mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 17:08:10 +00:00
f8ce1faf55
fix a remove/insert race which Never Happens, and (my favorite) handle the case when we have too many modules for a single commandline. Seriously, the kernel is full, please go away! Cheers, Rusty. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iQIcBAABAgAGBQJRgbGEAAoJENkgDmzRrbjx2+QP/jXs93K/sXw3rL0vBklwCFv6 IPZmqYZiGjrzqlB4coWkgYRwW1oOsREfAjF5MmfPdykS3fO5kXfdxN4FBdfKp+IZ RdsycdGDuSxWomgYsivrrxLBDxDAX1VuBOjr6mu5Uuk/pCjFa61cfJDiErsu0jKz 2EMTc98A+E71XamJdvbtal5MUIu9yeluJWG2ux2+VbCul4MSpMc//0n2nrws/RCB AoC96AT/Xf4U10a8zT8RfCJ29M5Vvx/KfTIcFiZvtCQxEaHNNmj831gDNiw/3jFI ndRph+VLHBsMoBMxfzNRrM+evqkq8+AGEGRj3ycQy5Pa6DunPyzMafWOVGBGnmaS tl9hATGx1438048i5tUn8ieAYG1YL1HM83hQovpCThfUKQMiq186iDt1SYYmlq3g 0thj3znQqZDYhboPtgWzOMUdqOG/iBIKjhGQjjHZs+MInFgxL2hmax0gBNkvEtQb oLyfGbF6UjS7I/Md/HohnUQ4xr9kYa3MQeqPjKbRwgHRkdXhzTEZtI+MYDJBxOnW QGVQ97aJ2WA7vC7sz/1VhTcZqmU5zfrSc8lF+Ea+H8dQGHHbz8HxKQacEvKcMrXl OJyEkRUWDA0MTjeIHzn2fff9Q6/qqA1QejRiFofGJrpxopcJS84/7yA0repxvuMG yaMPsLq53UW37/AXYsho =MPiD -----END PGP SIGNATURE----- Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux Pull mudule updates from Rusty Russell: "We get rid of the general module prefix confusion with a binary config option, fix a remove/insert race which Never Happens, and (my favorite) handle the case when we have too many modules for a single commandline. Seriously, the kernel is full, please go away!" * tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: modpost: fix unwanted VMLINUX_SYMBOL_STR expansion X.509: Support parse long form of length octets in Authority Key Identifier module: don't unlink the module until we've removed all exposure. kernel: kallsyms: memory override issue, need check destination buffer length MODSIGN: do not send garbage to stderr when enabling modules signature modpost: handle huge numbers of modules. modpost: add -T option to read module names from file/stdin. modpost: minor cleanup. genksyms: pass symbol-prefix instead of arch module: fix symbol versioning with symbol prefixes CONFIG_SYMBOL_PREFIX: cleanup.
794 lines
25 KiB
C
794 lines
25 KiB
C
#ifndef _LINUX_KERNEL_H
|
|
#define _LINUX_KERNEL_H
|
|
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/types.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/typecheck.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/dynamic_debug.h>
|
|
#include <asm/byteorder.h>
|
|
#include <uapi/linux/kernel.h>
|
|
|
|
#define USHRT_MAX ((u16)(~0U))
|
|
#define SHRT_MAX ((s16)(USHRT_MAX>>1))
|
|
#define SHRT_MIN ((s16)(-SHRT_MAX - 1))
|
|
#define INT_MAX ((int)(~0U>>1))
|
|
#define INT_MIN (-INT_MAX - 1)
|
|
#define UINT_MAX (~0U)
|
|
#define LONG_MAX ((long)(~0UL>>1))
|
|
#define LONG_MIN (-LONG_MAX - 1)
|
|
#define ULONG_MAX (~0UL)
|
|
#define LLONG_MAX ((long long)(~0ULL>>1))
|
|
#define LLONG_MIN (-LLONG_MAX - 1)
|
|
#define ULLONG_MAX (~0ULL)
|
|
#define SIZE_MAX (~(size_t)0)
|
|
|
|
#define STACK_MAGIC 0xdeadbeef
|
|
|
|
#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
|
|
|
|
#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
|
|
#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
|
|
#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
|
|
#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
|
|
|
|
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
|
|
|
|
/*
|
|
* This looks more complex than it should be. But we need to
|
|
* get the type for the ~ right in round_down (it needs to be
|
|
* as wide as the result!), and we want to evaluate the macro
|
|
* arguments just once each.
