linux-stable/arch/s390/kernel/cert_store.c
Peter Oberparleiter 5c95bf2746 s390/cert_store: fix string length handling
Building cert_store.o with W=1 reveals this bug:

        CC      arch/s390/kernel/cert_store.o
          arch/s390/kernel/cert_store.c:443:45: warning: ‘sprintf’ may write a terminating nul past the end of the destination [-Wformat-overflow=]
            443 |         sprintf(desc + name_len, ":%04u:%08u", vce->vce_hdr.vc_index, cs_token);
                |                                             ^
          arch/s390/kernel/cert_store.c:443:9: note: ‘sprintf’ output between 15 and 18 bytes into a destination of size 15
            443 |         sprintf(desc + name_len, ":%04u:%08u", vce->vce_hdr.vc_index, cs_token);

Fix this by using the correct maximum width for each integer component
in both buffer length calculation and format string. Also switch to
using snprintf() to guard against potential future changes to the
integer range of each component.

Fixes: 8cf57d7217 ("s390: add support for user-defined certificates")
Reported-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2023-09-19 13:25:44 +02:00

812 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* DIAG 0x320 support and certificate store handling
*
* Copyright IBM Corp. 2023
* Author(s): Anastasia Eskova <anastasia.eskova@ibm.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/key-type.h>
#include <linux/key.h>
#include <linux/keyctl.h>
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <crypto/sha2.h>
#include <keys/user-type.h>
#include <asm/debug.h>
#include <asm/diag.h>
#include <asm/ebcdic.h>
#include <asm/sclp.h>
#define DIAG_MAX_RETRIES 10
#define VCE_FLAGS_VALID_MASK 0x80
#define ISM_LEN_DWORDS 4
#define VCSSB_LEN_BYTES 128
#define VCSSB_LEN_NO_CERTS 4
#define VCB_LEN_NO_CERTS 64
#define VC_NAME_LEN_BYTES 64
#define CERT_STORE_KEY_TYPE_NAME "cert_store_key"
#define CERT_STORE_KEYRING_NAME "cert_store"
static debug_info_t *cert_store_dbf;
static debug_info_t *cert_store_hexdump;
#define pr_dbf_msg(fmt, ...) \
debug_sprintf_event(cert_store_dbf, 3, fmt "\n", ## __VA_ARGS__)
enum diag320_subcode {
DIAG320_SUBCODES = 0,
DIAG320_STORAGE = 1,
DIAG320_CERT_BLOCK = 2,
};
enum diag320_rc {
DIAG320_RC_OK = 0x0001,
DIAG320_RC_CS_NOMATCH = 0x0306,
};
/* Verification Certificates Store Support Block (VCSSB). */
struct vcssb {
u32 vcssb_length;
u8 pad_0x04[3];
u8 version;
u8 pad_0x08[8];
u32 cs_token;
u8 pad_0x14[12];
u16 total_vc_index_count;
u16 max_vc_index_count;
u8 pad_0x24[28];
u32 max_vce_length;
u32 max_vcxe_length;
u8 pad_0x48[8];
u32 max_single_vcb_length;
u32 total_vcb_length;
u32 max_single_vcxb_length;
u32 total_vcxb_length;
u8 pad_0x60[32];
} __packed __aligned(8);
/* Verification Certificate Entry (VCE) Header. */
struct vce_header {
u32 vce_length;
u8 flags;
u8 key_type;
u16 vc_index;
u8 vc_name[VC_NAME_LEN_BYTES]; /* EBCDIC */
u8 vc_format;
u8 pad_0x49;
u16 key_id_length;
u8 pad_0x4c;
u8 vc_hash_type;
u16 vc_hash_length;
u8 pad_0x50[4];
u32 vc_length;
u8 pad_0x58[8];
u16 vc_hash_offset;
u16 vc_offset;
u8 pad_0x64[28];
} __packed __aligned(4);
/* Verification Certificate Block (VCB) Header. */
struct vcb_header {
u32 vcb_input_length;
u8 pad_0x04[4];
u16 first_vc_index;
u16 last_vc_index;
u32 pad_0x0c;
u32 cs_token;
u8 pad_0x14[12];
u32 vcb_output_length;
u8 pad_0x24[3];
u8 version;
u16 stored_vc_count;
u16 remaining_vc_count;
u8 pad_0x2c[20];
} __packed __aligned(4);
/* Verification Certificate Block (VCB). */
struct vcb {
struct vcb_header vcb_hdr;
u8 vcb_buf[];
} __packed __aligned(4);
/* Verification Certificate Entry (VCE). */
struct vce {
struct vce_header vce_hdr;
u8 cert_data_buf[];
} __packed __aligned(4);
static void cert_store_key_describe(const struct key *key, struct seq_file *m)
{
char ascii[VC_NAME_LEN_BYTES + 1];
/*
* First 64 bytes of the key description is key name in EBCDIC CP 500.
