linux-stable/drivers/gpu/drm/amd/amdgpu/cik_ih.c
Alex Deucher a125510721 drm/amdgpu: rework IP block registration (v2)
This makes it easier to replace specific IP blocks on
asics for handling virtual_dce, DAL, etc. and for building
IP lists for hw or tables.  This also stored the status
information in the same structure.

v2: split out spelling fix into a separate patch
    add a function to add IPs to the list

Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2016-10-25 14:38:45 -04:00

452 lines
12 KiB
C

/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_ih.h"
#include "cikd.h"
#include "bif/bif_4_1_d.h"
#include "bif/bif_4_1_sh_mask.h"
#include "oss/oss_2_0_d.h"
#include "oss/oss_2_0_sh_mask.h"
/*
* Interrupts
* Starting with r6xx, interrupts are handled via a ring buffer.
* Ring buffers are areas of GPU accessible memory that the GPU
* writes interrupt vectors into and the host reads vectors out of.
* There is a rptr (read pointer) that determines where the
* host is currently reading, and a wptr (write pointer)
* which determines where the GPU has written. When the
* pointers are equal, the ring is idle. When the GPU
* writes vectors to the ring buffer, it increments the
* wptr. When there is an interrupt, the host then starts
* fetching commands and processing them until the pointers are
* equal again at which point it updates the rptr.
*/
static void cik_ih_set_interrupt_funcs(struct amdgpu_device *adev);
/**
* cik_ih_enable_interrupts - Enable the interrupt ring buffer
*
* @adev: amdgpu_device pointer
*
* Enable the interrupt ring buffer (CIK).
*/
static void cik_ih_enable_interrupts(struct amdgpu_device *adev)
{
u32 ih_cntl = RREG32(mmIH_CNTL);
u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
ih_cntl |= IH_CNTL__ENABLE_INTR_MASK;
ih_rb_cntl |= IH_RB_CNTL__RB_ENABLE_MASK;
WREG32(mmIH_CNTL, ih_cntl);
WREG32(mmIH_RB_CNTL, ih_rb_cntl);
adev->irq.ih.enabled = true;
}
/**
* cik_ih_disable_interrupts - Disable the interrupt ring buffer
*
* @adev: amdgpu_device pointer
*
* Disable the interrupt ring buffer (CIK).
*/
static void cik_ih_disable_interrupts(struct amdgpu_device *adev)
{
u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
u32 ih_cntl = RREG32(mmIH_CNTL);
ih_rb_cntl &= ~IH_RB_CNTL__RB_ENABLE_MASK;
ih_cntl &= ~IH_CNTL__ENABLE_INTR_MASK;
WREG32(mmIH_RB_CNTL, ih_rb_cntl);
WREG32(mmIH_CNTL, ih_cntl);
/* set rptr, wptr to 0 */
WREG32(mmIH_RB_RPTR, 0);
WREG32(mmIH_RB_WPTR, 0);
adev->irq.ih.enabled = false;
adev->irq.ih.rptr = 0;
}
/**
* cik_ih_irq_init - init and enable the interrupt ring
*
* @adev: amdgpu_device pointer
*
* Allocate a ring buffer for the interrupt controller,
* enable the RLC, disable interrupts, enable the IH
* ring buffer and enable it (CIK).
* Called at device load and reume.
* Returns 0 for success, errors for failure.
