mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
8859a44ea0
Conflicts: MAINTAINERS - keep Chandrasekar drivers/net/ethernet/mellanox/mlx5/core/en_main.c - simple fix + trust the code re-added to param.c in -next is fine include/linux/bpf.h - trivial include/linux/ethtool.h - trivial, fix kdoc while at it include/linux/skmsg.h - move to relevant place in tcp.c, comment re-wrapped net/core/skmsg.c - add the sk = sk // sk = NULL around calls net/tipc/crypto.c - trivial Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2602 lines
67 KiB
C
2602 lines
67 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Just-In-Time compiler for eBPF filters on IA32 (32bit x86)
|
|
*
|
|
* Author: Wang YanQing (udknight@gmail.com)
|
|
* The code based on code and ideas from:
|
|
* Eric Dumazet (eric.dumazet@gmail.com)
|
|
* and from:
|
|
* Shubham Bansal <illusionist.neo@gmail.com>
|
|
*/
|
|
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/nospec-branch.h>
|
|
#include <linux/bpf.h>
|
|
|
|
/*
|
|
* eBPF prog stack layout:
|
|
*
|
|
* high
|
|
* original ESP => +-----+
|
|
* | | callee saved registers
|
|
* +-----+
|
|
* | ... | eBPF JIT scratch space
|
|
* BPF_FP,IA32_EBP => +-----+
|
|
* | ... | eBPF prog stack
|
|
* +-----+
|
|
* |RSVD | JIT scratchpad
|
|
* current ESP => +-----+
|
|
* | |
|
|
* | ... | Function call stack
|
|
* | |
|
|
* +-----+
|
|
* low
|
|
*
|
|
* The callee saved registers:
|
|
*
|
|
* high
|
|
* original ESP => +------------------+ \
|
|
* | ebp | |
|
|
* current EBP => +------------------+ } callee saved registers
|
|
* | ebx,esi,edi | |
|
|
* +------------------+ /
|
|
* low
|
|
*/
|
|
|
|
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
|
|
{
|
|
if (len == 1)
|
|
*ptr = bytes;
|
|
else if (len == 2)
|
|
*(u16 *)ptr = bytes;
|
|
else {
|
|
*(u32 *)ptr = bytes;
|
|
barrier();
|
|
}
|
|
return ptr + len;
|
|
}
|
|
|
|
#define EMIT(bytes, len) \
|
|
do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
|
|
|
|
#define EMIT1(b1) EMIT(b1, 1)
|
|
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
|
|
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
|
|
#define EMIT4(b1, b2, b3, b4) \
|
|
EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
|
|
|
|
#define EMIT1_off32(b1, off) \
|
|
do { EMIT1(b1); EMIT(off, 4); } while (0)
|
|
#define EMIT2_off32(b1, b2, off) \
|
|
do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
|
|
#define EMIT3_off32(b1, b2, b3, off) \
|
|
do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
|
|
#define EMIT4_off32(b1, b2, b3, b4, off) \
|
|
do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
|
|
|
|
#define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len)
|
|
|
|
static bool is_imm8(int value)
|
|
{
|
|
return value <= 127 && value >= -128;
|
|
}
|
|
|
|
static bool is_simm32(s64 value)
|
|
{
|
|
return value == (s64) (s32) value;
|
|
}
|
|
|
|
#define STACK_OFFSET(k) (k)
|
|
#define TCALL_CNT (MAX_BPF_JIT_REG + 0) /* Tail Call Count */
|
|
|
|
#define IA32_EAX (0x0)
|
|
#define IA32_EBX (0x3)
|
|
#define IA32_ECX (0x1)
|
|
#define IA32_EDX (0x2)
|
|
#define IA32_ESI (0x6)
|
|
#define IA32_EDI (0x7)
|
|
#define IA32_EBP (0x5)
|
|
#define IA32_ESP (0x4)
|
|
|
|
/*
|
|
* List of x86 cond jumps opcodes (. + s8)
|
|
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
|
|
*/
|
|
#define IA32_JB 0x72
|
|
#define IA32_JAE 0x73
|
|
#define IA32_JE 0x74
|
|
#define IA32_JNE 0x75
|
|
#define IA32_JBE 0x76
|
|
#define IA32_JA 0x77
|
|
#define IA32_JL 0x7C
|
|
#define IA32_JGE 0x7D
|
|
#define IA32_JLE 0x7E
|
|
#define IA32_JG 0x7F
|
|
|
|
#define COND_JMP_OPCODE_INVALID (0xFF)
|
|
|
|
/*
|
|
* Map eBPF registers to IA32 32bit registers or stack scratch space.
|
|
*
|
|
* 1. All the registers, R0-R10, are mapped to scratch space on stack.
|
|
* 2. We need two 64 bit temp registers to do complex operations on eBPF
|
|
* registers.
|
|
* 3. For performance reason, the BPF_REG_AX for blinding constant, is
|
|
* mapped to real hardware register pair, IA32_ESI and IA32_EDI.
|
|
*
|
|
* As the eBPF registers are all 64 bit registers and IA32 has only 32 bit
|
|
* registers, we have to map each eBPF registers with two IA32 32 bit regs
|
|
* or scratch memory space and we have to build eBPF 64 bit register from those.
|
|
*
|
|
* We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers.
|
|
*/
|
|
static const u8 bpf2ia32[][2] = {
|
|
/* Return value from in-kernel function, and exit value from eBPF */
|
|
[BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)},
|
|
|
|
/* The arguments from eBPF program to in-kernel function */
|
|
/* Stored on stack scratch space */
|
|
[BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)},
|
|
[BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)},
|
|
[BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)},
|
|
[BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)},
|
|
[BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)},
|
|
|
|
/* Callee saved registers that in-kernel function will preserve */
|
|
/* Stored on stack scratch space */
|
|
[BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)},
|
|
[BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)},
|
|
[BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)},
|
|
[BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)},
|
|
|
|
/* Read only Frame Pointer to access Stack */
|
|
[BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)},
|
|
|
|
/* Temporary register for blinding constants. */
|
|
[BPF_REG_AX] = {IA32_ESI, IA32_EDI},
|
|
|
|
/* Tail call count. Stored on stack scratch space. */
|
|
[TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)},
|
|
};
|
|
|
|
#define dst_lo dst[0]
|
|
#define dst_hi dst[1]
|
|
#define src_lo src[0]
|
|
#define src_hi src[1]
|
|
|
|
#define STACK_ALIGNMENT 8
|
|
/*
|
|
* Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4,
|
|
* BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9,
|
|
* BPF_REG_FP, BPF_REG_AX and Tail call counts.
