linux-stable/drivers/pwm/pwm-stm32.c
Uwe Kleine-König f9a8ee8c8b pwm: Always allocate PWM chip base ID dynamically
Since commit 5e5da1e9fb ("pwm: ab8500: Explicitly allocate pwm chip
base dynamically") all drivers use dynamic ID allocation explicitly. New
drivers are supposed to do the same, so remove support for driver
specified base IDs and drop all assignments in the low-level drivers.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2021-03-22 11:53:00 +01:00

717 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2016
*
* Author: Gerald Baeza <gerald.baeza@st.com>
*
* Inspired by timer-stm32.c from Maxime Coquelin
* pwm-atmel.c from Bo Shen
*/
#include <linux/bitfield.h>
#include <linux/mfd/stm32-timers.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#define CCMR_CHANNEL_SHIFT 8
#define CCMR_CHANNEL_MASK 0xFF
#define MAX_BREAKINPUT 2
struct stm32_breakinput {
u32 index;
u32 level;
u32 filter;
};
struct stm32_pwm {
struct pwm_chip chip;
struct mutex lock; /* protect pwm config/enable */
struct clk *clk;
struct regmap *regmap;
u32 max_arr;
bool have_complementary_output;
struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
unsigned int num_breakinputs;
u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
};
static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
{
return container_of(chip, struct stm32_pwm, chip);
}
static u32 active_channels(struct stm32_pwm *dev)
{
u32 ccer;
regmap_read(dev->regmap, TIM_CCER, &ccer);
return ccer & TIM_CCER_CCXE;
}
static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
{
switch (ch) {
case 0:
return regmap_write(dev->regmap, TIM_CCR1, value);
case 1:
return regmap_write(dev->regmap, TIM_CCR2, value);
case 2:
return regmap_write(dev->regmap, TIM_CCR3, value);
case 3:
return regmap_write(dev->regmap, TIM_CCR4, value);
}
return -EINVAL;
}
#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
/*
* Capture using PWM input mode:
* ___ ___
* TI[1, 2, 3 or 4]: ........._| |________|
* ^0 ^1 ^2
* . . .
* . . XXXXX
* . . XXXXX |
* . XXXXX . |
* XXXXX . . |
* COUNTER: ______XXXXX . . . |_XXX
* start^ . . . ^stop
* . . . .
* v v . v
* v
* CCR1/CCR3: tx..........t0...........t2
* CCR2/CCR4: tx..............t1.........
*
* DMA burst transfer: | |
* v v
* DMA buffer: { t0, tx } { t2, t1 }
* DMA done: ^
*
* 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
* + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
* 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
* 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
* + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
*
* DMA done, compute:
* - Period = t2 - t0
* - Duty cycle = t1 - t0
*/
static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
unsigned long tmo_ms, u32 *raw_prd,
u32 *raw_dty)
{
struct device *parent = priv->chip.dev->parent;
enum stm32_timers_dmas dma_id;
u32 ccen, ccr;
int ret;
/* Ensure registers have been updated, enable counter and capture */
regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
/*
* Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
* CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
* We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
* or { CCR3, CCR4 }, { CCR3, CCR4 }
*/
ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
2, tmo_ms);
if (ret)
goto stop;
/* Period: t2 - t0 (take care of counter overflow) */
if (priv->capture[0] <= priv->capture[2])
*raw_prd = priv->capture[2] - priv->capture[0];
else
*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
/* Duty cycle capture requires at least two capture units */
if (pwm->chip->npwm < 2)
*raw_dty = 0;
else if (priv->capture[0] <= priv->capture[3])
*raw_dty = priv->capture[3] - priv->capture[0];
else
*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
if (*raw_dty > *raw_prd) {
/*
* Race beetween PWM input and DMA: it may happen
* falling edge triggers new capture on TI2/4 before DMA
* had a chance to read CCR2/4. It means capture[1]
* contains period + duty_cycle. So, subtract period.