|
|
*/
|
|
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
|
|
#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
|
|
#define round_down(x, y) ((x) & ~__round_mask(x, y))
|
|
|
|
#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
|
|
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
|
|
#define DIV_ROUND_UP_ULL(ll,d) \
|
|
({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
|
|
|
|
#if BITS_PER_LONG == 32
|
|
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
|
|
#else
|
|
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
|
|
#endif
|
|
|
|
/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
|
|
#define roundup(x, y) ( \
|
|
{ \
|
|
const typeof(y) __y = y; \
|
|
(((x) + (__y - 1)) / __y) * __y; \
|
|
} \
|
|
)
|
|
#define rounddown(x, y) ( \
|
|
{ \
|
|
typeof(x) __x = (x); \
|
|
__x - (__x % (y)); \
|
|
} \
|
|
)
|
|
|
|
/*
|
|
* Divide positive or negative dividend by positive divisor and round
|
|
* to closest integer. Result is undefined for negative divisors and
|
|
* for negative dividends if the divisor variable type is unsigned.
|
|
*/
|
|
#define DIV_ROUND_CLOSEST(x, divisor)( \
|
|
{ \
|
|
typeof(x) __x = x; \
|
|
typeof(divisor) __d = divisor; \
|
|
(((typeof(x))-1) > 0 || \
|
|
((typeof(divisor))-1) > 0 || (__x) > 0) ? \
|
|
(((__x) + ((__d) / 2)) / (__d)) : \
|
|
(((__x) - ((__d) / 2)) / (__d)); \
|
|
} \
|
|
)
|
|
|
|
/*
|
|
* Multiplies an integer by a fraction, while avoiding unnecessary
|
|
* overflow or loss of precision.
|
|
*/
|
|
#define mult_frac(x, numer, denom)( \
|
|
{ \
|
|
typeof(x) quot = (x) / (denom); \
|
|
typeof(x) rem = (x) % (denom); \
|
|
(quot * (numer)) + ((rem * (numer)) / (denom)); \
|
|
} \
|
|
)
|
|
|
|
|
|
#define _RET_IP_ (unsigned long)__builtin_return_address(0)
|
|
#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
|
|
|
|
#ifdef CONFIG_LBDAF
|
|
# include <asm/div64.h>
|
|
# define sector_div(a, b) do_div(a, b)
|
|
#else
|
|
# define sector_div(n, b)( \
|
|
{ \
|
|
int _res; \
|
|
_res = (n) % (b); \
|
|
(n) /= (b); \
|
|
_res; \
|
|
} \
|
|
)
|
|
#endif
|
|
|
|
/**
|
|
* upper_32_bits - return bits 32-63 of a number
|
|
* @n: the number we're accessing
|
|
*
|
|
* A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
|
|
* the "right shift count >= width of type" warning when that quantity is
|
|
* 32-bits.
|
|
*/
|
|
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
|
|
|
|
/**
|
|
* lower_32_bits - return bits 0-31 of a number
|
|
* @n: the number we're accessing
|
|
*/
|
|
#define lower_32_bits(n) ((u32)(n))
|
|
|
|
struct completion;
|
|
struct pt_regs;
|
|
struct user;
|
|
|
|
#ifdef CONFIG_PREEMPT_VOLUNTARY
|
|
extern int _cond_resched(void);
|
|
# define might_resched() _cond_resched()
|
|
#else
|
|
# define might_resched() do { } while (0)
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
void __might_sleep(const char *file, int line, int preempt_offset);
|
|
/**
|
|
* might_sleep - annotation for functions that can sleep
|
|
*
|
|
* this macro will print a stack trace if it is executed in an atomic
|
|
* context (spinlock, irq-handler, ...).