|
|
*/
|
|
#define SCRATCH_SIZE 96
|
|
|
|
/* Total stack size used in JITed code */
|
|
#define _STACK_SIZE (stack_depth + SCRATCH_SIZE)
|
|
|
|
#define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
|
|
|
|
/* Get the offset of eBPF REGISTERs stored on scratch space. */
|
|
#define STACK_VAR(off) (off)
|
|
|
|
/* Encode 'dst_reg' register into IA32 opcode 'byte' */
|
|
static u8 add_1reg(u8 byte, u32 dst_reg)
|
|
{
|
|
return byte + dst_reg;
|
|
}
|
|
|
|
/* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */
|
|
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
|
|
{
|
|
return byte + dst_reg + (src_reg << 3);
|
|
}
|
|
|
|
static void jit_fill_hole(void *area, unsigned int size)
|
|
{
|
|
/* Fill whole space with int3 instructions */
|
|
memset(area, 0xcc, size);
|
|
}
|
|
|
|
static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk,
|
|
u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (dstk) {
|
|
if (val == 0) {
|
|
/* xor eax,eax */
|
|
EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX));
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst));
|
|
} else {
|
|
EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP),
|
|
STACK_VAR(dst), val);
|
|
}
|
|
} else {
|
|
if (val == 0)
|
|
EMIT2(0x33, add_2reg(0xC0, dst, dst));
|
|
else
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, dst),
|
|
val);
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* dst = imm (4 bytes)*/
|
|
static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk,
|
|
bool sstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 sreg = sstk ? IA32_EAX : src;
|
|
|
|
if (sstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
|
|
if (dstk)
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst));
|
|
else
|
|
/* mov dst,sreg */
|
|
EMIT2(0x89, add_2reg(0xC0, dst, sreg));
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* dst = src */
|
|
static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[],
|
|
const u8 src[], bool dstk,
|
|
bool sstk, u8 **pprog,
|
|
const struct bpf_prog_aux *aux)
|
|
{
|
|
emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog);
|
|
if (is64)
|
|
/* complete 8 byte move */
|
|
emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog);
|
|
else if (!aux->verifier_zext)
|
|
/* zero out high 4 bytes */
|
|
emit_ia32_mov_i(dst_hi, 0, dstk, pprog);
|
|
}
|
|
|
|
/* Sign extended move */
|
|
static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[],
|
|
const u32 val, bool dstk, u8 **pprog)
|
|
{
|
|
u32 hi = 0;
|
|
|
|
if (is64 && (val & (1<<31)))
|
|
hi = (u32)~0;
|
|
emit_ia32_mov_i(dst_lo, val, dstk, pprog);
|
|
emit_ia32_mov_i(dst_hi, hi, dstk, pprog);
|
|
}
|
|
|
|
/*
|
|
* ALU operation (32 bit)
|
|
* dst = dst * src
|
|
*/
|
|
static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk,
|
|
bool sstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 sreg = sstk ? IA32_ECX : src;
|
|
|
|
if (sstk)
|
|
/* mov ecx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
|
|
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
|
|
else
|
|
/* mov eax,dst */
|
|
EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
|
|
|
|
|
|
EMIT2(0xF7, add_1reg(0xE0, sreg));
|
|
|
|
if (dstk)
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst));
|
|
else
|
|
/* mov dst,eax */
|
|
EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val,
|
|
bool dstk, u8 **pprog,
|
|
const struct bpf_prog_aux *aux)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
|
|
if (dstk && val != 64) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
switch (val) {
|
|
case 16:
|
|
/*
|
|
* Emit 'movzwl eax,ax' to zero extend 16-bit
|
|
* into 64 bit
|
|
*/
|
|
EMIT2(0x0F, 0xB7);
|
|
EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
|
|
if (!aux->verifier_zext)
|
|
/* xor dreg_hi,dreg_hi */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
|
|
break;
|
|
case 32:
|
|
if (!aux->verifier_zext)
|
|
/* xor dreg_hi,dreg_hi */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
|
|
break;
|
|
case 64:
|
|
/* nop */
|
|
break;
|
|
}
|
|
|
|
if (dstk && val != 64) {
|
|
/* mov dword ptr [ebp+off],dreg_lo */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],dreg_hi */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val,
|
|
bool dstk, u8 **pprog,
|
|
const struct bpf_prog_aux *aux)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
switch (val) {
|
|
case 16:
|
|
/* Emit 'ror %ax, 8' to swap lower 2 bytes */
|
|
EMIT1(0x66);
|
|
EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8);
|
|
|
|
EMIT2(0x0F, 0xB7);
|
|
EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
|
|
|
|
if (!aux->verifier_zext)
|
|
/* xor dreg_hi,dreg_hi */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
|
|
break;
|
|
case 32:
|
|
/* Emit 'bswap eax' to swap lower 4 bytes */
|
|
EMIT1(0x0F);
|
|
EMIT1(add_1reg(0xC8, dreg_lo));
|
|
|
|
if (!aux->verifier_zext)
|
|
/* xor dreg_hi,dreg_hi */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
|
|
break;
|
|
case 64:
|
|
/* Emit 'bswap eax' to swap lower 4 bytes */
|
|
EMIT1(0x0F);
|
|
EMIT1(add_1reg(0xC8, dreg_lo));
|
|
|
|
/* Emit 'bswap edx' to swap lower 4 bytes */
|
|
EMIT1(0x0F);
|
|
EMIT1(add_1reg(0xC8, dreg_hi));
|
|
|
|
/* mov ecx,dreg_hi */
|
|
EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi));
|
|
/* mov dreg_hi,dreg_lo */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
|
|
/* mov dreg_lo,ecx */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX));
|
|
|
|
break;
|
|
}
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],dreg_lo */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],dreg_hi */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* ALU operation (32 bit)
|
|
* dst = dst (div|mod) src
|
|
*/
|
|
static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src,
|
|
bool dstk, bool sstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (sstk)
|
|
/* mov ecx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
|
|
STACK_VAR(src));
|
|
else if (src != IA32_ECX)
|
|
/* mov ecx,src */
|
|
EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
|
|
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst));
|
|
else
|
|
/* mov eax,dst */
|
|
EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
|
|
|
|
/* xor edx,edx */
|
|
EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX));
|
|
/* div ecx */
|
|
EMIT2(0xF7, add_1reg(0xF0, IA32_ECX));
|
|
|
|
if (op == BPF_MOD) {
|
|
if (dstk)
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst));
|
|
else
|
|
EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX));
|
|
} else {
|
|
if (dstk)
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst));
|
|
else
|
|
EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* ALU operation (32 bit)
|
|
* dst = dst (shift) src
|
|
*/
|
|
static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src,
|
|
bool dstk, bool sstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg = dstk ? IA32_EAX : dst;
|
|
u8 b2;
|
|
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
|
|
|
|
if (sstk)
|
|
/* mov ecx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
|
|
else if (src != IA32_ECX)
|
|
/* mov ecx,src */
|
|
EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
|
|
|
|
switch (op) {
|
|
case BPF_LSH:
|
|
b2 = 0xE0; break;
|
|
case BPF_RSH:
|
|
b2 = 0xE8; break;
|
|
case BPF_ARSH:
|
|
b2 = 0xF8; break;
|
|
default:
|
|
return;
|
|
}
|
|
EMIT2(0xD3, add_1reg(b2, dreg));
|
|
|
|
if (dstk)
|
|
/* mov dword ptr [ebp+off],dreg */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst));
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* ALU operation (32 bit)
|
|
* dst = dst (op) src
|
|
*/
|
|
static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op,
|
|
const u8 dst, const u8 src, bool dstk,
|
|
bool sstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 sreg = sstk ? IA32_EAX : src;
|
|
u8 dreg = dstk ? IA32_EDX : dst;
|
|
|
|
if (sstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
|
|
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst));
|
|
|
|
switch (BPF_OP(op)) {
|
|
/* dst = dst + src */
|
|
case BPF_ADD:
|
|
if (hi && is64)
|
|
EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
|
|
else
|
|
EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
|
|
break;
|
|
/* dst = dst - src */
|
|
case BPF_SUB:
|
|
if (hi && is64)
|
|
EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
|
|
else
|
|
EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
|
|
break;
|
|
/* dst = dst | src */
|
|
case BPF_OR:
|
|
EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
|
|
break;
|
|
/* dst = dst & src */
|
|
case BPF_AND:
|
|
EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
|
|
break;
|
|
/* dst = dst ^ src */
|
|
case BPF_XOR:
|
|
EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
|
|
break;
|
|
}
|
|
|
|
if (dstk)
|
|
/* mov dword ptr [ebp+off],dreg */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
|
|
STACK_VAR(dst));
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* ALU operation (64 bit) */
|
|
static inline void emit_ia32_alu_r64(const bool is64, const u8 op,
|
|
const u8 dst[], const u8 src[],
|
|
bool dstk, bool sstk,
|
|
u8 **pprog, const struct bpf_prog_aux *aux)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog);
|
|
if (is64)
|
|
emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk,
|
|
&prog);
|
|
else if (!aux->verifier_zext)
|
|
emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* ALU operation (32 bit)
|
|
* dst = dst (op) val
|
|
*/
|
|
static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op,
|
|
const u8 dst, const s32 val, bool dstk,
|
|
u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg = dstk ? IA32_EAX : dst;
|
|
u8 sreg = IA32_EDX;
|
|
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
|
|
|
|
if (!is_imm8(val))
|
|
/* mov edx,imm32*/
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val);
|
|
|
|
switch (op) {
|
|
/* dst = dst + val */
|
|
case BPF_ADD:
|
|
if (hi && is64) {
|
|
if (is_imm8(val))
|
|
EMIT3(0x83, add_1reg(0xD0, dreg), val);
|
|
else
|
|
EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
|
|
} else {
|
|
if (is_imm8(val))
|
|
EMIT3(0x83, add_1reg(0xC0, dreg), val);
|
|
else
|
|
EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
|
|
}
|
|
break;
|
|
/* dst = dst - val */
|
|
case BPF_SUB:
|
|
if (hi && is64) {
|
|
if (is_imm8(val))
|
|
EMIT3(0x83, add_1reg(0xD8, dreg), val);
|
|
else
|
|
EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
|
|
} else {
|
|
if (is_imm8(val))
|
|
EMIT3(0x83, add_1reg(0xE8, dreg), val);
|
|
else
|
|
EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
|
|
}
|
|
break;
|
|
/* dst = dst | val */
|
|
case BPF_OR:
|
|
if (is_imm8(val))
|
|
EMIT3(0x83, add_1reg(0xC8, dreg), val);
|
|
else
|
|
EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
|
|
break;
|
|
/* dst = dst & val */
|
|
case BPF_AND:
|
|
if (is_imm8(val))
|
|
EMIT3(0x83, add_1reg(0xE0, dreg), val);
|
|
else
|
|
EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
|
|
break;
|
|
/* dst = dst ^ val */
|
|
case BPF_XOR:
|
|
if (is_imm8(val))
|
|
EMIT3(0x83, add_1reg(0xF0, dreg), val);
|
|
else
|
|
EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
|
|
break;
|
|
case BPF_NEG:
|
|
EMIT2(0xF7, add_1reg(0xD8, dreg));
|
|
break;
|
|
}
|
|
|
|
if (dstk)
|
|
/* mov dword ptr [ebp+off],dreg */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
|
|
STACK_VAR(dst));
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* ALU operation (64 bit) */
|
|
static inline void emit_ia32_alu_i64(const bool is64, const u8 op,
