mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
01fb58bcba
With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. slub uses synchronize_sched() to deactivate a memcg cache. synchronize_sched() is an expensive and slow operation and doesn't scale when a huge number of caches are destroyed back-to-back. While there used to be a simple batching mechanism, the batching was too restricted to be helpful. This patch implements slab_deactivate_memcg_cache_rcu_sched() which slub can use to schedule sched RCU callback instead of performing synchronize_sched() synchronously while holding cgroup_mutex. While this adds online cpus, mems and slab_mutex operations, operating on these locks back-to-back from the same kworker, which is what's gonna happen when there are many to deactivate, isn't expensive at all and this gets rid of the scalability problem completely. Link: http://lkml.kernel.org/r/20170117235411.9408-9-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
688 lines
21 KiB
C
688 lines
21 KiB
C
/*
|
|
* Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
|
|
*
|
|
* (C) SGI 2006, Christoph Lameter
|
|
* Cleaned up and restructured to ease the addition of alternative
|
|
* implementations of SLAB allocators.
|
|
* (C) Linux Foundation 2008-2013
|
|
* Unified interface for all slab allocators
|
|
*/
|
|
|
|
#ifndef _LINUX_SLAB_H
|
|
#define _LINUX_SLAB_H
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/types.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
|
|
/*
|
|
* Flags to pass to kmem_cache_create().
|
|
* The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
|
|
*/
|
|
#define SLAB_CONSISTENCY_CHECKS 0x00000100UL /* DEBUG: Perform (expensive) checks on alloc/free */
|
|
#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
|
|
#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
|
|
#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
|
|
#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
|
|
#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
|
|
#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
|
|
/*
|
|
* SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
|
|
*
|
|
* This delays freeing the SLAB page by a grace period, it does _NOT_
|
|
* delay object freeing. This means that if you do kmem_cache_free()
|
|
* that memory location is free to be reused at any time. Thus it may
|
|
* be possible to see another object there in the same RCU grace period.
|
|
*
|
|
* This feature only ensures the memory location backing the object
|
|
* stays valid, the trick to using this is relying on an independent
|
|
* object validation pass. Something like:
|
|
*
|
|
* rcu_read_lock()
|
|
* again:
|
|
* obj = lockless_lookup(key);
|
|
* if (obj) {
|
|
* if (!try_get_ref(obj)) // might fail for free objects
|
|
* goto again;
|
|
*
|
|
* if (obj->key != key) { // not the object we expected
|
|
* put_ref(obj);
|
|
* goto again;
|
|
* }
|
|
* }
|
|
* rcu_read_unlock();
|
|
*
|
|
* This is useful if we need to approach a kernel structure obliquely,
|
|
* from its address obtained without the usual locking. We can lock
|
|
* the structure to stabilize it and check it's still at the given address,
|
|
* only if we can be sure that the memory has not been meanwhile reused
|
|
* for some other kind of object (which our subsystem's lock might corrupt).
|
|
*
|
|
* rcu_read_lock before reading the address, then rcu_read_unlock after
|
|
* taking the spinlock within the structure expected at that address.
|
|
*/
|
|
#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
|
|
#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
|
|
#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
|
|
|
|
/* Flag to prevent checks on free */
|
|
#ifdef CONFIG_DEBUG_OBJECTS
|
|
# define SLAB_DEBUG_OBJECTS 0x00400000UL
|
|
#else
|
|
# define SLAB_DEBUG_OBJECTS 0x00000000UL
|
|
#endif
|
|
|
|
#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
|
|
|
|
/* Don't track use of uninitialized memory */
|
|
#ifdef CONFIG_KMEMCHECK
|
|
# define SLAB_NOTRACK 0x01000000UL
|
|
#else
|
|
# define SLAB_NOTRACK 0x00000000UL
|
|
#endif
|
|
#ifdef CONFIG_FAILSLAB
|
|
# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
|
|
#else
|
|
# define SLAB_FAILSLAB 0x00000000UL
|
|
#endif
|
|
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
|
|
# define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */
|
|
#else
|
|
# define SLAB_ACCOUNT 0x00000000UL
|
|
#endif
|
|
|
|
#ifdef CONFIG_KASAN
|
|
#define SLAB_KASAN 0x08000000UL
|
|
#else
|
|
#define SLAB_KASAN 0x00000000UL
|
|
#endif
|
|
|
|
/* The following flags affect the page allocator grouping pages by mobility */
|
|
#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
|
|
#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
|
|
/*
|
|
* ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
|
|
*
|
|
* Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
|
|
*
|
|
* ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
|
|
* Both make kfree a no-op.