|
|
*
|
|
* This is a useful debugging help to be able to catch problems early and not
|
|
* be bitten later when the calling function happens to sleep when it is not
|
|
* supposed to.
|
|
*/
|
|
# define might_sleep() \
|
|
do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
|
|
#else
|
|
static inline void __might_sleep(const char *file, int line,
|
|
int preempt_offset) { }
|
|
# define might_sleep() do { might_resched(); } while (0)
|
|
#endif
|
|
|
|
#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
|
|
|
|
/*
|
|
* abs() handles unsigned and signed longs, ints, shorts and chars. For all
|
|
* input types abs() returns a signed long.
|
|
* abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
|
|
* for those.
|
|
*/
|
|
#define abs(x) ({ \
|
|
long ret; \
|
|
if (sizeof(x) == sizeof(long)) { \
|
|
long __x = (x); \
|
|
ret = (__x < 0) ? -__x : __x; \
|
|
} else { \
|
|
int __x = (x); \
|
|
ret = (__x < 0) ? -__x : __x; \
|
|
} \
|
|
ret; \
|
|
})
|
|
|
|
#define abs64(x) ({ \
|
|
s64 __x = (x); \
|
|
(__x < 0) ? -__x : __x; \
|
|
})
|
|
|
|
#ifdef CONFIG_PROVE_LOCKING
|
|
void might_fault(void);
|
|
#else
|
|
static inline void might_fault(void)
|
|
{
|
|
might_sleep();
|
|
}
|
|
#endif
|
|
|
|
extern struct atomic_notifier_head panic_notifier_list;
|
|
extern long (*panic_blink)(int state);
|
|
__printf(1, 2)
|
|
void panic(const char *fmt, ...)
|
|
__noreturn __cold;
|
|
extern void oops_enter(void);
|
|
extern void oops_exit(void);
|
|
void print_oops_end_marker(void);
|
|
extern int oops_may_print(void);
|
|
void do_exit(long error_code)
|
|
__noreturn;
|
|
void complete_and_exit(struct completion *, long)
|
|
__noreturn;
|
|
|
|
/* Internal, do not use. */
|
|
int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
|
|
int __must_check _kstrtol(const char *s, unsigned int base, long *res);
|
|
|
|
int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
|
|
int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
|
|
|
|
/**
|
|
* kstrtoul - convert a string to an unsigned long
|
|
* @s: The start of the string. The string must be null-terminated, and may also
|
|
* include a single newline before its terminating null. The first character
|
|
* may also be a plus sign, but not a minus sign.
|
|
* @base: The number base to use. The maximum supported base is 16. If base is
|
|
* given as 0, then the base of the string is automatically detected with the
|
|
* conventional semantics - If it begins with 0x the number will be parsed as a
|
|
* hexadecimal (case insensitive), if it otherwise begins with 0, it will be
|
|
* parsed as an octal number. Otherwise it will be parsed as a decimal.
|
|
* @res: Where to write the result of the conversion on success.
|
|
*
|
|
* Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
|
|
* Used as a replacement for the obsolete simple_strtoull. Return code must
|
|
* be checked.
|
|
*/
|
|
static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
|
|
{
|
|
/*
|
|
* We want to shortcut function call, but
|
|
* __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
|
|
*/
|
|
if (sizeof(unsigned long) == sizeof(unsigned long long) &&
|
|
__alignof__(unsigned long) == __alignof__(unsigned long long))
|
|
return kstrtoull(s, base, (unsigned long long *)res);
|
|
else
|
|
return _kstrtoul(s, base, res);
|
|
}
|
|
|
|
/**
|
|
* kstrtol - convert a string to a long
|
|
* @s: The start of the string. The string must be null-terminated, and may also
|
|
* include a single newline before its terminating null. The first character
|
|
* may also be a plus sign or a minus sign.
|
|
* @base: The number base to use. The maximum supported base is 16. If base is
|
|
* given as 0, then the base of the string is automatically detected with the
|
|
* conventional semantics - If it begins with 0x the number will be parsed as a
|
|
* hexadecimal (case insensitive), if it otherwise begins with 0, it will be
|
|
* parsed as an octal number. Otherwise it will be parsed as a decimal.