|
|
const u8 dst[], const u32 val,
|
|
bool dstk, u8 **pprog,
|
|
const struct bpf_prog_aux *aux)
|
|
{
|
|
u8 *prog = *pprog;
|
|
u32 hi = 0;
|
|
|
|
if (is64 && (val & (1<<31)))
|
|
hi = (u32)~0;
|
|
|
|
emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog);
|
|
if (is64)
|
|
emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog);
|
|
else if (!aux->verifier_zext)
|
|
emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* dst = ~dst (64 bit) */
|
|
static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
|
|
/* neg dreg_lo */
|
|
EMIT2(0xF7, add_1reg(0xD8, dreg_lo));
|
|
/* adc dreg_hi,0x0 */
|
|
EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00);
|
|
/* neg dreg_hi */
|
|
EMIT2(0xF7, add_1reg(0xD8, dreg_hi));
|
|
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],dreg_lo */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],dreg_hi */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* dst = dst << src */
|
|
static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[],
|
|
bool dstk, bool sstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
|
|
if (sstk)
|
|
/* mov ecx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
|
|
STACK_VAR(src_lo));
|
|
else
|
|
/* mov ecx,src_lo */
|
|
EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
|
|
|
|
/* shld dreg_hi,dreg_lo,cl */
|
|
EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo));
|
|
/* shl dreg_lo,cl */
|
|
EMIT2(0xD3, add_1reg(0xE0, dreg_lo));
|
|
|
|
/* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */
|
|
|
|
/* cmp ecx,32 */
|
|
EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
|
|
/* skip the next two instructions (4 bytes) when < 32 */
|
|
EMIT2(IA32_JB, 4);
|
|
|
|
/* mov dreg_hi,dreg_lo */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
|
|
/* xor dreg_lo,dreg_lo */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
|
|
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],dreg_lo */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],dreg_hi */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
/* out: */
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* dst = dst >> src (signed)*/
|
|
static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[],
|
|
bool dstk, bool sstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
|
|
if (sstk)
|
|
/* mov ecx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
|
|
STACK_VAR(src_lo));
|
|
else
|
|
/* mov ecx,src_lo */
|
|
EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
|
|
|
|
/* shrd dreg_lo,dreg_hi,cl */
|
|
EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
|
|
/* sar dreg_hi,cl */
|
|
EMIT2(0xD3, add_1reg(0xF8, dreg_hi));
|
|
|
|
/* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */
|
|
|
|
/* cmp ecx,32 */
|
|
EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
|
|
/* skip the next two instructions (5 bytes) when < 32 */
|
|
EMIT2(IA32_JB, 5);
|
|
|
|
/* mov dreg_lo,dreg_hi */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
|
|
/* sar dreg_hi,31 */
|
|
EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
|
|
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],dreg_lo */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],dreg_hi */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
/* out: */
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* dst = dst >> src */
|
|
static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
|
|
bool sstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
|
|
if (sstk)
|
|
/* mov ecx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
|
|
STACK_VAR(src_lo));
|
|
else
|
|
/* mov ecx,src_lo */
|
|
EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
|
|
|
|
/* shrd dreg_lo,dreg_hi,cl */
|
|
EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
|
|
/* shr dreg_hi,cl */
|
|
EMIT2(0xD3, add_1reg(0xE8, dreg_hi));
|
|
|
|
/* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */
|
|
|
|
/* cmp ecx,32 */
|
|
EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
|
|
/* skip the next two instructions (4 bytes) when < 32 */
|
|
EMIT2(IA32_JB, 4);
|
|
|
|
/* mov dreg_lo,dreg_hi */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
|
|
/* xor dreg_hi,dreg_hi */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
|
|
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],dreg_lo */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],dreg_hi */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
/* out: */
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* dst = dst << val */
|
|
static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val,
|
|
bool dstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
/* Do LSH operation */
|
|
if (val < 32) {
|
|
/* shld dreg_hi,dreg_lo,imm8 */
|
|
EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val);
|
|
/* shl dreg_lo,imm8 */
|
|
EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val);
|
|
} else if (val >= 32 && val < 64) {
|
|
u32 value = val - 32;
|
|
|
|
/* shl dreg_lo,imm8 */
|
|
EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value);
|
|
/* mov dreg_hi,dreg_lo */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
|
|
/* xor dreg_lo,dreg_lo */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
|
|
} else {
|
|
/* xor dreg_lo,dreg_lo */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
|
|
/* xor dreg_hi,dreg_hi */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
|
|
}
|
|
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],dreg_lo */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],dreg_hi */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* dst = dst >> val */
|
|
static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val,
|
|
bool dstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
|
|
/* Do RSH operation */
|
|
if (val < 32) {
|
|
/* shrd dreg_lo,dreg_hi,imm8 */
|
|
EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
|
|
/* shr dreg_hi,imm8 */
|
|
EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val);
|
|
} else if (val >= 32 && val < 64) {
|
|
u32 value = val - 32;
|
|
|
|
/* shr dreg_hi,imm8 */
|
|
EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value);
|
|
/* mov dreg_lo,dreg_hi */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
|
|
/* xor dreg_hi,dreg_hi */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
|
|
} else {
|
|
/* xor dreg_lo,dreg_lo */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
|
|
/* xor dreg_hi,dreg_hi */
|
|
EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
|
|
}
|
|
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],dreg_lo */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],dreg_hi */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* dst = dst >> val (signed) */
|
|
static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val,
|
|
bool dstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
/* Do RSH operation */
|
|
if (val < 32) {
|
|
/* shrd dreg_lo,dreg_hi,imm8 */
|
|
EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
|
|
/* ashr dreg_hi,imm8 */
|
|
EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val);
|
|
} else if (val >= 32 && val < 64) {
|
|
u32 value = val - 32;
|
|
|
|
/* ashr dreg_hi,imm8 */
|
|
EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value);
|
|
/* mov dreg_lo,dreg_hi */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
|
|
|
|
/* ashr dreg_hi,imm8 */
|
|
EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
|
|
} else {
|
|
/* ashr dreg_hi,imm8 */
|
|
EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
|
|
/* mov dreg_lo,dreg_hi */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
|
|
}
|
|
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],dreg_lo */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],dreg_hi */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
|
|
bool sstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_hi));
|
|
else
|
|
/* mov eax,dst_hi */
|
|
EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX));
|
|
|
|
if (sstk)
|
|
/* mul dword ptr [ebp+off] */
|
|
EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
|
|
else
|
|
/* mul src_lo */
|
|
EMIT2(0xF7, add_1reg(0xE0, src_lo));
|
|
|
|
/* mov ecx,eax */
|
|
EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
|
|
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
else
|
|
/* mov eax,dst_lo */
|
|
EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
|
|
|
|
if (sstk)
|
|
/* mul dword ptr [ebp+off] */
|
|
EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi));
|
|
else
|
|
/* mul src_hi */
|
|
EMIT2(0xF7, add_1reg(0xE0, src_hi));
|
|
|
|
/* add eax,eax */
|
|
EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
|
|
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
else
|
|
/* mov eax,dst_lo */
|
|
EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
|
|
|
|
if (sstk)
|
|
/* mul dword ptr [ebp+off] */
|
|
EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
|
|
else
|
|
/* mul src_lo */
|
|
EMIT2(0xF7, add_1reg(0xE0, src_lo));
|
|
|
|
/* add ecx,edx */
|
|
EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
|
|
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],ecx */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
|
|
STACK_VAR(dst_hi));
|
|
} else {
|
|
/* mov dst_lo,eax */
|
|
EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
|
|
/* mov dst_hi,ecx */
|
|
EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val,
|
|
bool dstk, u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
u32 hi;
|
|
|
|
hi = val & (1<<31) ? (u32)~0 : 0;
|
|
/* movl eax,imm32 */
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
|
|
if (dstk)
|
|
/* mul dword ptr [ebp+off] */
|
|
EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi));
|
|
else
|
|
/* mul dst_hi */
|
|
EMIT2(0xF7, add_1reg(0xE0, dst_hi));
|
|
|
|
/* mov ecx,eax */
|
|
EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
|
|
|
|
/* movl eax,imm32 */
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi);
|
|
if (dstk)
|
|
/* mul dword ptr [ebp+off] */
|
|
EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
|
|
else
|
|
/* mul dst_lo */
|
|
EMIT2(0xF7, add_1reg(0xE0, dst_lo));
|
|
/* add ecx,eax */
|
|
EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
|
|
|
|
/* movl eax,imm32 */
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
|
|
if (dstk)
|
|
/* mul dword ptr [ebp+off] */
|
|
EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
|
|
else
|
|
/* mul dst_lo */
|
|
EMIT2(0xF7, add_1reg(0xE0, dst_lo));
|
|
|
|
/* add ecx,edx */
|
|
EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
|
|
|
|
if (dstk) {
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
/* mov dword ptr [ebp+off],ecx */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
|
|
STACK_VAR(dst_hi));
|
|
} else {
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
|
|
/* mov dword ptr [ebp+off],ecx */
|
|
EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static int bpf_size_to_x86_bytes(int bpf_size)
|
|
{
|
|
if (bpf_size == BPF_W)
|
|
return 4;
|
|
else if (bpf_size == BPF_H)
|
|
return 2;
|
|
else if (bpf_size == BPF_B)
|
|
return 1;
|
|
else if (bpf_size == BPF_DW)
|
|
return 4; /* imm32 */
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
struct jit_context {
|
|
int cleanup_addr; /* Epilogue code offset */
|
|
};
|
|
|
|
/* Maximum number of bytes emitted while JITing one eBPF insn */
|
|
#define BPF_MAX_INSN_SIZE 128
|
|
#define BPF_INSN_SAFETY 64
|
|
|
|
#define PROLOGUE_SIZE 35
|
|
|
|
/*
|
|
* Emit prologue code for BPF program and check it's size.