|
|
*/
|
|
#define ZERO_SIZE_PTR ((void *)16)
|
|
|
|
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
|
|
(unsigned long)ZERO_SIZE_PTR)
|
|
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/kasan.h>
|
|
|
|
struct mem_cgroup;
|
|
/*
|
|
* struct kmem_cache related prototypes
|
|
*/
|
|
void __init kmem_cache_init(void);
|
|
bool slab_is_available(void);
|
|
|
|
struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
|
|
unsigned long,
|
|
void (*)(void *));
|
|
void kmem_cache_destroy(struct kmem_cache *);
|
|
int kmem_cache_shrink(struct kmem_cache *);
|
|
|
|
void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
|
|
void memcg_deactivate_kmem_caches(struct mem_cgroup *);
|
|
void memcg_destroy_kmem_caches(struct mem_cgroup *);
|
|
|
|
/*
|
|
* Please use this macro to create slab caches. Simply specify the
|
|
* name of the structure and maybe some flags that are listed above.
|
|
*
|
|
* The alignment of the struct determines object alignment. If you
|
|
* f.e. add ____cacheline_aligned_in_smp to the struct declaration
|
|
* then the objects will be properly aligned in SMP configurations.
|
|
*/
|
|
#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
|
|
sizeof(struct __struct), __alignof__(struct __struct),\
|
|
(__flags), NULL)
|
|
|
|
/*
|
|
* Common kmalloc functions provided by all allocators
|
|
*/
|
|
void * __must_check __krealloc(const void *, size_t, gfp_t);
|
|
void * __must_check krealloc(const void *, size_t, gfp_t);
|
|
void kfree(const void *);
|
|
void kzfree(const void *);
|
|
size_t ksize(const void *);
|
|
|
|
#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
|
|
const char *__check_heap_object(const void *ptr, unsigned long n,
|
|
struct page *page);
|
|
#else
|
|
static inline const char *__check_heap_object(const void *ptr,
|
|
unsigned long n,
|
|
struct page *page)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Some archs want to perform DMA into kmalloc caches and need a guaranteed
|
|
* alignment larger than the alignment of a 64-bit integer.
|
|
* Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
|
|
*/
|
|
#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
|
|
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
|
|
#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
|
|
#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
|
|
#else
|
|
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
|
|
#endif
|
|
|
|
/*
|
|
* Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
|
|
* Intended for arches that get misalignment faults even for 64 bit integer
|
|
* aligned buffers.
|
|
*/
|
|
#ifndef ARCH_SLAB_MINALIGN
|
|
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
|
|
#endif
|
|
|
|
/*
|
|
* kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
|
|
* pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
|
|
* aligned pointers.
|
|
*/
|
|
#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
|
|
#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
|
|
#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
|
|
|
|
/*
|
|
* Kmalloc array related definitions
|
|
*/
|
|
|
|
#ifdef CONFIG_SLAB
|
|
/*
|
|
* The largest kmalloc size supported by the SLAB allocators is
|
|
* 32 megabyte (2^25) or the maximum allocatable page order if that is
|
|
* less than 32 MB.
|
|
*
|
|
* WARNING: Its not easy to increase this value since the allocators have
|
|
* to do various tricks to work around compiler limitations in order to
|
|
* ensure proper constant folding.