|
|
* @res: Where to write the result of the conversion on success.
|
|
*
|
|
* Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
|
|
* Used as a replacement for the obsolete simple_strtoull. Return code must
|
|
* be checked.
|
|
*/
|
|
static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
|
|
{
|
|
/*
|
|
* We want to shortcut function call, but
|
|
* __builtin_types_compatible_p(long, long long) = 0.
|
|
*/
|
|
if (sizeof(long) == sizeof(long long) &&
|
|
__alignof__(long) == __alignof__(long long))
|
|
return kstrtoll(s, base, (long long *)res);
|
|
else
|
|
return _kstrtol(s, base, res);
|
|
}
|
|
|
|
int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
|
|
int __must_check kstrtoint(const char *s, unsigned int base, int *res);
|
|
|
|
static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
|
|
{
|
|
return kstrtoull(s, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
|
|
{
|
|
return kstrtoll(s, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
|
|
{
|
|
return kstrtouint(s, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
|
|
{
|
|
return kstrtoint(s, base, res);
|
|
}
|
|
|
|
int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
|
|
int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
|
|
int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
|
|
int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
|
|
|
|
int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
|
|
int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
|
|
int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
|
|
int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
|
|
int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
|
|
int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
|
|
int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
|
|
int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
|
|
int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
|
|
int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
|
|
|
|
static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
|
|
{
|
|
return kstrtoull_from_user(s, count, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
|
|
{
|
|
return kstrtoll_from_user(s, count, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
|
|
{
|
|
return kstrtouint_from_user(s, count, base, res);
|
|
}
|
|
|
|
static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
|
|
{
|
|
return kstrtoint_from_user(s, count, base, res);
|
|
}
|
|
|
|
/* Obsolete, do not use. Use kstrto<foo> instead */
|
|
|
|
extern unsigned long simple_strtoul(const char *,char **,unsigned int);
|
|
extern long simple_strtol(const char *,char **,unsigned int);
|
|
extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
|
|
extern long long simple_strtoll(const char *,char **,unsigned int);
|
|
#define strict_strtoul kstrtoul
|
|
#define strict_strtol kstrtol
|
|
#define strict_strtoull kstrtoull
|
|
#define strict_strtoll kstrtoll
|
|
|
|
extern int num_to_str(char *buf, int size, unsigned long long num);
|
|
|
|
/* lib/printf utilities */
|
|
|
|
extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
|
|
extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
|
|
extern __printf(3, 4)
|
|
int snprintf(char *buf, size_t size, const char *fmt, ...);
|
|
extern __printf(3, 0)
|
|
int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
|
|
extern __printf(3, 4)
|
|
int scnprintf(char *buf, size_t size, const char *fmt, ...);
|
|
extern __printf(3, 0)
|
|
int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
|
|
extern __printf(2, 3)
|
|
char *kasprintf(gfp_t gfp, const char *fmt, ...);
|
|
extern char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
|
|
|
|
extern __scanf(2, 3)
|
|
int sscanf(const char *, const char *, ...);
|
|
extern __scanf(2, 0)
|
|
int vsscanf(const char *, const char *, va_list);
|
|
|
|
extern int get_option(char **str, int *pint);
|
|
extern char *get_options(const char *str, int nints, int *ints);