* Convert it to ASCII for displaying in /proc/keys.
*/
strscpy(ascii, key->description, sizeof(ascii));
EBCASC_500(ascii, VC_NAME_LEN_BYTES);
seq_puts(m, ascii);
seq_puts(m, &key->description[VC_NAME_LEN_BYTES]);
if (key_is_positive(key))
seq_printf(m, ": %u", key->datalen);
}
/*
* Certificate store key type takes over properties of
* user key but cannot be updated.
*/
static struct key_type key_type_cert_store_key = {
.name = CERT_STORE_KEY_TYPE_NAME,
.preparse = user_preparse,
.free_preparse = user_free_preparse,
.instantiate = generic_key_instantiate,
.revoke = user_revoke,
.destroy = user_destroy,
.describe = cert_store_key_describe,
.read = user_read,
};
/* Logging functions. */
static void pr_dbf_vcb(const struct vcb *b)
{
pr_dbf_msg("VCB Header:");
pr_dbf_msg("vcb_input_length: %d", b->vcb_hdr.vcb_input_length);
pr_dbf_msg("first_vc_index: %d", b->vcb_hdr.first_vc_index);
pr_dbf_msg("last_vc_index: %d", b->vcb_hdr.last_vc_index);
pr_dbf_msg("cs_token: %d", b->vcb_hdr.cs_token);
pr_dbf_msg("vcb_output_length: %d", b->vcb_hdr.vcb_output_length);
pr_dbf_msg("version: %d", b->vcb_hdr.version);
pr_dbf_msg("stored_vc_count: %d", b->vcb_hdr.stored_vc_count);
pr_dbf_msg("remaining_vc_count: %d", b->vcb_hdr.remaining_vc_count);
}
static void pr_dbf_vce(const struct vce *e)
{
unsigned char vc_name[VC_NAME_LEN_BYTES + 1];
char log_string[VC_NAME_LEN_BYTES + 40];
pr_dbf_msg("VCE Header:");
pr_dbf_msg("vce_hdr.vce_length: %d", e->vce_hdr.vce_length);
pr_dbf_msg("vce_hdr.flags: %d", e->vce_hdr.flags);
pr_dbf_msg("vce_hdr.key_type: %d", e->vce_hdr.key_type);
pr_dbf_msg("vce_hdr.vc_index: %d", e->vce_hdr.vc_index);
pr_dbf_msg("vce_hdr.vc_format: %d", e->vce_hdr.vc_format);
pr_dbf_msg("vce_hdr.key_id_length: %d", e->vce_hdr.key_id_length);
pr_dbf_msg("vce_hdr.vc_hash_type: %d", e->vce_hdr.vc_hash_type);
pr_dbf_msg("vce_hdr.vc_hash_length: %d", e->vce_hdr.vc_hash_length);
pr_dbf_msg("vce_hdr.vc_hash_offset: %d", e->vce_hdr.vc_hash_offset);
pr_dbf_msg("vce_hdr.vc_length: %d", e->vce_hdr.vc_length);
pr_dbf_msg("vce_hdr.vc_offset: %d", e->vce_hdr.vc_offset);
/* Certificate name in ASCII. */
memcpy(vc_name, e->vce_hdr.vc_name, VC_NAME_LEN_BYTES);
EBCASC_500(vc_name, VC_NAME_LEN_BYTES);
vc_name[VC_NAME_LEN_BYTES] = '\0';
snprintf(log_string, sizeof(log_string),
"index: %d vce_hdr.vc_name (ASCII): %s",
e->vce_hdr.vc_index, vc_name);
debug_text_event(cert_store_hexdump, 3, log_string);
/* Certificate data. */
debug_text_event(cert_store_hexdump, 3, "VCE: Certificate data start");
debug_event(cert_store_hexdump, 3, (u8 *)e->cert_data_buf, 128);
debug_text_event(cert_store_hexdump, 3, "VCE: Certificate data end");
debug_event(cert_store_hexdump, 3,
(u8 *)e->cert_data_buf + e->vce_hdr.vce_length - 128, 128);
}
static void pr_dbf_vcssb(const struct vcssb *s)