|
|
* bpf_tail_call helper will skip it while jumping into another program.
|
|
*/
|
|
static void emit_prologue(u8 **pprog, u32 stack_depth)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
const u8 *r1 = bpf2ia32[BPF_REG_1];
|
|
const u8 fplo = bpf2ia32[BPF_REG_FP][0];
|
|
const u8 fphi = bpf2ia32[BPF_REG_FP][1];
|
|
const u8 *tcc = bpf2ia32[TCALL_CNT];
|
|
|
|
/* push ebp */
|
|
EMIT1(0x55);
|
|
/* mov ebp,esp */
|
|
EMIT2(0x89, 0xE5);
|
|
/* push edi */
|
|
EMIT1(0x57);
|
|
/* push esi */
|
|
EMIT1(0x56);
|
|
/* push ebx */
|
|
EMIT1(0x53);
|
|
|
|
/* sub esp,STACK_SIZE */
|
|
EMIT2_off32(0x81, 0xEC, STACK_SIZE);
|
|
/* sub ebp,SCRATCH_SIZE+12*/
|
|
EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12);
|
|
/* xor ebx,ebx */
|
|
EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX));
|
|
|
|
/* Set up BPF prog stack base register */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo));
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi));
|
|
|
|
/* Move BPF_CTX (EAX) to BPF_REG_R1 */
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1]));
|
|
|
|
/* Initialize Tail Count */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0]));
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
|
|
|
|
BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* Emit epilogue code for BPF program */
|
|
static void emit_epilogue(u8 **pprog, u32 stack_depth)
|
|
{
|
|
u8 *prog = *pprog;
|
|
const u8 *r0 = bpf2ia32[BPF_REG_0];
|
|
int cnt = 0;
|
|
|
|
/* mov eax,dword ptr [ebp+off]*/
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0]));
|
|
/* mov edx,dword ptr [ebp+off]*/
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1]));
|
|
|
|
/* add ebp,SCRATCH_SIZE+12*/
|
|
EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12);
|
|
|
|
/* mov ebx,dword ptr [ebp-12]*/
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12);
|
|
/* mov esi,dword ptr [ebp-8]*/
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8);
|
|
/* mov edi,dword ptr [ebp-4]*/
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4);
|
|
|
|
EMIT1(0xC9); /* leave */
|
|
EMIT1(0xC3); /* ret */
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* Generate the following code:
|
|
* ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
|
|
* if (index >= array->map.max_entries)
|
|
* goto out;
|
|
* if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
* prog = array->ptrs[index];
|
|
* if (prog == NULL)
|
|
* goto out;
|
|
* goto *(prog->bpf_func + prologue_size);
|
|
* out:
|
|
*/
|
|
static void emit_bpf_tail_call(u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
const u8 *r1 = bpf2ia32[BPF_REG_1];
|
|
const u8 *r2 = bpf2ia32[BPF_REG_2];
|
|
const u8 *r3 = bpf2ia32[BPF_REG_3];
|
|
const u8 *tcc = bpf2ia32[TCALL_CNT];
|
|
u32 lo, hi;
|
|
static int jmp_label1 = -1;
|
|
|
|
/*
|
|
* if (index >= array->map.max_entries)
|
|
* goto out;
|
|
*/
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0]));
|
|
/* mov edx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0]));
|
|
|
|
/* cmp dword ptr [eax+off],edx */
|
|
EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX),
|
|
offsetof(struct bpf_array, map.max_entries));
|
|
/* jbe out */
|
|
EMIT2(IA32_JBE, jmp_label(jmp_label1, 2));
|
|
|
|
/*
|
|
* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
*/
|
|
lo = (u32)MAX_TAIL_CALL_CNT;
|
|
hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
|
|
|
|
/* cmp edx,hi */
|
|
EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi);
|
|
EMIT2(IA32_JNE, 3);
|
|
/* cmp ecx,lo */
|
|
EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo);
|
|
|
|
/* ja out */
|
|
EMIT2(IA32_JAE, jmp_label(jmp_label1, 2));
|
|
|
|
/* add eax,0x1 */
|
|
EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01);
|
|
/* adc ebx,0x0 */
|
|
EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00);
|
|
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
|
|
/* mov dword ptr [ebp+off],edx */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
|
|
|
|
/* prog = array->ptrs[index]; */
|
|
/* mov edx, [eax + edx * 4 + offsetof(...)] */
|
|
EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs));
|
|
|
|
/*
|
|
* if (prog == NULL)
|
|
* goto out;
|
|
*/
|
|
/* test edx,edx */
|
|
EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX));
|
|
/* je out */
|
|
EMIT2(IA32_JE, jmp_label(jmp_label1, 2));
|
|
|
|
/* goto *(prog->bpf_func + prologue_size); */
|
|
/* mov edx, dword ptr [edx + 32] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX),
|
|
offsetof(struct bpf_prog, bpf_func));
|
|
/* add edx,prologue_size */
|
|
EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE);
|
|
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
|
|
|
|
/*
|
|
* Now we're ready to jump into next BPF program:
|
|
* eax == ctx (1st arg)
|
|
* edx == prog->bpf_func + prologue_size
|
|
*/
|
|
RETPOLINE_EDX_BPF_JIT();
|
|
|
|
if (jmp_label1 == -1)
|
|
jmp_label1 = cnt;
|
|
|
|
/* out: */
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* Push the scratch stack register on top of the stack. */
|
|
static inline void emit_push_r64(const u8 src[], u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
/* mov ecx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi));
|
|
/* push ecx */
|
|
EMIT1(0x51);
|
|
|
|
/* mov ecx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
|
|
/* push ecx */
|
|
EMIT1(0x51);
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_push_r32(const u8 src[], u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
/* mov ecx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
|
|
/* push ecx */
|
|
EMIT1(0x51);
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo)
|
|
{
|
|
u8 jmp_cond;
|
|
|
|
/* Convert BPF opcode to x86 */
|
|
switch (op) {
|
|
case BPF_JEQ:
|
|
jmp_cond = IA32_JE;
|
|
break;
|
|
case BPF_JSET:
|
|
case BPF_JNE:
|
|
jmp_cond = IA32_JNE;
|
|
break;
|
|
case BPF_JGT:
|
|
/* GT is unsigned '>', JA in x86 */
|
|
jmp_cond = IA32_JA;
|
|
break;
|
|
case BPF_JLT:
|
|
/* LT is unsigned '<', JB in x86 */
|
|
jmp_cond = IA32_JB;
|
|
break;
|
|
case BPF_JGE:
|
|
/* GE is unsigned '>=', JAE in x86 */
|
|
jmp_cond = IA32_JAE;
|
|
break;
|
|
case BPF_JLE:
|
|
/* LE is unsigned '<=', JBE in x86 */
|
|
jmp_cond = IA32_JBE;
|
|
break;
|
|
case BPF_JSGT:
|
|
if (!is_cmp_lo)
|
|
/* Signed '>', GT in x86 */
|
|
jmp_cond = IA32_JG;
|
|
else
|
|
/* GT is unsigned '>', JA in x86 */
|
|
jmp_cond = IA32_JA;
|
|
break;
|
|
case BPF_JSLT:
|
|
if (!is_cmp_lo)
|
|
/* Signed '<', LT in x86 */
|
|
jmp_cond = IA32_JL;
|
|
else
|
|
/* LT is unsigned '<', JB in x86 */
|
|
jmp_cond = IA32_JB;
|
|
break;
|
|
case BPF_JSGE:
|
|
if (!is_cmp_lo)
|
|
/* Signed '>=', GE in x86 */
|
|
jmp_cond = IA32_JGE;
|
|
else
|
|
/* GE is unsigned '>=', JAE in x86 */
|
|
jmp_cond = IA32_JAE;
|
|
break;
|
|
case BPF_JSLE:
|
|
if (!is_cmp_lo)
|
|
/* Signed '<=', LE in x86 */
|
|
jmp_cond = IA32_JLE;
|
|
else
|
|
/* LE is unsigned '<=', JBE in x86 */
|
|
jmp_cond = IA32_JBE;
|
|
break;
|
|
default: /* to silence GCC warning */
|
|
jmp_cond = COND_JMP_OPCODE_INVALID;
|
|
break;
|
|
}
|
|
|
|
return jmp_cond;
|
|
}
|
|
|
|
/* i386 kernel compiles with "-mregparm=3". From gcc document:
|
|
*
|
|
* ==== snippet ====
|
|
* regparm (number)
|
|
* On x86-32 targets, the regparm attribute causes the compiler
|
|
* to pass arguments number one to (number) if they are of integral
|
|
* type in registers EAX, EDX, and ECX instead of on the stack.