|
|
*/
|
|
#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
|
|
(MAX_ORDER + PAGE_SHIFT - 1) : 25)
|
|
#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
|
|
#ifndef KMALLOC_SHIFT_LOW
|
|
#define KMALLOC_SHIFT_LOW 5
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLUB
|
|
/*
|
|
* SLUB directly allocates requests fitting in to an order-1 page
|
|
* (PAGE_SIZE*2). Larger requests are passed to the page allocator.
|
|
*/
|
|
#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
|
|
#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
|
|
#ifndef KMALLOC_SHIFT_LOW
|
|
#define KMALLOC_SHIFT_LOW 3
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLOB
|
|
/*
|
|
* SLOB passes all requests larger than one page to the page allocator.
|
|
* No kmalloc array is necessary since objects of different sizes can
|
|
* be allocated from the same page.
|
|
*/
|
|
#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
|
|
#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
|
|
#ifndef KMALLOC_SHIFT_LOW
|
|
#define KMALLOC_SHIFT_LOW 3
|
|
#endif
|
|
#endif
|
|
|
|
/* Maximum allocatable size */
|
|
#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
|
|
/* Maximum size for which we actually use a slab cache */
|
|
#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
|
|
/* Maximum order allocatable via the slab allocagtor */
|
|
#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
|
|
|
|
/*
|
|
* Kmalloc subsystem.
|
|
*/
|
|
#ifndef KMALLOC_MIN_SIZE
|
|
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
|
|
#endif
|
|
|
|
/*
|
|
* This restriction comes from byte sized index implementation.
|
|
* Page size is normally 2^12 bytes and, in this case, if we want to use
|
|
* byte sized index which can represent 2^8 entries, the size of the object
|
|
* should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
|
|
* If minimum size of kmalloc is less than 16, we use it as minimum object
|
|
* size and give up to use byte sized index.
|
|
*/
|
|
#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
|
|
(KMALLOC_MIN_SIZE) : 16)
|
|
|
|
#ifndef CONFIG_SLOB
|
|
extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
|
|
#ifdef CONFIG_ZONE_DMA
|
|
extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
|
|
#endif
|
|
|
|
/*
|
|
* Figure out which kmalloc slab an allocation of a certain size
|
|
* belongs to.
|
|
* 0 = zero alloc
|
|
* 1 = 65 .. 96 bytes
|
|
* 2 = 129 .. 192 bytes
|
|
* n = 2^(n-1)+1 .. 2^n
|
|
*/
|
|
static __always_inline int kmalloc_index(size_t size)
|
|
{
|
|
if (!size)
|
|
return 0;
|
|
|
|
if (size <= KMALLOC_MIN_SIZE)
|
|
return KMALLOC_SHIFT_LOW;
|
|
|
|
if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
|
|
return 1;
|
|
if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
|
|
return 2;
|
|
if (size <= 8) return 3;
|
|
if (size <= 16) return 4;
|
|
if (size <= 32) return 5;
|
|
if (size <= 64) return 6;
|
|
if (size <= 128) return 7;
|
|
if (size <= 256) return 8;
|
|
if (size <= 512) return 9;
|
|
if (size <= 1024) return 10;
|
|
if (size <= 2 * 1024) return 11;
|
|
if (size <= 4 * 1024) return 12;
|
|
if (size <= 8 * 1024) return 13;
|
|
if (size <= 16 * 1024) return 14;
|
|
if (size <= 32 * 1024) return 15;
|
|
if (size <= 64 * 1024) return 16;
|
|
if (size <= 128 * 1024) return 17;
|
|
if (size <= 256 * 1024) return 18;
|
|
if (size <= 512 * 1024) return 19;
|
|
if (size <= 1024 * 1024) return 20;
|
|
if (size <= 2 * 1024 * 1024) return 21;
|
|
if (size <= 4 * 1024 * 1024) return 22;
|
|
if (size <= 8 * 1024 * 1024) return 23;
|
|
if (size <= 16 * 1024 * 1024) return 24;
|
|
if (size <= 32 * 1024 * 1024) return 25;
|
|
if (size <= 64 * 1024 * 1024) return 26;
|
|
BUG();
|
|
|
|
/* Will never be reached. Needed because the compiler may complain */
|
|
return -1;
|
|
}
|
|
#endif /* !CONFIG_SLOB */
|
|
|
|
void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
|
|
void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
|
|
void kmem_cache_free(struct kmem_cache *, void *);
|
|
|
|
/*
|
|
* Bulk allocation and freeing operations. These are accelerated in an
|
|
* allocator specific way to avoid taking locks repeatedly or building
|
|
* metadata structures unnecessarily.