{
debug_text_event(cert_store_hexdump, 3, "DIAG320 Subcode1");
debug_event(cert_store_hexdump, 3, (u8 *)s, VCSSB_LEN_BYTES);
pr_dbf_msg("VCSSB:");
pr_dbf_msg("vcssb_length: %u", s->vcssb_length);
pr_dbf_msg("version: %u", s->version);
pr_dbf_msg("cs_token: %u", s->cs_token);
pr_dbf_msg("total_vc_index_count: %u", s->total_vc_index_count);
pr_dbf_msg("max_vc_index_count: %u", s->max_vc_index_count);
pr_dbf_msg("max_vce_length: %u", s->max_vce_length);
pr_dbf_msg("max_vcxe_length: %u", s->max_vce_length);
pr_dbf_msg("max_single_vcb_length: %u", s->max_single_vcb_length);
pr_dbf_msg("total_vcb_length: %u", s->total_vcb_length);
pr_dbf_msg("max_single_vcxb_length: %u", s->max_single_vcxb_length);
pr_dbf_msg("total_vcxb_length: %u", s->total_vcxb_length);
}
static int __diag320(unsigned long subcode, void *addr)
{
union register_pair rp = { .even = (unsigned long)addr, };
asm volatile(
" diag %[rp],%[subcode],0x320\n"
"0: nopr %%r7\n"
EX_TABLE(0b, 0b)
: [rp] "+d" (rp.pair)
: [subcode] "d" (subcode)
: "cc", "memory");
return rp.odd;
}
static int diag320(unsigned long subcode, void *addr)
{
diag_stat_inc(DIAG_STAT_X320);
return __diag320(subcode, addr);
}
/*
* Calculate SHA256 hash of the VCE certificate and compare it to hash stored in
* VCE. Return -EINVAL if hashes don't match.
*/
static int check_certificate_hash(const struct vce *vce)
{
u8 hash[SHA256_DIGEST_SIZE];
u16 vc_hash_length;
u8 *vce_hash;
vce_hash = (u8 *)vce + vce->vce_hdr.vc_hash_offset;
vc_hash_length = vce->vce_hdr.vc_hash_length;
sha256((u8 *)vce + vce->vce_hdr.vc_offset, vce->vce_hdr.vc_length, hash);
if (memcmp(vce_hash, hash, vc_hash_length) == 0)
return 0;
pr_dbf_msg("SHA256 hash of received certificate does not match");
debug_text_event(cert_store_hexdump, 3, "VCE hash:");
debug_event(cert_store_hexdump, 3, vce_hash, SHA256_DIGEST_SIZE);
debug_text_event(cert_store_hexdump, 3, "Calculated hash:");
debug_event(cert_store_hexdump, 3, hash, SHA256_DIGEST_SIZE);
return -EINVAL;
}
static int check_certificate_valid(const struct vce *vce)
{
if (!(vce->vce_hdr.flags & VCE_FLAGS_VALID_MASK)) {
pr_dbf_msg("Certificate entry is invalid");
return -EINVAL;
}
if (vce->vce_hdr.vc_format != 1) {
pr_dbf_msg("Certificate format is not supported");
return -EINVAL;
}
if (vce->vce_hdr.vc_hash_type != 1) {
pr_dbf_msg("Hash type is not supported");
return -EINVAL;
}
return check_certificate_hash(vce);
}
static struct key *get_user_session_keyring(void)
{
key_ref_t us_keyring_ref;
us_keyring_ref = lookup_user_key(KEY_SPEC_USER_SESSION_KEYRING,
KEY_LOOKUP_CREATE, KEY_NEED_LINK);
if (IS_ERR(us_keyring_ref)) {
pr_dbf_msg("Couldn't get user session keyring: %ld",
PTR_ERR(us_keyring_ref));
return ERR_PTR(-ENOKEY);
}
key_ref_put(us_keyring_ref);