*/
*raw_dty -= *raw_prd;
}
stop:
regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
return ret;
}
static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_capture *result, unsigned long tmo_ms)
{
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned long long prd, div, dty;
unsigned long rate;
unsigned int psc = 0, icpsc, scale;
u32 raw_prd = 0, raw_dty = 0;
int ret = 0;
mutex_lock(&priv->lock);
if (active_channels(priv)) {
ret = -EBUSY;
goto unlock;
}
ret = clk_enable(priv->clk);
if (ret) {
dev_err(priv->chip.dev, "failed to enable counter clock\n");
goto unlock;
}
rate = clk_get_rate(priv->clk);
if (!rate) {
ret = -EINVAL;
goto clk_dis;
}
/* prescaler: fit timeout window provided by upper layer */
div = (unsigned long long)rate * (unsigned long long)tmo_ms;
do_div(div, MSEC_PER_SEC);
prd = div;
while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
psc++;
div = prd;
do_div(div, psc + 1);
}
regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
regmap_write(priv->regmap, TIM_PSC, psc);
/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
regmap_update_bits(priv->regmap,
pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
TIM_CCER_CC2P : TIM_CCER_CC4P);
ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
if (ret)
goto stop;
/*
* Got a capture. Try to improve accuracy at high rates:
* - decrease counter clock prescaler, scale up to max rate.
* - use input prescaler, capture once every /2 /4 or /8 edges.
*/
if (raw_prd) {
u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
scale = max_arr / min(max_arr, raw_prd);
} else {
scale = priv->max_arr; /* bellow resolution, use max scale */
}
if (psc && scale > 1) {
/* 2nd measure with new scale */
psc /= scale;
regmap_write(priv->regmap, TIM_PSC, psc);
ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
&raw_dty);
if (ret)
goto stop;
}
/* Compute intermediate period not to exceed timeout at low rates */
prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
do_div(prd, rate);
for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
/* input prescaler: also keep arbitrary margin */
if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
break;
if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
break;
}
if (!icpsc)
goto done;
/* Last chance to improve period accuracy, using input prescaler */
regmap_update_bits(priv->regmap,
pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
if (ret)
goto stop;
if (raw_dty >= (raw_prd >> icpsc)) {
/*
* We may fall here using input prescaler, when input
* capture starts on high side (before falling edge).
* Example with icpsc to capture on each 4 events:
*
* start 1st capture 2nd capture
* v v v
* ___ _____ _____ _____ _____ ____
* TI1..4 |__| |__| |__| |__| |__|
* v v . . . . . v v
* icpsc1/3: . 0 . 1 . 2 . 3 . 0
* icpsc2/4: 0 1 2 3 0
* v v v v
* CCR1/3 ......t0..............................t2
* CCR2/4 ..t1..............................t1'...
* . . .
* Capture0: .<----------------------------->.
* Capture1: .<-------------------------->. .
* . . .
* Period: .<------> . .
* Low side: .<>.