|
|
extern unsigned long long memparse(const char *ptr, char **retptr);
|
|
|
|
extern int core_kernel_text(unsigned long addr);
|
|
extern int core_kernel_data(unsigned long addr);
|
|
extern int __kernel_text_address(unsigned long addr);
|
|
extern int kernel_text_address(unsigned long addr);
|
|
extern int func_ptr_is_kernel_text(void *ptr);
|
|
|
|
struct pid;
|
|
extern struct pid *session_of_pgrp(struct pid *pgrp);
|
|
|
|
unsigned long int_sqrt(unsigned long);
|
|
|
|
extern void bust_spinlocks(int yes);
|
|
extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
|
|
extern int panic_timeout;
|
|
extern int panic_on_oops;
|
|
extern int panic_on_unrecovered_nmi;
|
|
extern int panic_on_io_nmi;
|
|
extern int sysctl_panic_on_stackoverflow;
|
|
extern const char *print_tainted(void);
|
|
enum lockdep_ok {
|
|
LOCKDEP_STILL_OK,
|
|
LOCKDEP_NOW_UNRELIABLE
|
|
};
|
|
extern void add_taint(unsigned flag, enum lockdep_ok);
|
|
extern int test_taint(unsigned flag);
|
|
extern unsigned long get_taint(void);
|
|
extern int root_mountflags;
|
|
|
|
extern bool early_boot_irqs_disabled;
|
|
|
|
/* Values used for system_state */
|
|
extern enum system_states {
|
|
SYSTEM_BOOTING,
|
|
SYSTEM_RUNNING,
|
|
SYSTEM_HALT,
|
|
SYSTEM_POWER_OFF,
|
|
SYSTEM_RESTART,
|
|
} system_state;
|
|
|
|
#define TAINT_PROPRIETARY_MODULE 0
|
|
#define TAINT_FORCED_MODULE 1
|
|
#define TAINT_UNSAFE_SMP 2
|
|
#define TAINT_FORCED_RMMOD 3
|
|
#define TAINT_MACHINE_CHECK 4
|
|
#define TAINT_BAD_PAGE 5
|
|
#define TAINT_USER 6
|
|
#define TAINT_DIE 7
|
|
#define TAINT_OVERRIDDEN_ACPI_TABLE 8
|
|
#define TAINT_WARN 9
|
|
#define TAINT_CRAP 10
|
|
#define TAINT_FIRMWARE_WORKAROUND 11
|
|
#define TAINT_OOT_MODULE 12
|
|
|
|
extern const char hex_asc[];
|
|
#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
|
|
#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
|
|
|
|
static inline char *hex_byte_pack(char *buf, u8 byte)
|
|
{
|
|
*buf++ = hex_asc_hi(byte);
|
|
*buf++ = hex_asc_lo(byte);
|
|
return buf;
|
|
}
|
|
|
|
static inline char * __deprecated pack_hex_byte(char *buf, u8 byte)
|
|
{
|
|
return hex_byte_pack(buf, byte);
|
|
}
|
|
|
|
extern int hex_to_bin(char ch);
|
|
extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
|
|
|
|
/*
|
|
* General tracing related utility functions - trace_printk(),
|
|
* tracing_on/tracing_off and tracing_start()/tracing_stop
|
|
*
|
|
* Use tracing_on/tracing_off when you want to quickly turn on or off
|
|
* tracing. It simply enables or disables the recording of the trace events.
|
|
* This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
|
|
* file, which gives a means for the kernel and userspace to interact.
|
|
* Place a tracing_off() in the kernel where you want tracing to end.
|
|
* From user space, examine the trace, and then echo 1 > tracing_on
|
|
* to continue tracing.
|
|
*
|
|
* tracing_stop/tracing_start has slightly more overhead. It is used
|
|
* by things like suspend to ram where disabling the recording of the
|
|
* trace is not enough, but tracing must actually stop because things
|
|
* like calling smp_processor_id() may crash the system.
|
|
*
|
|
* Most likely, you want to use tracing_on/tracing_off.
|
|
*/
|
|
#ifdef CONFIG_RING_BUFFER
|
|
/* trace_off_permanent stops recording with no way to bring it back */
|
|
void tracing_off_permanent(void);
|
|
#else
|
|
static inline void tracing_off_permanent(void) { }
|
|
#endif
|
|
|
|
enum ftrace_dump_mode {
|
|
DUMP_NONE,
|
|
DUMP_ALL,
|
|
DUMP_ORIG,
|
|
};
|
|
|
|
#ifdef CONFIG_TRACING
|
|
void tracing_on(void);
|
|
void tracing_off(void);
|
|
int tracing_is_on(void);
|
|
void tracing_snapshot(void);
|
|
void tracing_snapshot_alloc(void);
|
|
|
|
extern void tracing_start(void);
|
|
extern void tracing_stop(void);
|
|
extern void ftrace_off_permanent(void);
|
|
|
|
static inline __printf(1, 2)
|
|
void ____trace_printk_check_format(const char *fmt, ...)