return key_ref_to_ptr(us_keyring_ref);
}
/* Invalidate all keys from cert_store keyring. */
static int invalidate_keyring_keys(struct key *keyring)
{
unsigned long num_keys, key_index;
size_t keyring_payload_len;
key_serial_t *key_array;
struct key *current_key;
int rc;
keyring_payload_len = key_type_keyring.read(keyring, NULL, 0);
num_keys = keyring_payload_len / sizeof(key_serial_t);
key_array = kcalloc(num_keys, sizeof(key_serial_t), GFP_KERNEL);
if (!key_array)
return -ENOMEM;
rc = key_type_keyring.read(keyring, (char *)key_array, keyring_payload_len);
if (rc != keyring_payload_len) {
pr_dbf_msg("Couldn't read keyring payload");
goto out;
}
for (key_index = 0; key_index < num_keys; key_index++) {
current_key = key_lookup(key_array[key_index]);
pr_dbf_msg("Invalidating key %08x", current_key->serial);
key_invalidate(current_key);
key_put(current_key);
rc = key_unlink(keyring, current_key);
if (rc) {
pr_dbf_msg("Couldn't unlink key %08x: %d", current_key->serial, rc);
break;
}
}
out:
kfree(key_array);
return rc;
}
static struct key *find_cs_keyring(void)
{
key_ref_t cs_keyring_ref;
struct key *cs_keyring;
cs_keyring_ref = keyring_search(make_key_ref(get_user_session_keyring(), true),
&key_type_keyring, CERT_STORE_KEYRING_NAME,
false);
if (!IS_ERR(cs_keyring_ref)) {
cs_keyring = key_ref_to_ptr(cs_keyring_ref);
key_ref_put(cs_keyring_ref);
goto found;
}
/* Search default locations: thread, process, session keyrings */
cs_keyring = request_key(&key_type_keyring, CERT_STORE_KEYRING_NAME, NULL);
if (IS_ERR(cs_keyring))
return NULL;
key_put(cs_keyring);
found:
return cs_keyring;
}
static void cleanup_cs_keys(void)
{
struct key *cs_keyring;
cs_keyring = find_cs_keyring();
if (!cs_keyring)
return;
pr_dbf_msg("Found cert_store keyring. Purging...");
/*
* Remove cert_store_key_type in case invalidation
* of old cert_store keys failed (= severe error).
*/
if (invalidate_keyring_keys(cs_keyring))
unregister_key_type(&key_type_cert_store_key);
keyring_clear(cs_keyring);
key_invalidate(cs_keyring);
key_put(cs_keyring);
key_unlink(get_user_session_keyring(), cs_keyring);
}
static struct key *create_cs_keyring(void)
{
static struct key *cs_keyring;
/* Cleanup previous cs_keyring and all associated keys if any. */
cleanup_cs_keys();
cs_keyring = keyring_alloc(CERT_STORE_KEYRING_NAME, GLOBAL_ROOT_UID,
GLOBAL_ROOT_GID, current_cred(),
(KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_VIEW | KEY_USR_READ,
KEY_ALLOC_NOT_IN_QUOTA | KEY_ALLOC_SET_KEEP,
NULL, get_user_session_keyring());
if (IS_ERR(cs_keyring)) {
pr_dbf_msg("Can't allocate cert_store keyring");
return NULL;
}
pr_dbf_msg("Successfully allocated cert_store keyring: %08x", cs_keyring->serial);
/*
* In case a previous clean-up ran into an
* error and unregistered key type.
