linux-stable/drivers/pci/p2pdma.c
Linus Torvalds 009bd55dfc RDMA 5.11 pull request
A smaller set of patches, nothing stands out as being particularly major
 this cycle:
 
 - Driver bug fixes and updates: bnxt_re, cxgb4, rxe, hns, i40iw, cxgb4,
   mlx4 and mlx5
 
 - Bug fixes and polishing for the new rts ULP
 
 - Cleanup of uverbs checking for allowed driver operations
 
 - Use sysfs_emit all over the place
 
 - Lots of bug fixes and clarity improvements for hns
 
 - hip09 support for hns
 
 - NDR and 50/100Gb signaling rates
 
 - Remove dma_virt_ops and go back to using the IB DMA wrappers
 
 - mlx5 optimizations for contiguous DMA regions
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl/aNXUACgkQOG33FX4g
 mxqlMQ/+O6UhxKnDAnMB+HzDGvOm+KXNHOQBuzxz4ZWXqtUrW8WU5ca3PhXovc4z
 /QX0HhMhQmVsva5mjp1OGVATxQ2E+yasqFLg4QXAFWFR3N7s0u/sikE9i1DoPvOC
 lsmLTeRauCFaE4mJD5nvYwm+riECX0GmyVVW7v6V05xwAp0hwdhyU7Kb6Yh3lxsE
 umTz+onPNJcD6Tc4snziyC5QEp5ebEjAaj4dVI1YPR5X0c2RwC5E1CIDI6u4OQ2k
 j7/+Kvo8LNdYNERGiR169x6c1L7WS6dYnGMMeXRgyy0BVbVdRGDnvCV9VRmF66w5
 99fHfDjNMNmqbGNt/4/gwNdVrR9aI4jMZWCh7SmsguX6XwNOlhYldy3x3WnlkfkQ
 e4O0huJceJqcB2Uya70GqufnAetRXsbjzcvWxpR5YAwRmcRkm1f6aGK3BxPjWEbr
 BbYRpiKMxxT4yTe65BuuThzx6g4pNQHe0z3BM/dzMJQAX+PZcs1CPQR8F8PbCrZR
 Ad7qw4HJ587PoSxPi3toVMpYZRP6cISh1zx9q/JCj8cxH9Ri4MovUCS3cF63Ny3B
 1LJ2q0x8FuLLjgZJogKUyEkS8OO6q7NL8WumjvrYWWx19+jcYsV81jTRGSkH3bfY
 F7Esv5K2T1F2gVsCe1ZFFplQg6ja1afIcc+LEl8cMJSyTdoSub4=
 =9t8b
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma

Pull rdma updates from Jason Gunthorpe:
 "A smaller set of patches, nothing stands out as being particularly
  major this cycle. The biggest item would be the new HIP09 HW support
  from HNS, otherwise it was pretty quiet for new work here:

   - Driver bug fixes and updates: bnxt_re, cxgb4, rxe, hns, i40iw,
     cxgb4, mlx4 and mlx5

   - Bug fixes and polishing for the new rts ULP

   - Cleanup of uverbs checking for allowed driver operations

   - Use sysfs_emit all over the place

   - Lots of bug fixes and clarity improvements for hns

   - hip09 support for hns

   - NDR and 50/100Gb signaling rates

   - Remove dma_virt_ops and go back to using the IB DMA wrappers

   - mlx5 optimizations for contiguous DMA regions"

* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (147 commits)
  RDMA/cma: Don't overwrite sgid_attr after device is released
  RDMA/mlx5: Fix MR cache memory leak
  RDMA/rxe: Use acquire/release for memory ordering
  RDMA/hns: Simplify AEQE process for different types of queue
  RDMA/hns: Fix inaccurate prints
  RDMA/hns: Fix incorrect symbol types
  RDMA/hns: Clear redundant variable initialization
  RDMA/hns: Fix coding style issues
  RDMA/hns: Remove unnecessary access right set during INIT2INIT
  RDMA/hns: WARN_ON if get a reserved sl from users
  RDMA/hns: Avoid filling sl in high 3 bits of vlan_id
  RDMA/hns: Do shift on traffic class when using RoCEv2
  RDMA/hns: Normalization the judgment of some features
  RDMA/hns: Limit the length of data copied between kernel and userspace
  RDMA/mlx4: Remove bogus dev_base_lock usage
  RDMA/uverbs: Fix incorrect variable type
  RDMA/core: Do not indicate device ready when device enablement fails
  RDMA/core: Clean up cq pool mechanism
  RDMA/core: Update kernel documentation for ib_create_named_qp()
  MAINTAINERS: SOFT-ROCE: Change Zhu Yanjun's email address
  ...
2020-12-16 13:42:26 -08:00