*/
static int cik_ih_irq_init(struct amdgpu_device *adev)
{
int rb_bufsz;
u32 interrupt_cntl, ih_cntl, ih_rb_cntl;
u64 wptr_off;
/* disable irqs */
cik_ih_disable_interrupts(adev);
/* setup interrupt control */
WREG32(mmINTERRUPT_CNTL2, adev->dummy_page.addr >> 8);
interrupt_cntl = RREG32(mmINTERRUPT_CNTL);
/* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi
* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN
*/
interrupt_cntl &= ~INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK;
/* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */
interrupt_cntl &= ~INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK;
WREG32(mmINTERRUPT_CNTL, interrupt_cntl);
WREG32(mmIH_RB_BASE, adev->irq.ih.gpu_addr >> 8);
rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4);
ih_rb_cntl = (IH_RB_CNTL__WPTR_OVERFLOW_ENABLE_MASK |
IH_RB_CNTL__WPTR_OVERFLOW_CLEAR_MASK |
(rb_bufsz << 1));
ih_rb_cntl |= IH_RB_CNTL__WPTR_WRITEBACK_ENABLE_MASK;
/* set the writeback address whether it's enabled or not */
wptr_off = adev->wb.gpu_addr + (adev->irq.ih.wptr_offs * 4);
WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(wptr_off));
WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(wptr_off) & 0xFF);
WREG32(mmIH_RB_CNTL, ih_rb_cntl);
/* set rptr, wptr to 0 */
WREG32(mmIH_RB_RPTR, 0);
WREG32(mmIH_RB_WPTR, 0);
/* Default settings for IH_CNTL (disabled at first) */
ih_cntl = (0x10 << IH_CNTL__MC_WRREQ_CREDIT__SHIFT) |
(0x10 << IH_CNTL__MC_WR_CLEAN_CNT__SHIFT) |
(0 << IH_CNTL__MC_VMID__SHIFT);
/* IH_CNTL__RPTR_REARM_MASK only works if msi's are enabled */
if (adev->irq.msi_enabled)
ih_cntl |= IH_CNTL__RPTR_REARM_MASK;
WREG32(mmIH_CNTL, ih_cntl);
pci_set_master(adev->pdev);
/* enable irqs */
cik_ih_enable_interrupts(adev);
return 0;
}
/**
* cik_ih_irq_disable - disable interrupts
*
* @adev: amdgpu_device pointer
*
* Disable interrupts on the hw (CIK).
*/
static void cik_ih_irq_disable(struct amdgpu_device *adev)
{
cik_ih_disable_interrupts(adev);
/* Wait and acknowledge irq */
mdelay(1);
}
/**
* cik_ih_get_wptr - get the IH ring buffer wptr
*
* @adev: amdgpu_device pointer
*
* Get the IH ring buffer wptr from either the register
* or the writeback memory buffer (CIK). Also check for
* ring buffer overflow and deal with it.
* Used by cik_irq_process().
* Returns the value of the wptr.
*/
static u32 cik_ih_get_wptr(struct amdgpu_device *adev)
{
u32 wptr, tmp;
wptr = le32_to_cpu(adev->wb.wb[adev->irq.ih.wptr_offs]);
if (wptr & IH_RB_WPTR__RB_OVERFLOW_MASK) {
wptr &= ~IH_RB_WPTR__RB_OVERFLOW_MASK;
/* When a ring buffer overflow happen start parsing interrupt
* from the last not overwritten vector (wptr + 16). Hopefully
* this should allow us to catchup.
*/
dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
wptr, adev->irq.ih.rptr, (wptr + 16) & adev->irq.ih.ptr_mask);
adev->irq.ih.rptr = (wptr + 16) & adev->irq.ih.ptr_mask;
tmp = RREG32(mmIH_RB_CNTL);
tmp |= IH_RB_CNTL__WPTR_OVERFLOW_CLEAR_MASK;
WREG32(mmIH_RB_CNTL, tmp);
}
return (wptr & adev->irq.ih.ptr_mask);
}
/* CIK IV Ring
* Each IV ring entry is 128 bits:
* [7:0] - interrupt source id
* [31:8] - reserved
* [59:32] - interrupt source data
* [63:60] - reserved
* [71:64] - RINGID
* CP:
* ME_ID [1:0], PIPE_ID[1:0], QUEUE_ID[2:0]
* QUEUE_ID - for compute, which of the 8 queues owned by the dispatcher
* - for gfx, hw shader state (0=PS...5=LS, 6=CS)
* ME_ID - 0 = gfx, 1 = first 4 CS pipes, 2 = second 4 CS pipes
* PIPE_ID - ME0 0=3D
* - ME1&2 compute dispatcher (4 pipes each)
* SDMA:
* INSTANCE_ID [1:0], QUEUE_ID[1:0]
* INSTANCE_ID - 0 = sdma0, 1 = sdma1
* QUEUE_ID - 0 = gfx, 1 = rlc0, 2 = rlc1
* [79:72] - VMID
* [95:80] - PASID
* [127:96] - reserved
*/
/**
* cik_ih_decode_iv - decode an interrupt vector
*
* @adev: amdgpu_device pointer
*
* Decodes the interrupt vector at the current rptr
* position and also advance the position.