*/
register_key_type(&key_type_cert_store_key);
return cs_keyring;
}
/*
* Allocate memory and create key description in format
* [key name in EBCDIC]:[VCE index]:[CS token].
* Return a pointer to key description or NULL if memory
* allocation failed. Memory should be freed by caller.
*/
static char *get_key_description(struct vcssb *vcssb, const struct vce *vce)
{
size_t len, name_len;
u32 cs_token;
char *desc;
cs_token = vcssb->cs_token;
/* Description string contains "%64s:%05u:%010u\0". */
name_len = sizeof(vce->vce_hdr.vc_name);
len = name_len + 1 + 5 + 1 + 10 + 1;
desc = kmalloc(len, GFP_KERNEL);
if (!desc)
return NULL;
memcpy(desc, vce->vce_hdr.vc_name, name_len);
snprintf(desc + name_len, len - name_len, ":%05u:%010u",
vce->vce_hdr.vc_index, cs_token);
return desc;
}
/*
* Create a key of type "cert_store_key" using the data from VCE for key
* payload and key description. Link the key to "cert_store" keyring.
*/
static int create_key_from_vce(struct vcssb *vcssb, struct vce *vce,
struct key *keyring)
{
key_ref_t newkey;
char *desc;
int rc;
desc = get_key_description(vcssb, vce);
if (!desc)
return -ENOMEM;
newkey = key_create_or_update(
make_key_ref(keyring, true), CERT_STORE_KEY_TYPE_NAME,
desc, (u8 *)vce + vce->vce_hdr.vc_offset,
vce->vce_hdr.vc_length,
(KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_VIEW | KEY_USR_READ,
KEY_ALLOC_NOT_IN_QUOTA);
rc = PTR_ERR_OR_ZERO(newkey);
if (rc) {
pr_dbf_msg("Couldn't create a key from Certificate Entry (%d)", rc);
rc = -ENOKEY;
goto out;
}
key_ref_put(newkey);
out:
kfree(desc);
return rc;
}
/* Get Verification Certificate Storage Size block with DIAG320 subcode2. */
static int get_vcssb(struct vcssb *vcssb)
{
int diag320_rc;
memset(vcssb, 0, sizeof(*vcssb));
vcssb->vcssb_length = VCSSB_LEN_BYTES;
diag320_rc = diag320(DIAG320_STORAGE, vcssb);
pr_dbf_vcssb(vcssb);
if (diag320_rc != DIAG320_RC_OK) {
pr_dbf_msg("Diag 320 Subcode 1 returned bad RC: %04x", diag320_rc);
return -EIO;
}
if (vcssb->vcssb_length == VCSSB_LEN_NO_CERTS) {
pr_dbf_msg("No certificates available for current configuration");
return -ENOKEY;
}
return 0;
}
static u32 get_4k_mult_vcb_size(struct vcssb *vcssb)
{
return round_up(vcssb->max_single_vcb_length, PAGE_SIZE);
}
/* Fill input fields of single-entry VCB that will be read by LPAR. */
static void fill_vcb_input(struct vcssb *vcssb, struct vcb *vcb, u16 index)
{
memset(vcb, 0, sizeof(*vcb));
vcb->vcb_hdr.vcb_input_length = get_4k_mult_vcb_size(vcssb);
vcb->vcb_hdr.cs_token = vcssb->cs_token;
/* Request single entry. */
vcb->vcb_hdr.first_vc_index = index;
vcb->vcb_hdr.last_vc_index = index;
}
static void extract_vce_from_sevcb(struct vcb *vcb, struct vce *vce)
{
struct vce *extracted_vce;
extracted_vce = (struct vce *)vcb->vcb_buf;
memcpy(vce, vcb->vcb_buf, extracted_vce->vce_hdr.vce_length);