|
|
{
|
|
}
|
|
#define __trace_printk_check_format(fmt, args...) \
|
|
do { \
|
|
if (0) \
|
|
____trace_printk_check_format(fmt, ##args); \
|
|
} while (0)
|
|
|
|
/**
|
|
* trace_printk - printf formatting in the ftrace buffer
|
|
* @fmt: the printf format for printing
|
|
*
|
|
* Note: __trace_printk is an internal function for trace_printk and
|
|
* the @ip is passed in via the trace_printk macro.
|
|
*
|
|
* This function allows a kernel developer to debug fast path sections
|
|
* that printk is not appropriate for. By scattering in various
|
|
* printk like tracing in the code, a developer can quickly see
|
|
* where problems are occurring.
|
|
*
|
|
* This is intended as a debugging tool for the developer only.
|
|
* Please refrain from leaving trace_printks scattered around in
|
|
* your code. (Extra memory is used for special buffers that are
|
|
* allocated when trace_printk() is used)
|
|
*
|
|
* A little optization trick is done here. If there's only one
|
|
* argument, there's no need to scan the string for printf formats.
|
|
* The trace_puts() will suffice. But how can we take advantage of
|
|
* using trace_puts() when trace_printk() has only one argument?
|
|
* By stringifying the args and checking the size we can tell
|
|
* whether or not there are args. __stringify((__VA_ARGS__)) will
|
|
* turn into "()\0" with a size of 3 when there are no args, anything
|
|
* else will be bigger. All we need to do is define a string to this,
|
|
* and then take its size and compare to 3. If it's bigger, use
|
|
* do_trace_printk() otherwise, optimize it to trace_puts(). Then just
|
|
* let gcc optimize the rest.
|
|
*/
|
|
|
|
#define trace_printk(fmt, ...) \
|
|
do { \
|
|
char _______STR[] = __stringify((__VA_ARGS__)); \
|
|
if (sizeof(_______STR) > 3) \
|
|
do_trace_printk(fmt, ##__VA_ARGS__); \
|
|
else \
|
|
trace_puts(fmt); \
|
|
} while (0)
|
|
|
|
#define do_trace_printk(fmt, args...) \
|
|
do { \
|
|
static const char *trace_printk_fmt \
|
|
__attribute__((section("__trace_printk_fmt"))) = \
|
|
__builtin_constant_p(fmt) ? fmt : NULL; \
|
|
\
|
|
__trace_printk_check_format(fmt, ##args); \
|
|
\
|
|
if (__builtin_constant_p(fmt)) \
|
|
__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
|
|
else \
|
|
__trace_printk(_THIS_IP_, fmt, ##args); \
|
|
} while (0)
|
|
|
|
extern __printf(2, 3)
|
|
int __trace_bprintk(unsigned long ip, const char *fmt, ...);
|
|
|
|
extern __printf(2, 3)
|
|
int __trace_printk(unsigned long ip, const char *fmt, ...);
|
|
|
|
/**
|
|
* trace_puts - write a string into the ftrace buffer
|
|
* @str: the string to record
|
|
*
|
|
* Note: __trace_bputs is an internal function for trace_puts and
|
|
* the @ip is passed in via the trace_puts macro.
|
|
*
|
|
* This is similar to trace_printk() but is made for those really fast
|
|
* paths that a developer wants the least amount of "Heisenbug" affects,
|
|
* where the processing of the print format is still too much.
|
|
*
|
|
* This function allows a kernel developer to debug fast path sections
|
|
* that printk is not appropriate for. By scattering in various
|
|
* printk like tracing in the code, a developer can quickly see
|
|
* where problems are occurring.
|
|
*
|
|
* This is intended as a debugging tool for the developer only.
