
if (hint >= depth - 1)
hint = 0;
this_cpu_write(*sbq->alloc_hint, hint);
}
return nr;
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
{
int i, wake_index;
wake_index = atomic_read(&sbq->wake_index);
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
struct sbq_wait_state *ws = &sbq->ws[wake_index];
if (waitqueue_active(&ws->wait)) {
int o = atomic_read(&sbq->wake_index);
if (wake_index != o)
atomic_cmpxchg(&sbq->wake_index, o, wake_index);
return ws;
}
wake_index = sbq_index_inc(wake_index);
}
return NULL;
}
static void sbq_wake_up(struct sbitmap_queue *sbq)
{
struct sbq_wait_state *ws;
unsigned int wake_batch;
int wait_cnt;
/*
* Pairs with the memory barrier in set_current_state() to ensure the
* proper ordering of clear_bit()/waitqueue_active() in the waker and
* test_and_set_bit()/prepare_to_wait()/finish_wait() in the waiter. See
* the comment on waitqueue_active(). This is __after_atomic because we
* just did clear_bit() in the caller.
*/
smp_mb__after_atomic();
ws = sbq_wake_ptr(sbq);
if (!ws)
return;
wait_cnt = atomic_dec_return(&ws->wait_cnt);
if (wait_cnt <= 0) {
wake_batch = READ_ONCE(sbq->wake_batch);
/*
* Pairs with the memory barrier in sbitmap_queue_resize() to
* ensure that we see the batch size update before the wait
* count is reset.
*/
smp_mb__before_atomic();
/*
* If there are concurrent callers to sbq_wake_up(), the last
* one to decrement the wait count below zero will bump it back
* up. If there is a concurrent resize, the count reset will
* either cause the cmpxchg to fail or overwrite after the
* cmpxchg.
*/
atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wait_cnt + wake_batch);
sbq_index_atomic_inc(&sbq->wake_index);
wake_up(&ws->wait);
}
}
void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
unsigned int cpu)
{
sbitmap_clear_bit(&sbq->sb, nr);
sbq_wake_up(sbq);
if (likely(!sbq->round_robin && nr < sbq->sb.depth))
*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
{
int i, wake_index;
/*
* Pairs with the memory barrier in set_current_state() like in
* sbq_wake_up().
*/
smp_mb();
wake_index = atomic_read(&sbq->wake_index);
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
struct sbq_wait_state *ws = &sbq->ws[wake_index];
if (waitqueue_active(&ws->wait))
wake_up(&ws->wait);
wake_index = sbq_index_inc(wake_index);
}
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);