982 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* PCI Peer 2 Peer DMA support.
*
* Copyright (c) 2016-2018, Logan Gunthorpe
* Copyright (c) 2016-2017, Microsemi Corporation
* Copyright (c) 2017, Christoph Hellwig
* Copyright (c) 2018, Eideticom Inc.
*/
#define pr_fmt(fmt) "pci-p2pdma: " fmt
#include <linux/ctype.h>
#include <linux/pci-p2pdma.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/genalloc.h>
#include <linux/memremap.h>
#include <linux/percpu-refcount.h>
#include <linux/random.h>
#include <linux/seq_buf.h>
#include <linux/xarray.h>
enum pci_p2pdma_map_type {
PCI_P2PDMA_MAP_UNKNOWN = 0,
PCI_P2PDMA_MAP_NOT_SUPPORTED,
PCI_P2PDMA_MAP_BUS_ADDR,
PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
};
struct pci_p2pdma {
struct gen_pool *pool;
bool p2pmem_published;
struct xarray map_types;
};
struct pci_p2pdma_pagemap {
struct dev_pagemap pgmap;
struct pci_dev *provider;
u64 bus_offset;
};
static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
{
return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
}
static ssize_t size_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
size_t size = 0;
if (pdev->p2pdma->pool)
size = gen_pool_size(pdev->p2pdma->pool);
return scnprintf(buf, PAGE_SIZE, "%zd\n", size);
}
static DEVICE_ATTR_RO(size);
static ssize_t available_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
size_t avail = 0;
if (pdev->p2pdma->pool)
avail = gen_pool_avail(pdev->p2pdma->pool);
return scnprintf(buf, PAGE_SIZE, "%zd\n", avail);
}
static DEVICE_ATTR_RO(available);
static ssize_t published_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return scnprintf(buf, PAGE_SIZE, "%d\n",
pdev->p2pdma->p2pmem_published);
}
static DEVICE_ATTR_RO(published);
static struct attribute *p2pmem_attrs[] = {
&dev_attr_size.attr,
&dev_attr_available.attr,
&dev_attr_published.attr,
NULL,
};
static const struct attribute_group p2pmem_group = {
.attrs = p2pmem_attrs,
.name = "p2pmem",
};
static void pci_p2pdma_release(void *data)
{
struct pci_dev *pdev = data;
struct pci_p2pdma *p2pdma = pdev->p2pdma;
if (!p2pdma)
return;
/* Flush and disable pci_alloc_p2p_mem() */
pdev->p2pdma = NULL;
synchronize_rcu();
gen_pool_destroy(p2pdma->pool);
sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
xa_destroy(&p2pdma->map_types);
}
static int pci_p2pdma_setup(struct pci_dev *pdev)
{
int error = -ENOMEM;
struct pci_p2pdma *p2p;
p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
if (!p2p)
return -ENOMEM;
xa_init(&p2p->map_types);
p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
if (!p2p->pool)
goto out;
error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
if (error)
goto out_pool_destroy;
pdev->p2pdma = p2p;
error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
if (error)
goto out_pool_destroy;
return 0;
out_pool_destroy:
pdev->p2pdma = NULL;
gen_pool_destroy(p2p->pool);
out:
devm_kfree(&pdev->dev, p2p);
return error;
}
/**
* pci_p2pdma_add_resource - add memory for use as p2p memory
* @pdev: the device to add the memory to
* @bar: PCI BAR to add
* @size: size of the memory to add, may be zero to use the whole BAR
* @offset: offset into the PCI BAR
*
* The memory will be given ZONE_DEVICE struct pages so that it may
* be used with any DMA request.
*/
int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
u64 offset)
{
struct pci_p2pdma_pagemap *p2p_pgmap;
struct dev_pagemap *pgmap;
void *addr;
int error;
if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
return -EINVAL;
if (offset >= pci_resource_len(pdev, bar))
return -EINVAL;
if (!size)
size = pci_resource_len(pdev, bar) - offset;
if (size + offset > pci_resource_len(pdev, bar))
return -EINVAL;
if (!pdev->p2pdma) {
error = pci_p2pdma_setup(pdev);
if (error)
return error;
}
p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
if (!p2p_pgmap)
return -ENOMEM;
pgmap = &p2p_pgmap->pgmap;
pgmap->range.start = pci_resource_start(pdev, bar) + offset;
pgmap->range.end = pgmap->range.start + size - 1;
pgmap->nr_range = 1;
pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
p2p_pgmap->provider = pdev;
p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
pci_resource_start(pdev, bar);
addr = devm_memremap_pages(&pdev->dev, pgmap);
if (IS_ERR(addr)) {
error = PTR_ERR(addr);
goto pgmap_free;
}
error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr,
pci_bus_address(pdev, bar) + offset,
range_len(&pgmap->range), dev_to_node(&pdev->dev),
pgmap->ref);
if (error)
goto pages_free;
pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n",
pgmap->range.start, pgmap->range.end);
return 0;
pages_free:
devm_memunmap_pages(&pdev->dev, pgmap);
pgmap_free:
devm_kfree(&pdev->dev, pgmap);
return error;
}
EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