|
|
* Please refrain from leaving trace_puts scattered around in
|
|
* your code. (Extra memory is used for special buffers that are
|
|
* allocated when trace_puts() is used)
|
|
*
|
|
* Returns: 0 if nothing was written, positive # if string was.
|
|
* (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
|
|
*/
|
|
|
|
extern int __trace_bputs(unsigned long ip, const char *str);
|
|
extern int __trace_puts(unsigned long ip, const char *str, int size);
|
|
#define trace_puts(str) ({ \
|
|
static const char *trace_printk_fmt \
|
|
__attribute__((section("__trace_printk_fmt"))) = \
|
|
__builtin_constant_p(str) ? str : NULL; \
|
|
\
|
|
if (__builtin_constant_p(str)) \
|
|
__trace_bputs(_THIS_IP_, trace_printk_fmt); \
|
|
else \
|
|
__trace_puts(_THIS_IP_, str, strlen(str)); \
|
|
})
|
|
|
|
extern void trace_dump_stack(int skip);
|
|
|
|
/*
|
|
* The double __builtin_constant_p is because gcc will give us an error
|
|
* if we try to allocate the static variable to fmt if it is not a
|
|
* constant. Even with the outer if statement.
|
|
*/
|
|
#define ftrace_vprintk(fmt, vargs) \
|
|
do { \
|
|
if (__builtin_constant_p(fmt)) { \
|
|
static const char *trace_printk_fmt \
|
|
__attribute__((section("__trace_printk_fmt"))) = \
|
|
__builtin_constant_p(fmt) ? fmt : NULL; \
|
|
\
|
|
__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
|
|
} else \
|
|
__ftrace_vprintk(_THIS_IP_, fmt, vargs); \
|
|
} while (0)
|
|
|
|
extern int
|
|
__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
|
|
|
|
extern int
|
|
__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
|
|
|
|
extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
|
|
#else
|
|
static inline void tracing_start(void) { }
|
|
static inline void tracing_stop(void) { }
|
|
static inline void ftrace_off_permanent(void) { }
|
|
static inline void trace_dump_stack(void) { }
|
|
|
|
static inline void tracing_on(void) { }
|
|
static inline void tracing_off(void) { }
|
|
static inline int tracing_is_on(void) { return 0; }
|
|
static inline void tracing_snapshot(void) { }
|
|
static inline void tracing_snapshot_alloc(void) { }
|
|
|
|
static inline __printf(1, 2)
|
|
int trace_printk(const char *fmt, ...)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int
|
|
ftrace_vprintk(const char *fmt, va_list ap)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
|
|
#endif /* CONFIG_TRACING */
|
|
|
|
/*
|
|
* min()/max()/clamp() macros that also do
|
|
* strict type-checking.. See the
|
|
* "unnecessary" pointer comparison.
|
|
*/
|
|
#define min(x, y) ({ \
|
|
typeof(x) _min1 = (x); \
|
|
typeof(y) _min2 = (y); \
|
|
(void) (&_min1 == &_min2); \
|
|
_min1 < _min2 ? _min1 : _min2; })
|
|
|
|
#define max(x, y) ({ \
|
|
typeof(x) _max1 = (x); \
|
|
typeof(y) _max2 = (y); \
|
|
(void) (&_max1 == &_max2); \
|
|
_max1 > _max2 ? _max1 : _max2; })
|
|
|
|
#define min3(x, y, z) ({ \
|
|
typeof(x) _min1 = (x); \
|
|
typeof(y) _min2 = (y); \
|
|
typeof(z) _min3 = (z); \
|
|
(void) (&_min1 == &_min2); \
|
|
(void) (&_min1 == &_min3); \
|
|
_min1 < _min2 ? (_min1 < _min3 ? _min1 : _min3) : \
|
|
(_min2 < _min3 ? _min2 : _min3); })
|
|
|
|
#define max3(x, y, z) ({ \
|
|
typeof(x) _max1 = (x); \
|
|
typeof(y) _max2 = (y); \
|
|
typeof(z) _max3 = (z); \
|
|
(void) (&_max1 == &_max2); \
|
|
(void) (&_max1 == &_max3); \
|
|
_max1 > _max2 ? (_max1 > _max3 ? _max1 : _max3) : \
|
|
(_max2 > _max3 ? _max2 : _max3); })
|
|
|
|
/**
|
|
* min_not_zero - return the minimum that is _not_ zero, unless both are zero
|
|
* @x: value1
|
|
* @y: value2
|
|
*/
|
|
#define min_not_zero(x, y) ({ \
|
|
typeof(x) __x = (x); \
|
|
typeof(y) __y = (y); \
|
|
__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
|
|
|
|
/**
|
|
* clamp - return a value clamped to a given range with strict typechecking
|
|
* @val: current value
|
|
* @min: minimum allowable value
|
|
* @max: maximum allowable value
|
|
*
|
|
* This macro does strict typechecking of min/max to make sure they are of the
|
|
* same type as val. See the unnecessary pointer comparisons.