*/
static void cik_ih_decode_iv(struct amdgpu_device *adev,
struct amdgpu_iv_entry *entry)
{
/* wptr/rptr are in bytes! */
u32 ring_index = adev->irq.ih.rptr >> 2;
uint32_t dw[4];
dw[0] = le32_to_cpu(adev->irq.ih.ring[ring_index + 0]);
dw[1] = le32_to_cpu(adev->irq.ih.ring[ring_index + 1]);
dw[2] = le32_to_cpu(adev->irq.ih.ring[ring_index + 2]);
dw[3] = le32_to_cpu(adev->irq.ih.ring[ring_index + 3]);
entry->src_id = dw[0] & 0xff;
entry->src_data = dw[1] & 0xfffffff;
entry->ring_id = dw[2] & 0xff;
entry->vm_id = (dw[2] >> 8) & 0xff;
entry->pas_id = (dw[2] >> 16) & 0xffff;
/* wptr/rptr are in bytes! */
adev->irq.ih.rptr += 16;
}
/**
* cik_ih_set_rptr - set the IH ring buffer rptr
*
* @adev: amdgpu_device pointer
*
* Set the IH ring buffer rptr.
*/
static void cik_ih_set_rptr(struct amdgpu_device *adev)
{
WREG32(mmIH_RB_RPTR, adev->irq.ih.rptr);
}
static int cik_ih_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret;
ret = amdgpu_irq_add_domain(adev);
if (ret)
return ret;
cik_ih_set_interrupt_funcs(adev);
return 0;
}
static int cik_ih_sw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = amdgpu_ih_ring_init(adev, 64 * 1024, false);
if (r)
return r;
r = amdgpu_irq_init(adev);
return r;
}
static int cik_ih_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_irq_fini(adev);
amdgpu_ih_ring_fini(adev);
amdgpu_irq_remove_domain(adev);
return 0;
}
static int cik_ih_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = cik_ih_irq_init(adev);
if (r)
return r;
return 0;
}
static int cik_ih_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cik_ih_irq_disable(adev);
return 0;
}
static int cik_ih_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return cik_ih_hw_fini(adev);
}
static int cik_ih_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return cik_ih_hw_init(adev);
}
static bool cik_ih_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(mmSRBM_STATUS);
if (tmp & SRBM_STATUS__IH_BUSY_MASK)
return false;
return true;
}
static int cik_ih_wait_for_idle(void *handle)
{
unsigned i;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(mmSRBM_STATUS) & SRBM_STATUS__IH_BUSY_MASK;
if (!tmp)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int cik_ih_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 srbm_soft_reset = 0;
u32 tmp = RREG32(mmSRBM_STATUS);
if (tmp & SRBM_STATUS__IH_BUSY_MASK)
srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_IH_MASK;
if (srbm_soft_reset) {
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
}
return 0;
}
static int cik_ih_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int cik_ih_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static const struct amd_ip_funcs cik_ih_ip_funcs = {
.name = "cik_ih",
.early_init = cik_ih_early_init,
.late_init = NULL,
.sw_init = cik_ih_sw_init,
.sw_fini = cik_ih_sw_fini,
.hw_init = cik_ih_hw_init,
.hw_fini = cik_ih_hw_fini,
.suspend = cik_ih_suspend,
.resume = cik_ih_resume,
.is_idle = cik_ih_is_idle,
.wait_for_idle = cik_ih_wait_for_idle,
.soft_reset = cik_ih_soft_reset,
.set_clockgating_state = cik_ih_set_clockgating_state,
.set_powergating_state = cik_ih_set_powergating_state,
};
static const struct amdgpu_ih_funcs cik_ih_funcs = {
.get_wptr = cik_ih_get_wptr,
.decode_iv = cik_ih_decode_iv,
.set_rptr = cik_ih_set_rptr
};
static void cik_ih_set_interrupt_funcs(struct amdgpu_device *adev)
{
if (adev->irq.ih_funcs == NULL)
adev->irq.ih_funcs = &cik_ih_funcs;
}
const struct amdgpu_ip_block_version cik_ih_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_IH,
.major = 2,
.minor = 0,
.rev = 0,
.funcs = &cik_ih_ip_funcs,
};