|
|
* Functions that take a variable number of arguments continue
|
|
* to be passed all of their arguments on the stack.
|
|
* ==== snippet ====
|
|
*
|
|
* The first three args of a function will be considered for
|
|
* putting into the 32bit register EAX, EDX, and ECX.
|
|
*
|
|
* Two 32bit registers are used to pass a 64bit arg.
|
|
*
|
|
* For example,
|
|
* void foo(u32 a, u32 b, u32 c, u32 d):
|
|
* u32 a: EAX
|
|
* u32 b: EDX
|
|
* u32 c: ECX
|
|
* u32 d: stack
|
|
*
|
|
* void foo(u64 a, u32 b, u32 c):
|
|
* u64 a: EAX (lo32) EDX (hi32)
|
|
* u32 b: ECX
|
|
* u32 c: stack
|
|
*
|
|
* void foo(u32 a, u64 b, u32 c):
|
|
* u32 a: EAX
|
|
* u64 b: EDX (lo32) ECX (hi32)
|
|
* u32 c: stack
|
|
*
|
|
* void foo(u32 a, u32 b, u64 c):
|
|
* u32 a: EAX
|
|
* u32 b: EDX
|
|
* u64 c: stack
|
|
*
|
|
* The return value will be stored in the EAX (and EDX for 64bit value).
|
|
*
|
|
* For example,
|
|
* u32 foo(u32 a, u32 b, u32 c):
|
|
* return value: EAX
|
|
*
|
|
* u64 foo(u32 a, u32 b, u32 c):
|
|
* return value: EAX (lo32) EDX (hi32)
|
|
*
|
|
* Notes:
|
|
* The verifier only accepts function having integer and pointers
|
|
* as its args and return value, so it does not have
|
|
* struct-by-value.
|
|
*
|
|
* emit_kfunc_call() finds out the btf_func_model by calling
|
|
* bpf_jit_find_kfunc_model(). A btf_func_model
|
|
* has the details about the number of args, size of each arg,
|
|
* and the size of the return value.
|
|
*
|
|
* It first decides how many args can be passed by EAX, EDX, and ECX.
|
|
* That will decide what args should be pushed to the stack:
|
|
* [first_stack_regno, last_stack_regno] are the bpf regnos
|
|
* that should be pushed to the stack.
|
|
*
|
|
* It will first push all args to the stack because the push
|
|
* will need to use ECX. Then, it moves
|
|
* [BPF_REG_1, first_stack_regno) to EAX, EDX, and ECX.
|
|
*
|
|
* When emitting a call (0xE8), it needs to figure out
|
|
* the jmp_offset relative to the jit-insn address immediately
|
|
* following the call (0xE8) instruction. At this point, it knows
|
|
* the end of the jit-insn address after completely translated the
|
|
* current (BPF_JMP | BPF_CALL) bpf-insn. It is passed as "end_addr"
|
|
* to the emit_kfunc_call(). Thus, it can learn the "immediate-follow-call"
|
|
* address by figuring out how many jit-insn is generated between
|
|
* the call (0xE8) and the end_addr:
|
|
* - 0-1 jit-insn (3 bytes each) to restore the esp pointer if there
|
|
* is arg pushed to the stack.
|
|
* - 0-2 jit-insns (3 bytes each) to handle the return value.
|
|
*/
|
|
static int emit_kfunc_call(const struct bpf_prog *bpf_prog, u8 *end_addr,
|
|
const struct bpf_insn *insn, u8 **pprog)
|
|
{
|
|
const u8 arg_regs[] = { IA32_EAX, IA32_EDX, IA32_ECX };
|
|
int i, cnt = 0, first_stack_regno, last_stack_regno;
|
|
int free_arg_regs = ARRAY_SIZE(arg_regs);
|
|
const struct btf_func_model *fm;
|
|
int bytes_in_stack = 0;
|
|
const u8 *cur_arg_reg;
|
|
u8 *prog = *pprog;
|
|
s64 jmp_offset;
|
|
|
|
fm = bpf_jit_find_kfunc_model(bpf_prog, insn);
|
|
if (!fm)
|
|
return -EINVAL;
|
|
|
|
first_stack_regno = BPF_REG_1;
|
|
for (i = 0; i < fm->nr_args; i++) {
|
|
int regs_needed = fm->arg_size[i] > sizeof(u32) ? 2 : 1;
|
|
|
|
if (regs_needed > free_arg_regs)
|
|
break;
|
|
|
|
free_arg_regs -= regs_needed;
|
|
first_stack_regno++;
|
|
}
|
|
|
|
/* Push the args to the stack */
|
|
last_stack_regno = BPF_REG_0 + fm->nr_args;
|
|
for (i = last_stack_regno; i >= first_stack_regno; i--) {
|
|
if (fm->arg_size[i - 1] > sizeof(u32)) {
|
|
emit_push_r64(bpf2ia32[i], &prog);
|
|
bytes_in_stack += 8;
|
|
} else {
|
|
emit_push_r32(bpf2ia32[i], &prog);
|
|
bytes_in_stack += 4;
|
|
}
|
|
}
|
|
|
|
cur_arg_reg = &arg_regs[0];
|
|
for (i = BPF_REG_1; i < first_stack_regno; i++) {
|
|
/* mov e[adc]x,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++),
|
|
STACK_VAR(bpf2ia32[i][0]));
|
|
if (fm->arg_size[i - 1] > sizeof(u32))
|
|
/* mov e[adc]x,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++),
|
|
STACK_VAR(bpf2ia32[i][1]));
|
|
}
|
|
|
|
if (bytes_in_stack)
|
|
/* add esp,"bytes_in_stack" */
|
|
end_addr -= 3;
|
|
|
|
/* mov dword ptr [ebp+off],edx */
|
|
if (fm->ret_size > sizeof(u32))
|
|
end_addr -= 3;
|
|
|
|
/* mov dword ptr [ebp+off],eax */
|
|
if (fm->ret_size)
|
|
end_addr -= 3;
|
|
|
|
jmp_offset = (u8 *)__bpf_call_base + insn->imm - end_addr;
|
|
if (!is_simm32(jmp_offset)) {
|
|
pr_err("unsupported BPF kernel function jmp_offset:%lld\n",
|
|
jmp_offset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
EMIT1_off32(0xE8, jmp_offset);
|
|
|
|
if (fm->ret_size)
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(bpf2ia32[BPF_REG_0][0]));
|
|
|
|
if (fm->ret_size > sizeof(u32))
|
|
/* mov dword ptr [ebp+off],edx */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(bpf2ia32[BPF_REG_0][1]));
|
|
|
|
if (bytes_in_stack)
|
|
/* add esp,"bytes_in_stack" */
|
|
EMIT3(0x83, add_1reg(0xC0, IA32_ESP), bytes_in_stack);
|
|
|
|
*pprog = prog;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
|
|
int oldproglen, struct jit_context *ctx)
|
|
{
|
|
struct bpf_insn *insn = bpf_prog->insnsi;
|
|
int insn_cnt = bpf_prog->len;
|
|
bool seen_exit = false;
|
|
u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
|
|
int i, cnt = 0;
|
|
int proglen = 0;
|
|
u8 *prog = temp;
|
|
|
|
emit_prologue(&prog, bpf_prog->aux->stack_depth);
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
const s32 imm32 = insn->imm;
|
|
const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
|
|
const bool dstk = insn->dst_reg != BPF_REG_AX;
|
|
const bool sstk = insn->src_reg != BPF_REG_AX;
|
|
const u8 code = insn->code;
|
|
const u8 *dst = bpf2ia32[insn->dst_reg];
|
|
const u8 *src = bpf2ia32[insn->src_reg];
|
|
const u8 *r0 = bpf2ia32[BPF_REG_0];
|
|
s64 jmp_offset;
|
|
u8 jmp_cond;
|
|
int ilen;
|
|
u8 *func;
|
|
|
|
switch (code) {
|
|
/* ALU operations */
|
|
/* dst = src */
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
if (imm32 == 1) {
|
|
/* Special mov32 for zext. */
|
|
emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
|
|
break;
|
|
}
|
|
emit_ia32_mov_r64(is64, dst, src, dstk, sstk,
|
|
&prog, bpf_prog->aux);
|
|
break;
|
|
case BPF_K:
|
|
/* Sign-extend immediate value to dst reg */
|
|
emit_ia32_mov_i64(is64, dst, imm32,
|
|
dstk, &prog);
|
|
break;
|
|
}
|
|
break;
|
|
/* dst = dst + src/imm */
|
|
/* dst = dst - src/imm */
|
|
/* dst = dst | src/imm */
|
|
/* dst = dst & src/imm */
|
|
/* dst = dst ^ src/imm */
|
|
/* dst = dst * src/imm */
|
|
/* dst = dst << src */
|
|
/* dst = dst >> src */
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
emit_ia32_alu_r64(is64, BPF_OP(code), dst,
|
|
src, dstk, sstk, &prog,
|
|
bpf_prog->aux);
|
|
break;
|
|
case BPF_K:
|
|
emit_ia32_alu_i64(is64, BPF_OP(code), dst,
|
|
imm32, dstk, &prog,
|
|
bpf_prog->aux);
|
|
break;
|
|
}
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
emit_ia32_mul_r(dst_lo, src_lo, dstk,
|
|
sstk, &prog);
|
|
break;
|
|
case BPF_K:
|
|
/* mov ecx,imm32*/
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
|
|
imm32);
|
|
emit_ia32_mul_r(dst_lo, IA32_ECX, dstk,
|
|
false, &prog);
|
|
break;
|
|
}
|
|
if (!bpf_prog->aux->verifier_zext)
|
|
emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
case BPF_ALU | BPF_ARSH | BPF_X:
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo,
|
|
dstk, sstk, &prog);
|
|
break;
|
|
case BPF_K:
|
|
/* mov ecx,imm32*/
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
|
|
imm32);
|
|
emit_ia32_shift_r(BPF_OP(code), dst_lo,
|
|