pr_dbf_vce(vce);
}
static int get_sevcb(struct vcssb *vcssb, u16 index, struct vcb *vcb)
{
int rc, diag320_rc;
fill_vcb_input(vcssb, vcb, index);
diag320_rc = diag320(DIAG320_CERT_BLOCK, vcb);
pr_dbf_msg("Diag 320 Subcode2 RC %2x", diag320_rc);
pr_dbf_vcb(vcb);
switch (diag320_rc) {
case DIAG320_RC_OK:
rc = 0;
if (vcb->vcb_hdr.vcb_output_length == VCB_LEN_NO_CERTS) {
pr_dbf_msg("No certificate entry for index %u", index);
rc = -ENOKEY;
} else if (vcb->vcb_hdr.remaining_vc_count != 0) {
/* Retry on insufficient space. */
pr_dbf_msg("Couldn't get all requested certificates");
rc = -EAGAIN;
}
break;
case DIAG320_RC_CS_NOMATCH:
pr_dbf_msg("Certificate Store token mismatch");
rc = -EAGAIN;
break;
default:
pr_dbf_msg("Diag 320 Subcode2 returned bad rc (0x%4x)", diag320_rc);
rc = -EINVAL;
break;
}
return rc;
}
/*
* Allocate memory for single-entry VCB, get VCB via DIAG320 subcode 2 call,
* extract VCE and create a key from its' certificate.
*/
static int create_key_from_sevcb(struct vcssb *vcssb, u16 index,
struct key *keyring)
{
struct vcb *vcb;
struct vce *vce;
int rc;
rc = -ENOMEM;
vcb = vmalloc(get_4k_mult_vcb_size(vcssb));
vce = vmalloc(vcssb->max_single_vcb_length - sizeof(vcb->vcb_hdr));
if (!vcb || !vce)
goto out;
rc = get_sevcb(vcssb, index, vcb);
if (rc)
goto out;
extract_vce_from_sevcb(vcb, vce);
rc = check_certificate_valid(vce);
if (rc)
goto out;
rc = create_key_from_vce(vcssb, vce, keyring);
if (rc)
goto out;
pr_dbf_msg("Successfully created key from Certificate Entry %d", index);
out:
vfree(vce);
vfree(vcb);
return rc;
}
/*
* Request a single-entry VCB for each VCE available for the partition.
* Create a key from it and link it to cert_store keyring. If no keys
* could be created (i.e. VCEs were invalid) return -ENOKEY.
*/
static int add_certificates_to_keyring(struct vcssb *vcssb, struct key *keyring)
{
int rc, index, count, added;
count = 0;
added = 0;
/* Certificate Store entries indices start with 1 and have no gaps. */
for (index = 1; index < vcssb->total_vc_index_count + 1; index++) {
pr_dbf_msg("Creating key from VCE %u", index);
rc = create_key_from_sevcb(vcssb, index, keyring);
count++;
if (rc == -EAGAIN)
return rc;
if (rc)
pr_dbf_msg("Creating key from VCE %u failed (%d)", index, rc);
else
added++;
}
if (added == 0) {
pr_dbf_msg("Processed %d entries. No keys created", count);
return -ENOKEY;
}
pr_info("Added %d of %d keys to cert_store keyring", added, count);
/*
* Do not allow to link more keys to certificate store keyring after all
* the VCEs were processed.
*/
rc = keyring_restrict(make_key_ref(keyring, true), NULL, NULL);
if (rc)
pr_dbf_msg("Failed to set restriction to cert_store keyring (%d)", rc);
return 0;
}
/*
* Check which DIAG320 subcodes are installed.
* Return -ENOENT if subcodes 1 or 2 are not available.