|
|
*
|
|
* Note that interrupts must be enabled when calling these functions.
|
|
*/
|
|
void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
|
|
int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
|
|
|
|
/*
|
|
* Caller must not use kfree_bulk() on memory not originally allocated
|
|
* by kmalloc(), because the SLOB allocator cannot handle this.
|
|
*/
|
|
static __always_inline void kfree_bulk(size_t size, void **p)
|
|
{
|
|
kmem_cache_free_bulk(NULL, size, p);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
|
|
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
|
|
#else
|
|
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
return __kmalloc(size, flags);
|
|
}
|
|
|
|
static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
|
|
{
|
|
return kmem_cache_alloc(s, flags);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRACING
|
|
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
|
|
gfp_t gfpflags,
|
|
int node, size_t size) __assume_slab_alignment __malloc;
|
|
#else
|
|
static __always_inline void *
|
|
kmem_cache_alloc_node_trace(struct kmem_cache *s,
|
|
gfp_t gfpflags,
|
|
int node, size_t size)
|
|
{
|
|
return kmem_cache_alloc_trace(s, gfpflags, size);
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
#else /* CONFIG_TRACING */
|
|
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
|
|
gfp_t flags, size_t size)
|
|
{
|
|
void *ret = kmem_cache_alloc(s, flags);
|
|
|
|
kasan_kmalloc(s, ret, size, flags);
|
|
return ret;
|
|
}
|
|
|
|
static __always_inline void *
|
|
kmem_cache_alloc_node_trace(struct kmem_cache *s,
|
|
gfp_t gfpflags,
|
|
int node, size_t size)
|
|
{
|
|
void *ret = kmem_cache_alloc_node(s, gfpflags, node);
|
|
|
|
kasan_kmalloc(s, ret, size, gfpflags);
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_TRACING */
|
|
|
|
extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
|
|
|
|
#ifdef CONFIG_TRACING
|
|
extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
|
|
#else
|
|
static __always_inline void *
|
|
kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
|
|
{
|
|
return kmalloc_order(size, flags, order);
|
|
}
|
|
#endif
|
|
|
|
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
|
|
{
|
|
unsigned int order = get_order(size);
|
|
return kmalloc_order_trace(size, flags, order);
|
|
}
|
|
|
|
/**
|
|
* kmalloc - allocate memory
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate.
|
|
*
|
|
* kmalloc is the normal method of allocating memory
|
|
* for objects smaller than page size in the kernel.
|
|
*
|
|
* The @flags argument may be one of:
|
|
*
|
|
* %GFP_USER - Allocate memory on behalf of user. May sleep.
|
|
*
|
|
* %GFP_KERNEL - Allocate normal kernel ram. May sleep.
|
|
*
|
|
* %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
|
|
* For example, use this inside interrupt handlers.
|
|
*
|
|
* %GFP_HIGHUSER - Allocate pages from high memory.
|
|
*
|
|
* %GFP_NOIO - Do not do any I/O at all while trying to get memory.
|
|
*
|
|
* %GFP_NOFS - Do not make any fs calls while trying to get memory.
|
|
*
|
|
* %GFP_NOWAIT - Allocation will not sleep.
|
|
*
|
|
* %__GFP_THISNODE - Allocate node-local memory only.
|
|
*
|
|
* %GFP_DMA - Allocation suitable for DMA.