/*
* Note this function returns the parent PCI device with a
* reference taken. It is the caller's responsibility to drop
* the reference.
*/
static struct pci_dev *find_parent_pci_dev(struct device *dev)
{
struct device *parent;
dev = get_device(dev);
while (dev) {
if (dev_is_pci(dev))
return to_pci_dev(dev);
parent = get_device(dev->parent);
put_device(dev);
dev = parent;
}
return NULL;
}
/*
* Check if a PCI bridge has its ACS redirection bits set to redirect P2P
* TLPs upstream via ACS. Returns 1 if the packets will be redirected
* upstream, 0 otherwise.
*/
static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
{
int pos;
u16 ctrl;
pos = pdev->acs_cap;
if (!pos)
return 0;
pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
return 1;
return 0;
}
static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
{
if (!buf)
return;
seq_buf_printf(buf, "%s;", pci_name(pdev));
}
static bool cpu_supports_p2pdma(void)
{
#ifdef CONFIG_X86
struct cpuinfo_x86 *c = &cpu_data(0);
/* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
return true;
#endif
return false;
}
static const struct pci_p2pdma_whitelist_entry {
unsigned short vendor;
unsigned short device;
enum {
REQ_SAME_HOST_BRIDGE = 1 << 0,
} flags;
} pci_p2pdma_whitelist[] = {
/* Intel Xeon E5/Core i7 */
{PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE},
{PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE},
/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
{PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE},
{PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE},
/* Intel SkyLake-E */
{PCI_VENDOR_ID_INTEL, 0x2030, 0},
{PCI_VENDOR_ID_INTEL, 0x2031, 0},
{PCI_VENDOR_ID_INTEL, 0x2032, 0},
{PCI_VENDOR_ID_INTEL, 0x2033, 0},
{PCI_VENDOR_ID_INTEL, 0x2020, 0},
{}
};
static bool __host_bridge_whitelist(struct pci_host_bridge *host,
bool same_host_bridge)
{
struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
const struct pci_p2pdma_whitelist_entry *entry;
unsigned short vendor, device;
if (!root)
return false;
vendor = root->vendor;
device = root->device;
pci_dev_put(root);
for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
if (vendor != entry->vendor || device != entry->device)
continue;
if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
return false;
return true;
}
return false;
}
/*
* If we can't find a common upstream bridge take a look at the root
* complex and compare it to a whitelist of known good hardware.
*/
static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b)
{
struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
if (host_a == host_b)
return __host_bridge_whitelist(host_a, true);
if (__host_bridge_whitelist(host_a, false) &&
__host_bridge_whitelist(host_b, false))
return true;
return false;
}
static enum pci_p2pdma_map_type
__upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
int *dist, bool *acs_redirects, struct seq_buf *acs_list)
{
struct pci_dev *a = provider, *b = client, *bb;
int dist_a = 0;
int dist_b = 0;
int acs_cnt = 0;
if (acs_redirects)
*acs_redirects = false;
/*
* Note, we don't need to take references to devices returned by
* pci_upstream_bridge() seeing we hold a reference to a child
* device which will already hold a reference to the upstream bridge.
*/
while (a) {
dist_b = 0;
if (pci_bridge_has_acs_redir(a)) {
seq_buf_print_bus_devfn(acs_list, a);
acs_cnt++;
}
bb = b;
while (bb) {
if (a == bb)
goto check_b_path_acs;
bb = pci_upstream_bridge(bb);
dist_b++;
}
a = pci_upstream_bridge(a);
dist_a++;
}
if (dist)
*dist = dist_a + dist_b;
return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
check_b_path_acs:
bb = b;
while (bb) {
if (a == bb)
break;
if (pci_bridge_has_acs_redir(bb)) {
seq_buf_print_bus_devfn(acs_list, bb);
acs_cnt++;
}
bb = pci_upstream_bridge(bb);
}
if (dist)
*dist = dist_a + dist_b;
if (acs_cnt) {
if (acs_redirects)
*acs_redirects = true;
return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
}
return PCI_P2PDMA_MAP_BUS_ADDR;
}
static unsigned long map_types_idx(struct pci_dev *client)
{
return (pci_domain_nr(client->bus) << 16) |
(client->bus->number << 8) | client->devfn;
}
/*
* Find the distance through the nearest common upstream bridge between
* two PCI devices.
*
* If the two devices are the same device then 0 will be returned.
*
* If there are two virtual functions of the same device behind the same
* bridge port then 2 will be returned (one step down to the PCIe switch,
* then one step back to the same device).
*
* In the case where two devices are connected to the same PCIe switch, the
* value 4 will be returned. This corresponds to the following PCI tree:
*
* -+ Root Port
* \+ Switch Upstream Port
* +-+ Switch Downstream Port
* + \- Device A