*/
static int query_diag320_subcodes(void)
{
unsigned long ism[ISM_LEN_DWORDS];
int rc;
rc = diag320(0, ism);
if (rc != DIAG320_RC_OK) {
pr_dbf_msg("DIAG320 subcode query returned %04x", rc);
return -ENOENT;
}
debug_text_event(cert_store_hexdump, 3, "DIAG320 Subcode 0");
debug_event(cert_store_hexdump, 3, ism, sizeof(ism));
if (!test_bit_inv(1, ism) || !test_bit_inv(2, ism)) {
pr_dbf_msg("Not all required DIAG320 subcodes are installed");
return -ENOENT;
}
return 0;
}
/*
* Check if Certificate Store is supported by the firmware and DIAG320 subcodes
* 1 and 2 are installed. Create cert_store keyring and link all certificates
* available for the current partition to it as "cert_store_key" type
* keys. On refresh or error invalidate cert_store keyring and destroy
* all keys of "cert_store_key" type.
*/
static int fill_cs_keyring(void)
{
struct key *cs_keyring;
struct vcssb *vcssb;
int rc;
rc = -ENOMEM;
vcssb = kmalloc(VCSSB_LEN_BYTES, GFP_KERNEL);
if (!vcssb)
goto cleanup_keys;
rc = -ENOENT;
if (!sclp.has_diag320) {
pr_dbf_msg("Certificate Store is not supported");
goto cleanup_keys;
}
rc = query_diag320_subcodes();
if (rc)
goto cleanup_keys;
rc = get_vcssb(vcssb);
if (rc)
goto cleanup_keys;
rc = -ENOMEM;
cs_keyring = create_cs_keyring();
if (!cs_keyring)
goto cleanup_keys;
rc = add_certificates_to_keyring(vcssb, cs_keyring);
if (rc)
goto cleanup_cs_keyring;
goto out;
cleanup_cs_keyring:
key_put(cs_keyring);
cleanup_keys:
cleanup_cs_keys();
out:
kfree(vcssb);
return rc;
}
static DEFINE_MUTEX(cs_refresh_lock);
static int cs_status_val = -1;
static ssize_t cs_status_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
if (cs_status_val == -1)
return sysfs_emit(buf, "uninitialized\n");
else if (cs_status_val == 0)
return sysfs_emit(buf, "ok\n");
return sysfs_emit(buf, "failed (%d)\n", cs_status_val);
}
static struct kobj_attribute cs_status_attr = __ATTR_RO(cs_status);
static ssize_t refresh_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
int rc, retries;
pr_dbf_msg("Refresh certificate store information requested");
rc = mutex_lock_interruptible(&cs_refresh_lock);
if (rc)
return rc;
for (retries = 0; retries < DIAG_MAX_RETRIES; retries++) {
/* Request certificates from certificate store. */
rc = fill_cs_keyring();
if (rc)
pr_dbf_msg("Failed to refresh certificate store information (%d)", rc);
if (rc != -EAGAIN)
break;
}
cs_status_val = rc;
mutex_unlock(&cs_refresh_lock);
return rc ?: count;
}
static struct kobj_attribute refresh_attr = __ATTR_WO(refresh);
static const struct attribute *cert_store_attrs[] __initconst = {
&cs_status_attr.attr,
&refresh_attr.attr,
NULL,
};
static struct kobject *cert_store_kobj;
static int __init cert_store_init(void)
{
int rc = -ENOMEM;
cert_store_dbf = debug_register("cert_store_msg", 10, 1, 64);
if (!cert_store_dbf)
goto cleanup_dbf;
cert_store_hexdump = debug_register("cert_store_hexdump", 3, 1, 128);
if (!cert_store_hexdump)
goto cleanup_dbf;
debug_register_view(cert_store_hexdump, &debug_hex_ascii_view);
debug_register_view(cert_store_dbf, &debug_sprintf_view);
/* Create directory /sys/firmware/cert_store. */
cert_store_kobj = kobject_create_and_add("cert_store", firmware_kobj);
if (!cert_store_kobj)
goto cleanup_dbf;
rc = sysfs_create_files(cert_store_kobj, cert_store_attrs);
if (rc)
goto cleanup_kobj;
register_key_type(&key_type_cert_store_key);
return rc;
cleanup_kobj:
kobject_put(cert_store_kobj);
cleanup_dbf:
debug_unregister(cert_store_dbf);
debug_unregister(cert_store_hexdump);
return rc;
}
device_initcall(cert_store_init);