|
|
*/
|
|
#define clamp(val, min, max) ({ \
|
|
typeof(val) __val = (val); \
|
|
typeof(min) __min = (min); \
|
|
typeof(max) __max = (max); \
|
|
(void) (&__val == &__min); \
|
|
(void) (&__val == &__max); \
|
|
__val = __val < __min ? __min: __val; \
|
|
__val > __max ? __max: __val; })
|
|
|
|
/*
|
|
* ..and if you can't take the strict
|
|
* types, you can specify one yourself.
|
|
*
|
|
* Or not use min/max/clamp at all, of course.
|
|
*/
|
|
#define min_t(type, x, y) ({ \
|
|
type __min1 = (x); \
|
|
type __min2 = (y); \
|
|
__min1 < __min2 ? __min1: __min2; })
|
|
|
|
#define max_t(type, x, y) ({ \
|
|
type __max1 = (x); \
|
|
type __max2 = (y); \
|
|
__max1 > __max2 ? __max1: __max2; })
|
|
|
|
/**
|
|
* clamp_t - return a value clamped to a given range using a given type
|
|
* @type: the type of variable to use
|
|
* @val: current value
|
|
* @min: minimum allowable value
|
|
* @max: maximum allowable value
|
|
*
|
|
* This macro does no typechecking and uses temporary variables of type
|
|
* 'type' to make all the comparisons.
|
|
*/
|
|
#define clamp_t(type, val, min, max) ({ \
|
|
type __val = (val); \
|
|
type __min = (min); \
|
|
type __max = (max); \
|
|
__val = __val < __min ? __min: __val; \
|
|
__val > __max ? __max: __val; })
|
|
|
|
/**
|
|
* clamp_val - return a value clamped to a given range using val's type
|
|
* @val: current value
|
|
* @min: minimum allowable value
|
|
* @max: maximum allowable value
|
|
*
|
|
* This macro does no typechecking and uses temporary variables of whatever
|
|
* type the input argument 'val' is. This is useful when val is an unsigned
|
|
* type and min and max are literals that will otherwise be assigned a signed
|
|
* integer type.
|
|
*/
|
|
#define clamp_val(val, min, max) ({ \
|
|
typeof(val) __val = (val); \
|
|
typeof(val) __min = (min); \
|
|
typeof(val) __max = (max); \
|
|
__val = __val < __min ? __min: __val; \
|
|
__val > __max ? __max: __val; })
|
|
|
|
|
|
/*
|
|
* swap - swap value of @a and @b
|
|
*/
|
|
#define swap(a, b) \
|
|
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
|
|
|
|
/**
|
|
* container_of - cast a member of a structure out to the containing structure
|
|
* @ptr: the pointer to the member.
|
|
* @type: the type of the container struct this is embedded in.
|
|
* @member: the name of the member within the struct.
|
|
*
|
|
*/
|
|
#define container_of(ptr, type, member) ({ \
|
|
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
|
|
(type *)( (char *)__mptr - offsetof(type,member) );})
|
|
|
|
/* Trap pasters of __FUNCTION__ at compile-time */
|
|
#define __FUNCTION__ (__func__)
|
|
|
|
/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
|
|
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
|
|
# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
|
|
#endif
|
|
|
|
#endif
|