* \-+ Switch Downstream Port
* \- Device B
*
* The distance is 4 because we traverse from Device A through the downstream
* port of the switch, to the common upstream port, back up to the second
* downstream port and then to Device B.
*
* Any two devices that cannot communicate using p2pdma will return
* PCI_P2PDMA_MAP_NOT_SUPPORTED.
*
* Any two devices that have a data path that goes through the host bridge
* will consult a whitelist. If the host bridges are on the whitelist,
* this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE.
*
* If either bridge is not on the whitelist this function returns
* PCI_P2PDMA_MAP_NOT_SUPPORTED.
*
* If a bridge which has any ACS redirection bits set is in the path,
* acs_redirects will be set to true. In this case, a list of all infringing
* bridge addresses will be populated in acs_list (assuming it's non-null)
* for printk purposes.
*/
static enum pci_p2pdma_map_type
upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
int *dist, bool *acs_redirects, struct seq_buf *acs_list)
{
enum pci_p2pdma_map_type map_type;
map_type = __upstream_bridge_distance(provider, client, dist,
acs_redirects, acs_list);
if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) {
if (!cpu_supports_p2pdma() &&
!host_bridge_whitelist(provider, client))
map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
}
if (provider->p2pdma)
xa_store(&provider->p2pdma->map_types, map_types_idx(client),
xa_mk_value(map_type), GFP_KERNEL);
return map_type;
}
static enum pci_p2pdma_map_type
upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client,
int *dist)
{
struct seq_buf acs_list;
bool acs_redirects;
int ret;
seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
if (!acs_list.buffer)
return -ENOMEM;
ret = upstream_bridge_distance(provider, client, dist, &acs_redirects,
&acs_list);
if (acs_redirects) {
pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
pci_name(provider));
/* Drop final semicolon */
acs_list.buffer[acs_list.len-1] = 0;
pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
acs_list.buffer);
}
if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) {
pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
pci_name(provider));
}
kfree(acs_list.buffer);
return ret;
}
/**
* pci_p2pdma_distance_many - Determine the cumulative distance between
* a p2pdma provider and the clients in use.
* @provider: p2pdma provider to check against the client list
* @clients: array of devices to check (NULL-terminated)
* @num_clients: number of clients in the array
* @verbose: if true, print warnings for devices when we return -1
*
* Returns -1 if any of the clients are not compatible, otherwise returns a
* positive number where a lower number is the preferable choice. (If there's
* one client that's the same as the provider it will return 0, which is best
* choice).
*
* "compatible" means the provider and the clients are either all behind
* the same PCI root port or the host bridges connected to each of the devices
* are listed in the 'pci_p2pdma_whitelist'.
*/
int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
int num_clients, bool verbose)
{
bool not_supported = false;
struct pci_dev *pci_client;
int total_dist = 0;
int distance;
int i, ret;
if (num_clients == 0)
return -1;
for (i = 0; i < num_clients; i++) {
pci_client = find_parent_pci_dev(clients[i]);
if (!pci_client) {
if (verbose)
dev_warn(clients[i],
"cannot be used for peer-to-peer DMA as it is not a PCI device\n");
return -1;
}
if (verbose)
ret = upstream_bridge_distance_warn(provider,
pci_client, &distance);
else
ret = upstream_bridge_distance(provider, pci_client,
&distance, NULL, NULL);
pci_dev_put(pci_client);
if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED)
not_supported = true;
if (not_supported && !verbose)
break;
total_dist += distance;
}
if (not_supported)
return -1;
return total_dist;
}
EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
/**
* pci_has_p2pmem - check if a given PCI device has published any p2pmem
* @pdev: PCI device to check
*/
bool pci_has_p2pmem(struct pci_dev *pdev)
{
return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
}
EXPORT_SYMBOL_GPL(pci_has_p2pmem);
/**
* pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with
* the specified list of clients and shortest distance (as determined
* by pci_p2pmem_dma())
* @clients: array of devices to check (NULL-terminated)
* @num_clients: number of client devices in the list
*
* If multiple devices are behind the same switch, the one "closest" to the
* client devices in use will be chosen first. (So if one of the providers is
* the same as one of the clients, that provider will be used ahead of any
* other providers that are unrelated). If multiple providers are an equal