IA32_ECX, dstk, false,
|
|
&prog);
|
|
break;
|
|
}
|
|
if (!bpf_prog->aux->verifier_zext)
|
|
emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
|
|
break;
|
|
/* dst = dst / src(imm) */
|
|
/* dst = dst % src(imm) */
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
case BPF_ALU | BPF_MOD | BPF_K:
|
|
case BPF_ALU | BPF_MOD | BPF_X:
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
|
|
src_lo, dstk, sstk, &prog);
|
|
break;
|
|
case BPF_K:
|
|
/* mov ecx,imm32*/
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
|
|
imm32);
|
|
emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
|
|
IA32_ECX, dstk, false,
|
|
&prog);
|
|
break;
|
|
}
|
|
if (!bpf_prog->aux->verifier_zext)
|
|
emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
|
|
break;
|
|
case BPF_ALU64 | BPF_DIV | BPF_K:
|
|
case BPF_ALU64 | BPF_DIV | BPF_X:
|
|
case BPF_ALU64 | BPF_MOD | BPF_K:
|
|
case BPF_ALU64 | BPF_MOD | BPF_X:
|
|
goto notyet;
|
|
/* dst = dst >> imm */
|
|
/* dst = dst << imm */
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
if (unlikely(imm32 > 31))
|
|
return -EINVAL;
|
|
/* mov ecx,imm32*/
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
|
|
emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk,
|
|
false, &prog);
|
|
if (!bpf_prog->aux->verifier_zext)
|
|
emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
|
|
break;
|
|
/* dst = dst << imm */
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
if (unlikely(imm32 > 63))
|
|
return -EINVAL;
|
|
emit_ia32_lsh_i64(dst, imm32, dstk, &prog);
|
|
break;
|
|
/* dst = dst >> imm */
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
if (unlikely(imm32 > 63))
|
|
return -EINVAL;
|
|
emit_ia32_rsh_i64(dst, imm32, dstk, &prog);
|
|
break;
|
|
/* dst = dst << src */
|
|
case BPF_ALU64 | BPF_LSH | BPF_X:
|
|
emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog);
|
|
break;
|
|
/* dst = dst >> src */
|
|
case BPF_ALU64 | BPF_RSH | BPF_X:
|
|
emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog);
|
|
break;
|
|
/* dst = dst >> src (signed) */
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X:
|
|
emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog);
|
|
break;
|
|
/* dst = dst >> imm (signed) */
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
if (unlikely(imm32 > 63))
|
|
return -EINVAL;
|
|
emit_ia32_arsh_i64(dst, imm32, dstk, &prog);
|
|
break;
|
|
/* dst = ~dst */
|
|
case BPF_ALU | BPF_NEG:
|
|
emit_ia32_alu_i(is64, false, BPF_OP(code),
|
|
dst_lo, 0, dstk, &prog);
|
|
if (!bpf_prog->aux->verifier_zext)
|
|
emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
|
|
break;
|
|
/* dst = ~dst (64 bit) */
|
|
case BPF_ALU64 | BPF_NEG:
|
|
emit_ia32_neg64(dst, dstk, &prog);
|
|
break;
|
|
/* dst = dst * src/imm */
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
switch (BPF_SRC(code)) {
|
|
case BPF_X:
|
|
emit_ia32_mul_r64(dst, src, dstk, sstk, &prog);
|
|
break;
|
|
case BPF_K:
|
|
emit_ia32_mul_i64(dst, imm32, dstk, &prog);
|
|
break;
|
|
}
|
|
break;
|
|
/* dst = htole(dst) */
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
emit_ia32_to_le_r64(dst, imm32, dstk, &prog,
|
|
bpf_prog->aux);
|
|
break;
|
|
/* dst = htobe(dst) */
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
emit_ia32_to_be_r64(dst, imm32, dstk, &prog,
|
|
bpf_prog->aux);
|
|
break;
|
|
/* dst = imm64 */
|
|
case BPF_LD | BPF_IMM | BPF_DW: {
|
|
s32 hi, lo = imm32;
|
|
|
|
hi = insn[1].imm;
|
|
emit_ia32_mov_i(dst_lo, lo, dstk, &prog);
|
|
emit_ia32_mov_i(dst_hi, hi, dstk, &prog);
|
|
insn++;
|
|
i++;
|
|
break;
|
|
}
|
|
/* ST: *(u8*)(dst_reg + off) = imm */
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
|
case BPF_ST | BPF_MEM | BPF_DW:
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
else
|
|
/* mov eax,dst_lo */
|
|
EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
|
|
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_B:
|
|
EMIT(0xC6, 1); break;
|
|
case BPF_H:
|
|
EMIT2(0x66, 0xC7); break;
|
|
case BPF_W:
|
|
case BPF_DW:
|
|
EMIT(0xC7, 1); break;
|
|
}
|
|
|
|
if (is_imm8(insn->off))
|
|
EMIT2(add_1reg(0x40, IA32_EAX), insn->off);
|
|
else
|
|
EMIT1_off32(add_1reg(0x80, IA32_EAX),
|
|
insn->off);
|
|
EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code)));
|
|
|
|
if (BPF_SIZE(code) == BPF_DW) {
|
|
u32 hi;
|
|
|
|
hi = imm32 & (1<<31) ? (u32)~0 : 0;
|
|
EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX),
|
|
insn->off + 4);
|
|
EMIT(hi, 4);
|
|
}
|
|
break;
|
|
|
|
/* STX: *(u8*)(dst_reg + off) = src_reg */
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
|
case BPF_STX | BPF_MEM | BPF_DW:
|
|
if (dstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
else
|
|
/* mov eax,dst_lo */
|
|
EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
|
|
|
|
if (sstk)
|
|
/* mov edx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(src_lo));
|
|
else
|
|
/* mov edx,src_lo */
|
|
EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX));
|
|
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_B:
|
|
EMIT(0x88, 1); break;
|
|
case BPF_H:
|
|
EMIT2(0x66, 0x89); break;
|
|
case BPF_W:
|
|
case BPF_DW:
|
|
EMIT(0x89, 1); break;
|
|
}
|
|
|
|
if (is_imm8(insn->off))
|
|
EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
|
|
insn->off);
|
|
else
|
|
EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
|
|
insn->off);
|
|
|
|
if (BPF_SIZE(code) == BPF_DW) {
|
|
if (sstk)
|
|
/* mov edi,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP,
|
|
IA32_EDX),
|
|
STACK_VAR(src_hi));
|
|
else
|
|
/* mov edi,src_hi */
|
|
EMIT2(0x8B, add_2reg(0xC0, src_hi,
|
|
IA32_EDX));
|
|
EMIT1(0x89);
|
|
if (is_imm8(insn->off + 4)) {
|
|
EMIT2(add_2reg(0x40, IA32_EAX,
|
|
IA32_EDX),
|
|
insn->off + 4);
|
|
} else {
|
|
EMIT1(add_2reg(0x80, IA32_EAX,
|
|
IA32_EDX));
|
|
EMIT(insn->off + 4, 4);
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* LDX: dst_reg = *(u8*)(src_reg + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
if (sstk)
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(src_lo));
|
|
else
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX));
|
|
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_B:
|
|
EMIT2(0x0F, 0xB6); break;
|
|
case BPF_H:
|
|
EMIT2(0x0F, 0xB7); break;
|
|
case BPF_W:
|
|
case BPF_DW:
|
|
EMIT(0x8B, 1); break;
|
|
}
|
|
|
|
if (is_imm8(insn->off))
|
|
EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
|
|
insn->off);
|
|
else
|
|
EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
|
|
insn->off);
|
|
|
|
if (dstk)
|
|
/* mov dword ptr [ebp+off],edx */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(dst_lo));
|
|
else
|
|
/* mov dst_lo,edx */
|
|
EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX));
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_B:
|
|
case BPF_H:
|
|
case BPF_W:
|
|
if (bpf_prog->aux->verifier_zext)
|
|
break;
|
|
if (dstk) {
|
|
EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
|
|
STACK_VAR(dst_hi));
|
|
EMIT(0x0, 4);
|
|
} else {
|
|
/* xor dst_hi,dst_hi */
|
|
EMIT2(0x33,
|
|
add_2reg(0xC0, dst_hi, dst_hi));
|
|
}
|
|
break;
|
|
case BPF_DW:
|
|
EMIT2_off32(0x8B,
|
|
add_2reg(0x80, IA32_EAX, IA32_EDX),
|
|
insn->off + 4);
|
|
if (dstk)
|
|
EMIT3(0x89,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
else
|
|
EMIT2(0x89,
|
|
add_2reg(0xC0, dst_hi, IA32_EDX));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
/* call */
|
|
case BPF_JMP | BPF_CALL:
|
|
{
|
|
const u8 *r1 = bpf2ia32[BPF_REG_1];
|
|
const u8 *r2 = bpf2ia32[BPF_REG_2];
|
|
const u8 *r3 = bpf2ia32[BPF_REG_3];
|
|
const u8 *r4 = bpf2ia32[BPF_REG_4];