*
* Result:
* - Period = Capture0 / icpsc
* - Duty = Period - Low side = Period - (Capture0 - Capture1)
*/
raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
}
done:
prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
stop:
regmap_write(priv->regmap, TIM_CCER, 0);
regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
regmap_write(priv->regmap, TIM_PSC, 0);
clk_dis:
clk_disable(priv->clk);
unlock:
mutex_unlock(&priv->lock);
return ret;
}
static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
int duty_ns, int period_ns)
{
unsigned long long prd, div, dty;
unsigned int prescaler = 0;
u32 ccmr, mask, shift;
/* Period and prescaler values depends on clock rate */
div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
do_div(div, NSEC_PER_SEC);
prd = div;
while (div > priv->max_arr) {
prescaler++;
div = prd;
do_div(div, prescaler + 1);
}
prd = div;
if (prescaler > MAX_TIM_PSC)
return -EINVAL;
/*
* All channels share the same prescaler and counter so when two
* channels are active at the same time we can't change them
*/
if (active_channels(priv) & ~(1 << ch * 4)) {
u32 psc, arr;
regmap_read(priv->regmap, TIM_PSC, &psc);
regmap_read(priv->regmap, TIM_ARR, &arr);
if ((psc != prescaler) || (arr != prd - 1))
return -EBUSY;
}
regmap_write(priv->regmap, TIM_PSC, prescaler);
regmap_write(priv->regmap, TIM_ARR, prd - 1);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
/* Calculate the duty cycles */
dty = prd * duty_ns;
do_div(dty, period_ns);
write_ccrx(priv, ch, dty);
/* Configure output mode */
shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
mask = CCMR_CHANNEL_MASK << shift;
if (ch < 2)
regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
else
regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
regmap_update_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE, TIM_BDTR_MOE);
return 0;
}
static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
enum pwm_polarity polarity)
{
u32 mask;
mask = TIM_CCER_CC1P << (ch * 4);
if (priv->have_complementary_output)
mask |= TIM_CCER_CC1NP << (ch * 4);
regmap_update_bits(priv->regmap, TIM_CCER, mask,
polarity == PWM_POLARITY_NORMAL ? 0 : mask);
return 0;
}
static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
{
u32 mask;
int ret;
ret = clk_enable(priv->clk);
if (ret)
return ret;
/* Enable channel */
mask = TIM_CCER_CC1E << (ch * 4);
if (priv->have_complementary_output)
mask |= TIM_CCER_CC1NE << (ch * 4);
regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
/* Make sure that registers are updated */
regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
/* Enable controller */
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
return 0;
}
static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
{
u32 mask;
/* Disable channel */
mask = TIM_CCER_CC1E << (ch * 4);
if (priv->have_complementary_output)
mask |= TIM_CCER_CC1NE << (ch * 4);
regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
/* When all channels are disabled, we can disable the controller */
if (!active_channels(priv))
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
clk_disable(priv->clk);
}
static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
bool enabled;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
int ret;
enabled = pwm->state.enabled;
if (enabled && !state->enabled) {
stm32_pwm_disable(priv, pwm->hwpwm);
return 0;
}
if (state->polarity != pwm->state.polarity)
stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
ret = stm32_pwm_config(priv, pwm->hwpwm,
state->duty_cycle, state->period);
if (ret)
return ret;
if (!enabled && state->enabled)
ret = stm32_pwm_enable(priv, pwm->hwpwm);
return ret;
}
static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
int ret;
/* protect common prescaler for all active channels */
mutex_lock(&priv->lock);
ret = stm32_pwm_apply(chip, pwm, state);
mutex_unlock(&priv->lock);
return ret;
}
static const struct pwm_ops stm32pwm_ops = {
.owner = THIS_MODULE,
.apply = stm32_pwm_apply_locked,
.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
};
static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
const struct stm32_breakinput *bi)
{
u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
u32 bke = TIM_BDTR_BKE(bi->index);
u32 bkp = TIM_BDTR_BKP(bi->index);
u32 bkf = TIM_BDTR_BKF(bi->index);
u32 mask = bkf | bkp | bke;
u32 bdtr;
bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
if (bi->level)
bdtr |= bkp;
regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
regmap_read(priv->regmap, TIM_BDTR, &bdtr);
return (bdtr & bke) ? 0 : -EINVAL;
}
static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
{
unsigned int i;
int ret;
for (i = 0; i < priv->num_breakinputs; i++) {
ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
if (ret < 0)
return ret;
}
return 0;
}
static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
struct device_node *np)
{
int nb, ret, array_size;
unsigned int i;
nb = of_property_count_elems_of_size(np, "st,breakinput",
sizeof(struct stm32_breakinput));
/*
* Because "st,breakinput" parameter is optional do not make probe
* failed if it doesn't exist.