|
|
* Should only be used for kmalloc() caches. Otherwise, use a
|
|
* slab created with SLAB_DMA.
|
|
*
|
|
* Also it is possible to set different flags by OR'ing
|
|
* in one or more of the following additional @flags:
|
|
*
|
|
* %__GFP_COLD - Request cache-cold pages instead of
|
|
* trying to return cache-warm pages.
|
|
*
|
|
* %__GFP_HIGH - This allocation has high priority and may use emergency pools.
|
|
*
|
|
* %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
|
|
* (think twice before using).
|
|
*
|
|
* %__GFP_NORETRY - If memory is not immediately available,
|
|
* then give up at once.
|
|
*
|
|
* %__GFP_NOWARN - If allocation fails, don't issue any warnings.
|
|
*
|
|
* %__GFP_REPEAT - If allocation fails initially, try once more before failing.
|
|
*
|
|
* There are other flags available as well, but these are not intended
|
|
* for general use, and so are not documented here. For a full list of
|
|
* potential flags, always refer to linux/gfp.h.
|
|
*/
|
|
static __always_inline void *kmalloc(size_t size, gfp_t flags)
|
|
{
|
|
if (__builtin_constant_p(size)) {
|
|
if (size > KMALLOC_MAX_CACHE_SIZE)
|
|
return kmalloc_large(size, flags);
|
|
#ifndef CONFIG_SLOB
|
|
if (!(flags & GFP_DMA)) {
|
|
int index = kmalloc_index(size);
|
|
|
|
if (!index)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
return kmem_cache_alloc_trace(kmalloc_caches[index],
|
|
flags, size);
|
|
}
|
|
#endif
|
|
}
|
|
return __kmalloc(size, flags);
|
|
}
|
|
|
|
/*
|
|
* Determine size used for the nth kmalloc cache.
|
|
* return size or 0 if a kmalloc cache for that
|
|
* size does not exist
|
|
*/
|
|
static __always_inline int kmalloc_size(int n)
|
|
{
|
|
#ifndef CONFIG_SLOB
|
|
if (n > 2)
|
|
return 1 << n;
|
|
|
|
if (n == 1 && KMALLOC_MIN_SIZE <= 32)
|
|
return 96;
|
|
|
|
if (n == 2 && KMALLOC_MIN_SIZE <= 64)
|
|
return 192;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
#ifndef CONFIG_SLOB
|
|
if (__builtin_constant_p(size) &&
|
|
size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
|
|
int i = kmalloc_index(size);
|
|
|
|
if (!i)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
return kmem_cache_alloc_node_trace(kmalloc_caches[i],
|
|
flags, node, size);
|
|
}
|
|
#endif
|
|
return __kmalloc_node(size, flags, node);
|
|
}
|
|
|
|
struct memcg_cache_array {
|
|
struct rcu_head rcu;
|
|
struct kmem_cache *entries[0];
|
|
};
|
|
|
|
/*
|
|
* This is the main placeholder for memcg-related information in kmem caches.
|
|
* Both the root cache and the child caches will have it. For the root cache,
|
|
* this will hold a dynamically allocated array large enough to hold
|
|
* information about the currently limited memcgs in the system. To allow the
|
|
* array to be accessed without taking any locks, on relocation we free the old
|
|
* version only after a grace period.
|
|
*
|
|
* Root and child caches hold different metadata.
|
|
*
|
|
* @root_cache: Common to root and child caches. NULL for root, pointer to
|
|
* the root cache for children.
|
|
*
|
|
* The following fields are specific to root caches.
|
|
*
|
|
* @memcg_caches: kmemcg ID indexed table of child caches. This table is
|
|
* used to index child cachces during allocation and cleared
|
|
* early during shutdown.
|
|
*
|
|
* @root_caches_node: List node for slab_root_caches list.
|
|
*
|
|
* @children: List of all child caches. While the child caches are also
|
|
* reachable through @memcg_caches, a child cache remains on
|
|
* this list until it is actually destroyed.