|
|
const u8 *r5 = bpf2ia32[BPF_REG_5];
|
|
|
|
if (insn->src_reg == BPF_PSEUDO_CALL)
|
|
goto notyet;
|
|
|
|
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
|
|
int err;
|
|
|
|
err = emit_kfunc_call(bpf_prog,
|
|
image + addrs[i],
|
|
insn, &prog);
|
|
|
|
if (err)
|
|
return err;
|
|
break;
|
|
}
|
|
|
|
func = (u8 *) __bpf_call_base + imm32;
|
|
jmp_offset = func - (image + addrs[i]);
|
|
|
|
if (!imm32 || !is_simm32(jmp_offset)) {
|
|
pr_err("unsupported BPF func %d addr %p image %p\n",
|
|
imm32, func, image);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* mov eax,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(r1[0]));
|
|
/* mov edx,dword ptr [ebp+off] */
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(r1[1]));
|
|
|
|
emit_push_r64(r5, &prog);
|
|
emit_push_r64(r4, &prog);
|
|
emit_push_r64(r3, &prog);
|
|
emit_push_r64(r2, &prog);
|
|
|
|
EMIT1_off32(0xE8, jmp_offset + 9);
|
|
|
|
/* mov dword ptr [ebp+off],eax */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(r0[0]));
|
|
/* mov dword ptr [ebp+off],edx */
|
|
EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
|
|
STACK_VAR(r0[1]));
|
|
|
|
/* add esp,32 */
|
|
EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32);
|
|
break;
|
|
}
|
|
case BPF_JMP | BPF_TAIL_CALL:
|
|
emit_bpf_tail_call(&prog);
|
|
break;
|
|
|
|
/* cond jump */
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_X:
|
|
case BPF_JMP32 | BPF_JNE | BPF_X:
|
|
case BPF_JMP32 | BPF_JGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_X: {
|
|
bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
u8 sreg_lo = sstk ? IA32_ECX : src_lo;
|
|
u8 sreg_hi = sstk ? IA32_EBX : src_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
if (is_jmp64)
|
|
EMIT3(0x8B,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
|
|
if (sstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
|
|
STACK_VAR(src_lo));
|
|
if (is_jmp64)
|
|
EMIT3(0x8B,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EBX),
|
|
STACK_VAR(src_hi));
|
|
}
|
|
|
|
if (is_jmp64) {
|
|
/* cmp dreg_hi,sreg_hi */
|
|
EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
|
|
EMIT2(IA32_JNE, 2);
|
|
}
|
|
/* cmp dreg_lo,sreg_lo */
|
|
EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
|
|
goto emit_cond_jmp;
|
|
}
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_X: {
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
u8 sreg_lo = sstk ? IA32_ECX : src_lo;
|
|
u8 sreg_hi = sstk ? IA32_EBX : src_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
|
|
if (sstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
|
|
STACK_VAR(src_lo));
|
|
EMIT3(0x8B,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EBX),
|
|
STACK_VAR(src_hi));
|
|
}
|
|
|
|
/* cmp dreg_hi,sreg_hi */
|
|
EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
|
|
EMIT2(IA32_JNE, 10);
|
|
/* cmp dreg_lo,sreg_lo */
|
|
EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
|
|
goto emit_cond_jmp_signed;
|
|
}
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
case BPF_JMP32 | BPF_JSET | BPF_X: {
|
|
bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
|
|
u8 dreg_lo = IA32_EAX;
|
|
u8 dreg_hi = IA32_EDX;
|
|
u8 sreg_lo = sstk ? IA32_ECX : src_lo;
|
|
u8 sreg_hi = sstk ? IA32_EBX : src_hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
if (is_jmp64)
|
|
EMIT3(0x8B,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
} else {
|
|
/* mov dreg_lo,dst_lo */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
|
|
if (is_jmp64)
|
|
/* mov dreg_hi,dst_hi */
|
|
EMIT2(0x89,
|
|
add_2reg(0xC0, dreg_hi, dst_hi));
|
|
}
|
|
|
|
if (sstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
|
|
STACK_VAR(src_lo));
|
|
if (is_jmp64)
|
|
EMIT3(0x8B,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EBX),
|
|
STACK_VAR(src_hi));
|
|
}
|
|
/* and dreg_lo,sreg_lo */
|
|
EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
|
|
if (is_jmp64) {
|
|
/* and dreg_hi,sreg_hi */
|
|
EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
|
|
/* or dreg_lo,dreg_hi */
|
|
EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
|
|
}
|
|
goto emit_cond_jmp;
|
|
}
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
case BPF_JMP32 | BPF_JSET | BPF_K: {
|
|
bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
|
|
u8 dreg_lo = IA32_EAX;
|
|
u8 dreg_hi = IA32_EDX;
|
|
u8 sreg_lo = IA32_ECX;
|
|
u8 sreg_hi = IA32_EBX;
|
|
u32 hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
if (is_jmp64)
|
|
EMIT3(0x8B,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
} else {
|
|
/* mov dreg_lo,dst_lo */
|
|
EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
|
|
if (is_jmp64)
|
|
/* mov dreg_hi,dst_hi */
|
|
EMIT2(0x89,
|
|
add_2reg(0xC0, dreg_hi, dst_hi));
|
|
}
|
|
|
|
/* mov ecx,imm32 */
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo), imm32);
|
|
|
|
/* and dreg_lo,sreg_lo */
|
|
EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
|
|
if (is_jmp64) {
|
|
hi = imm32 & (1 << 31) ? (u32)~0 : 0;
|
|
/* mov ebx,imm32 */
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi), hi);
|
|
/* and dreg_hi,sreg_hi */
|
|
EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
|
|
/* or dreg_lo,dreg_hi */
|
|
EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
|
|
}
|
|
goto emit_cond_jmp;
|
|
}
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_K:
|
|
case BPF_JMP32 | BPF_JNE | BPF_K:
|
|
case BPF_JMP32 | BPF_JGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_K: {
|
|
bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
u8 sreg_lo = IA32_ECX;
|
|
u8 sreg_hi = IA32_EBX;
|
|
u32 hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
if (is_jmp64)
|
|
EMIT3(0x8B,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
|
|
/* mov ecx,imm32 */
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
|
|
if (is_jmp64) {
|
|
hi = imm32 & (1 << 31) ? (u32)~0 : 0;
|
|
/* mov ebx,imm32 */
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
|
|
/* cmp dreg_hi,sreg_hi */
|
|
EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
|
|
EMIT2(IA32_JNE, 2);
|
|
}
|
|
/* cmp dreg_lo,sreg_lo */
|
|
EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
|
|
|
|
emit_cond_jmp: jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
|
|
if (jmp_cond == COND_JMP_OPCODE_INVALID)
|
|
return -EFAULT;
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
if (is_imm8(jmp_offset)) {
|
|
EMIT2(jmp_cond, jmp_offset);
|
|
} else if (is_simm32(jmp_offset)) {
|
|
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
|
|
} else {
|
|
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
break;
|
|
}
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_K: {
|
|
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
|
|
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
|
|
u8 sreg_lo = IA32_ECX;
|
|
u8 sreg_hi = IA32_EBX;
|
|
u32 hi;
|
|
|
|
if (dstk) {
|
|
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
|
|
STACK_VAR(dst_lo));
|
|
EMIT3(0x8B,
|
|
add_2reg(0x40, IA32_EBP,
|
|
IA32_EDX),
|
|
STACK_VAR(dst_hi));
|
|
}
|
|
|
|
/* mov ecx,imm32 */
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
|
|
hi = imm32 & (1 << 31) ? (u32)~0 : 0;
|
|
/* mov ebx,imm32 */
|
|
EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
|
|
/* cmp dreg_hi,sreg_hi */
|
|
EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
|
|
EMIT2(IA32_JNE, 10);
|
|
/* cmp dreg_lo,sreg_lo */
|
|
EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
|
|
|
|
/*
|
|
* For simplicity of branch offset computation,
|
|
* let's use fixed jump coding here.