* distance away, one will be chosen at random.
*
* Returns a pointer to the PCI device with a reference taken (use pci_dev_put
* to return the reference) or NULL if no compatible device is found. The
* found provider will also be assigned to the client list.
*/
struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
{
struct pci_dev *pdev = NULL;
int distance;
int closest_distance = INT_MAX;
struct pci_dev **closest_pdevs;
int dev_cnt = 0;
const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
int i;
closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!closest_pdevs)
return NULL;
while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
if (!pci_has_p2pmem(pdev))
continue;
distance = pci_p2pdma_distance_many(pdev, clients,
num_clients, false);
if (distance < 0 || distance > closest_distance)
continue;
if (distance == closest_distance && dev_cnt >= max_devs)
continue;
if (distance < closest_distance) {
for (i = 0; i < dev_cnt; i++)
pci_dev_put(closest_pdevs[i]);
dev_cnt = 0;
closest_distance = distance;
}
closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
}
if (dev_cnt)
pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
for (i = 0; i < dev_cnt; i++)
pci_dev_put(closest_pdevs[i]);
kfree(closest_pdevs);
return pdev;
}
EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
/**
* pci_alloc_p2pmem - allocate peer-to-peer DMA memory
* @pdev: the device to allocate memory from
* @size: number of bytes to allocate
*
* Returns the allocated memory or NULL on error.
*/
void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
{
void *ret = NULL;
struct percpu_ref *ref;
/*
* Pairs with synchronize_rcu() in pci_p2pdma_release() to
* ensure pdev->p2pdma is non-NULL for the duration of the
* read-lock.
*/
rcu_read_lock();
if (unlikely(!pdev->p2pdma))
goto out;
ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size,
(void **) &ref);
if (!ret)
goto out;
if (unlikely(!percpu_ref_tryget_live(ref))) {
gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size);
ret = NULL;
goto out;
}
out:
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
/**
* pci_free_p2pmem - free peer-to-peer DMA memory
* @pdev: the device the memory was allocated from
* @addr: address of the memory that was allocated
* @size: number of bytes that were allocated
*/
void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
{
struct percpu_ref *ref;
gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size,
(void **) &ref);
percpu_ref_put(ref);
}
EXPORT_SYMBOL_GPL(pci_free_p2pmem);
/**
* pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual
* address obtained with pci_alloc_p2pmem()
* @pdev: the device the memory was allocated from
* @addr: address of the memory that was allocated
*/
pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
{
if (!addr)
return 0;
if (!pdev->p2pdma)
return 0;
/*
* Note: when we added the memory to the pool we used the PCI
* bus address as the physical address. So gen_pool_virt_to_phys()
* actually returns the bus address despite the misleading name.
*/
return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
}
EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
/**
* pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
* @pdev: the device to allocate memory from
* @nents: the number of SG entries in the list
* @length: number of bytes to allocate
*
* Return: %NULL on error or &struct scatterlist pointer and @nents on success
*/
struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
unsigned int *nents, u32 length)
{
struct scatterlist *sg;
void *addr;
sg = kmalloc(sizeof(*sg), GFP_KERNEL);
if (!sg)
return NULL;
sg_init_table(sg, 1);
addr = pci_alloc_p2pmem(pdev, length);
if (!addr)
goto out_free_sg;
sg_set_buf(sg, addr, length);
*nents = 1;
return sg;
out_free_sg:
kfree(sg);
return NULL;
}
EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
/**
* pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
* @pdev: the device to allocate memory from
* @sgl: the allocated scatterlist
*/
void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
{
struct scatterlist *sg;
int count;
for_each_sg(sgl, sg, INT_MAX, count) {
if (!sg)
break;
pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
}
kfree(sgl);
}
EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
/**
* pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
* other devices with pci_p2pmem_find()
* @pdev: the device with peer-to-peer DMA memory to publish
* @publish: set to true to publish the memory, false to unpublish it
*
* Published memory can be used by other PCI device drivers for
* peer-2-peer DMA operations. Non-published memory is reserved for
* exclusive use of the device driver that registers the peer-to-peer