|
|
*
|
|
* The following fields are specific to child caches.
|
|
*
|
|
* @memcg: Pointer to the memcg this cache belongs to.
|
|
*
|
|
* @children_node: List node for @root_cache->children list.
|
|
*
|
|
* @kmem_caches_node: List node for @memcg->kmem_caches list.
|
|
*/
|
|
struct memcg_cache_params {
|
|
struct kmem_cache *root_cache;
|
|
union {
|
|
struct {
|
|
struct memcg_cache_array __rcu *memcg_caches;
|
|
struct list_head __root_caches_node;
|
|
struct list_head children;
|
|
};
|
|
struct {
|
|
struct mem_cgroup *memcg;
|
|
struct list_head children_node;
|
|
struct list_head kmem_caches_node;
|
|
|
|
void (*deact_fn)(struct kmem_cache *);
|
|
union {
|
|
struct rcu_head deact_rcu_head;
|
|
struct work_struct deact_work;
|
|
};
|
|
};
|
|
};
|
|
};
|
|
|
|
int memcg_update_all_caches(int num_memcgs);
|
|
|
|
/**
|
|
* kmalloc_array - allocate memory for an array.
|
|
* @n: number of elements.
|
|
* @size: element size.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
|
|
{
|
|
if (size != 0 && n > SIZE_MAX / size)
|
|
return NULL;
|
|
if (__builtin_constant_p(n) && __builtin_constant_p(size))
|
|
return kmalloc(n * size, flags);
|
|
return __kmalloc(n * size, flags);
|
|
}
|
|
|
|
/**
|
|
* kcalloc - allocate memory for an array. The memory is set to zero.
|
|
* @n: number of elements.
|
|
* @size: element size.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
|
|
{
|
|
return kmalloc_array(n, size, flags | __GFP_ZERO);
|
|
}
|
|
|
|
/*
|
|
* kmalloc_track_caller is a special version of kmalloc that records the
|
|
* calling function of the routine calling it for slab leak tracking instead
|
|
* of just the calling function (confusing, eh?).
|
|
* It's useful when the call to kmalloc comes from a widely-used standard
|
|
* allocator where we care about the real place the memory allocation
|
|
* request comes from.
|
|
*/
|
|
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
|
|
#define kmalloc_track_caller(size, flags) \
|
|
__kmalloc_track_caller(size, flags, _RET_IP_)
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
|
|
#define kmalloc_node_track_caller(size, flags, node) \
|
|
__kmalloc_node_track_caller(size, flags, node, \
|
|
_RET_IP_)
|
|
|
|
#else /* CONFIG_NUMA */
|
|
|
|
#define kmalloc_node_track_caller(size, flags, node) \
|
|
kmalloc_track_caller(size, flags)
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
/*
|
|
* Shortcuts
|
|
*/
|
|
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
|
|
{
|
|
return kmem_cache_alloc(k, flags | __GFP_ZERO);
|
|
}
|
|
|
|
/**
|
|
* kzalloc - allocate memory. The memory is set to zero.
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
static inline void *kzalloc(size_t size, gfp_t flags)
|
|
{
|
|
return kmalloc(size, flags | __GFP_ZERO);
|
|
}
|
|
|
|
/**
|
|
* kzalloc_node - allocate zeroed memory from a particular memory node.
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
* @node: memory node from which to allocate
|
|
*/
|
|
static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
return kmalloc_node(size, flags | __GFP_ZERO, node);
|
|
}
|
|
|
|
unsigned int kmem_cache_size(struct kmem_cache *s);
|
|
void __init kmem_cache_init_late(void);
|
|
|
|
#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
|
|
int slab_prepare_cpu(unsigned int cpu);
|
|
int slab_dead_cpu(unsigned int cpu);
|
|
#else
|
|
#define slab_prepare_cpu NULL
|
|
#define slab_dead_cpu NULL
|
|
#endif
|
|
|
|
#endif /* _LINUX_SLAB_H */
|