|
|
*/
|
|
emit_cond_jmp_signed: /* Check the condition for low 32-bit comparison */
|
|
jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true);
|
|
if (jmp_cond == COND_JMP_OPCODE_INVALID)
|
|
return -EFAULT;
|
|
jmp_offset = addrs[i + insn->off] - addrs[i] + 8;
|
|
if (is_simm32(jmp_offset)) {
|
|
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
|
|
} else {
|
|
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
EMIT2(0xEB, 6);
|
|
|
|
/* Check the condition for high 32-bit comparison */
|
|
jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
|
|
if (jmp_cond == COND_JMP_OPCODE_INVALID)
|
|
return -EFAULT;
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
if (is_simm32(jmp_offset)) {
|
|
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
|
|
} else {
|
|
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
break;
|
|
}
|
|
case BPF_JMP | BPF_JA:
|
|
if (insn->off == -1)
|
|
/* -1 jmp instructions will always jump
|
|
* backwards two bytes. Explicitly handling
|
|
* this case avoids wasting too many passes
|
|
* when there are long sequences of replaced
|
|
* dead code.
|
|
*/
|
|
jmp_offset = -2;
|
|
else
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
|
|
if (!jmp_offset)
|
|
/* Optimize out nop jumps */
|
|
break;
|
|
emit_jmp:
|
|
if (is_imm8(jmp_offset)) {
|
|
EMIT2(0xEB, jmp_offset);
|
|
} else if (is_simm32(jmp_offset)) {
|
|
EMIT1_off32(0xE9, jmp_offset);
|
|
} else {
|
|
pr_err("jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
break;
|
|
case BPF_STX | BPF_ATOMIC | BPF_W:
|
|
case BPF_STX | BPF_ATOMIC | BPF_DW:
|
|
goto notyet;
|
|
case BPF_JMP | BPF_EXIT:
|
|
if (seen_exit) {
|
|
jmp_offset = ctx->cleanup_addr - addrs[i];
|
|
goto emit_jmp;
|
|
}
|
|
seen_exit = true;
|
|
/* Update cleanup_addr */
|
|
ctx->cleanup_addr = proglen;
|
|
emit_epilogue(&prog, bpf_prog->aux->stack_depth);
|
|
break;
|
|
notyet:
|
|
pr_info_once("*** NOT YET: opcode %02x ***\n", code);
|
|
return -EFAULT;
|
|
default:
|
|
/*
|
|
* This error will be seen if new instruction was added
|
|
* to interpreter, but not to JIT or if there is junk in
|
|
* bpf_prog
|
|
*/
|
|
pr_err("bpf_jit: unknown opcode %02x\n", code);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ilen = prog - temp;
|
|
if (ilen > BPF_MAX_INSN_SIZE) {
|
|
pr_err("bpf_jit: fatal insn size error\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (image) {
|
|
/*
|
|
* When populating the image, assert that:
|
|
*
|
|
* i) We do not write beyond the allocated space, and
|
|
* ii) addrs[i] did not change from the prior run, in order
|
|
* to validate assumptions made for computing branch
|
|
* displacements.
|
|
*/
|
|
if (unlikely(proglen + ilen > oldproglen ||
|
|
proglen + ilen != addrs[i])) {
|
|
pr_err("bpf_jit: fatal error\n");
|
|
return -EFAULT;
|
|
}
|
|
memcpy(image + proglen, temp, ilen);
|
|
}
|
|
proglen += ilen;
|
|
addrs[i] = proglen;
|
|
prog = temp;
|
|
}
|
|
return proglen;
|
|
}
|
|
|
|
bool bpf_jit_needs_zext(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
|
|
{
|
|
struct bpf_binary_header *header = NULL;
|
|
struct bpf_prog *tmp, *orig_prog = prog;
|
|
int proglen, oldproglen = 0;
|
|
struct jit_context ctx = {};
|
|
bool tmp_blinded = false;
|
|
u8 *image = NULL;
|
|
int *addrs;
|
|
int pass;
|
|
int i;
|
|
|
|
if (!prog->jit_requested)
|
|
return orig_prog;
|
|
|
|
tmp = bpf_jit_blind_constants(prog);
|
|
/*
|
|
* If blinding was requested and we failed during blinding,
|
|
* we must fall back to the interpreter.
|
|
*/
|
|
if (IS_ERR(tmp))
|
|
return orig_prog;
|
|
if (tmp != prog) {
|
|
tmp_blinded = true;
|
|
prog = tmp;
|
|
}
|
|
|
|
addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
|
|
if (!addrs) {
|
|
prog = orig_prog;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Before first pass, make a rough estimation of addrs[]
|
|
* each BPF instruction is translated to less than 64 bytes
|
|
*/
|
|
for (proglen = 0, i = 0; i < prog->len; i++) {
|
|
proglen += 64;
|
|
addrs[i] = proglen;
|
|
}
|
|
ctx.cleanup_addr = proglen;
|
|
|
|
/*
|
|
* JITed image shrinks with every pass and the loop iterates
|
|
* until the image stops shrinking. Very large BPF programs
|
|
* may converge on the last pass. In such case do one more
|
|
* pass to emit the final image.
|
|
*/
|
|
for (pass = 0; pass < 20 || image; pass++) {
|
|
proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
|
|
if (proglen <= 0) {
|
|
out_image:
|
|
image = NULL;
|
|
if (header)
|
|
bpf_jit_binary_free(header);
|
|
prog = orig_prog;
|
|
goto out_addrs;
|
|
}
|
|
if (image) {
|
|
if (proglen != oldproglen) {
|
|
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
|
|
proglen, oldproglen);
|
|
goto out_image;
|
|
}
|
|
break;
|
|
}
|
|
if (proglen == oldproglen) {
|
|
header = bpf_jit_binary_alloc(proglen, &image,
|
|
1, jit_fill_hole);
|
|
if (!header) {
|
|
prog = orig_prog;
|
|
goto out_addrs;
|
|
}
|
|
}
|
|
oldproglen = proglen;
|
|
cond_resched();
|
|
}
|
|
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(prog->len, proglen, pass + 1, image);
|
|
|
|
if (image) {
|
|
bpf_jit_binary_lock_ro(header);
|
|
prog->bpf_func = (void *)image;
|
|
prog->jited = 1;
|
|
prog->jited_len = proglen;
|
|
} else {
|
|
prog = orig_prog;
|
|
}
|
|
|
|
out_addrs:
|
|
kfree(addrs);
|
|
out:
|
|
if (tmp_blinded)
|
|
bpf_jit_prog_release_other(prog, prog == orig_prog ?
|
|
tmp : orig_prog);
|
|
return prog;
|
|
}
|
|
|
|
bool bpf_jit_supports_kfunc_call(void)
|
|
{
|
|
return true;
|
|
}
|