*/
if (nb <= 0)
return 0;
if (nb > MAX_BREAKINPUT)
return -EINVAL;
priv->num_breakinputs = nb;
array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
ret = of_property_read_u32_array(np, "st,breakinput",
(u32 *)priv->breakinputs, array_size);
if (ret)
return ret;
for (i = 0; i < priv->num_breakinputs; i++) {
if (priv->breakinputs[i].index > 1 ||
priv->breakinputs[i].level > 1 ||
priv->breakinputs[i].filter > 15)
return -EINVAL;
}
return stm32_pwm_apply_breakinputs(priv);
}
static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
{
u32 ccer;
/*
* If complementary bit doesn't exist writing 1 will have no
* effect so we can detect it.
*/
regmap_update_bits(priv->regmap,
TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
regmap_read(priv->regmap, TIM_CCER, &ccer);
regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
priv->have_complementary_output = (ccer != 0);
}
static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
{
u32 ccer;
int npwm = 0;
/*
* If channels enable bits don't exist writing 1 will have no
* effect so we can detect and count them.
*/
regmap_update_bits(priv->regmap,
TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
regmap_read(priv->regmap, TIM_CCER, &ccer);
regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
if (ccer & TIM_CCER_CC1E)
npwm++;
if (ccer & TIM_CCER_CC2E)
npwm++;
if (ccer & TIM_CCER_CC3E)
npwm++;
if (ccer & TIM_CCER_CC4E)
npwm++;
return npwm;
}
static int stm32_pwm_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
struct stm32_pwm *priv;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_init(&priv->lock);
priv->regmap = ddata->regmap;
priv->clk = ddata->clk;
priv->max_arr = ddata->max_arr;
priv->chip.of_xlate = of_pwm_xlate_with_flags;
priv->chip.of_pwm_n_cells = 3;
if (!priv->regmap || !priv->clk)
return -EINVAL;
ret = stm32_pwm_probe_breakinputs(priv, np);
if (ret)
return ret;
stm32_pwm_detect_complementary(priv);
priv->chip.dev = dev;
priv->chip.ops = &stm32pwm_ops;
priv->chip.npwm = stm32_pwm_detect_channels(priv);
ret = pwmchip_add(&priv->chip);
if (ret < 0)
return ret;
platform_set_drvdata(pdev, priv);
return 0;
}
static int stm32_pwm_remove(struct platform_device *pdev)
{
struct stm32_pwm *priv = platform_get_drvdata(pdev);
unsigned int i;
for (i = 0; i < priv->chip.npwm; i++)
pwm_disable(&priv->chip.pwms[i]);
pwmchip_remove(&priv->chip);
return 0;
}
static int __maybe_unused stm32_pwm_suspend(struct device *dev)
{
struct stm32_pwm *priv = dev_get_drvdata(dev);
unsigned int i;
u32 ccer, mask;
/* Look for active channels */
ccer = active_channels(priv);
for (i = 0; i < priv->chip.npwm; i++) {
mask = TIM_CCER_CC1E << (i * 4);
if (ccer & mask) {
dev_err(dev, "PWM %u still in use by consumer %s\n",
i, priv->chip.pwms[i].label);
return -EBUSY;
}
}
return pinctrl_pm_select_sleep_state(dev);
}
static int __maybe_unused stm32_pwm_resume(struct device *dev)
{
struct stm32_pwm *priv = dev_get_drvdata(dev);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
return ret;
/* restore breakinput registers that may have been lost in low power */
return stm32_pwm_apply_breakinputs(priv);
}
static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
static const struct of_device_id stm32_pwm_of_match[] = {
{ .compatible = "st,stm32-pwm", },
{ /* end node */ },
};
MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
static struct platform_driver stm32_pwm_driver = {
.probe = stm32_pwm_probe,
.remove = stm32_pwm_remove,
.driver = {
.name = "stm32-pwm",
.of_match_table = stm32_pwm_of_match,
.pm = &stm32_pwm_pm_ops,
},
};
module_platform_driver(stm32_pwm_driver);
MODULE_ALIAS("platform:stm32-pwm");
MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
MODULE_LICENSE("GPL v2");