* memory.
*/
void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
{
if (pdev->p2pdma)
pdev->p2pdma->p2pmem_published = publish;
}
EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider,
struct pci_dev *client)
{
if (!provider->p2pdma)
return PCI_P2PDMA_MAP_NOT_SUPPORTED;
return xa_to_value(xa_load(&provider->p2pdma->map_types,
map_types_idx(client)));
}
static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap,
struct device *dev, struct scatterlist *sg, int nents)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
s->dma_address = sg_phys(s) - p2p_pgmap->bus_offset;
sg_dma_len(s) = s->length;
}
return nents;
}
/**
* pci_p2pdma_map_sg_attrs - map a PCI peer-to-peer scatterlist for DMA
* @dev: device doing the DMA request
* @sg: scatter list to map
* @nents: elements in the scatterlist
* @dir: DMA direction
* @attrs: DMA attributes passed to dma_map_sg() (if called)
*
* Scatterlists mapped with this function should be unmapped using
* pci_p2pdma_unmap_sg_attrs().
*
* Returns the number of SG entries mapped or 0 on error.
*/
int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct pci_p2pdma_pagemap *p2p_pgmap =
to_p2p_pgmap(sg_page(sg)->pgmap);
struct pci_dev *client;
if (WARN_ON_ONCE(!dev_is_pci(dev)))
return 0;
client = to_pci_dev(dev);
switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) {
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
return dma_map_sg_attrs(dev, sg, nents, dir, attrs);
case PCI_P2PDMA_MAP_BUS_ADDR:
return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents);
default:
WARN_ON_ONCE(1);
return 0;
}
}
EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs);
/**
* pci_p2pdma_unmap_sg_attrs - unmap a PCI peer-to-peer scatterlist that was
* mapped with pci_p2pdma_map_sg()
* @dev: device doing the DMA request
* @sg: scatter list to map
* @nents: number of elements returned by pci_p2pdma_map_sg()
* @dir: DMA direction
* @attrs: DMA attributes passed to dma_unmap_sg() (if called)
*/
void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct pci_p2pdma_pagemap *p2p_pgmap =
to_p2p_pgmap(sg_page(sg)->pgmap);
enum pci_p2pdma_map_type map_type;
struct pci_dev *client;
if (WARN_ON_ONCE(!dev_is_pci(dev)))
return;
client = to_pci_dev(dev);
map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client);
if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE)
dma_unmap_sg_attrs(dev, sg, nents, dir, attrs);
}
EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs);
/**
* pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
* to enable p2pdma
* @page: contents of the value to be stored
* @p2p_dev: returns the PCI device that was selected to be used
* (if one was specified in the stored value)
* @use_p2pdma: returns whether to enable p2pdma or not
*
* Parses an attribute value to decide whether to enable p2pdma.
* The value can select a PCI device (using its full BDF device
* name) or a boolean (in any format strtobool() accepts). A false
* value disables p2pdma, a true value expects the caller
* to automatically find a compatible device and specifying a PCI device
* expects the caller to use the specific provider.
*
* pci_p2pdma_enable_show() should be used as the show operation for
* the attribute.
*
* Returns 0 on success
*/
int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
bool *use_p2pdma)
{
struct device *dev;
dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
if (dev) {
*use_p2pdma = true;
*p2p_dev = to_pci_dev(dev);
if (!pci_has_p2pmem(*p2p_dev)) {
pci_err(*p2p_dev,
"PCI device has no peer-to-peer memory: %s\n",
page);
pci_dev_put(*p2p_dev);
return -ENODEV;
}
return 0;
} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
/*
* If the user enters a PCI device that doesn't exist
* like "0000:01:00.1", we don't want strtobool to think
* it's a '0' when it's clearly not what the user wanted.
* So we require 0's and 1's to be exactly one character.
*/
} else if (!strtobool(page, use_p2pdma)) {
return 0;
}
pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
return -ENODEV;
}
EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
/**
* pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
* whether p2pdma is enabled
* @page: contents of the stored value
* @p2p_dev: the selected p2p device (NULL if no device is selected)
* @use_p2pdma: whether p2pdma has been enabled
*
* Attributes that use pci_p2pdma_enable_store() should use this function
* to show the value of the attribute.
*
* Returns 0 on success
*/
ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
bool use_p2pdma)
{
if (!use_p2pdma)
return sprintf(page, "0\n");
if (!p2p_dev)
return sprintf(page, "1\n");
return sprintf(page, "%s\n", pci_name(p2p_dev));
}
EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);