linux-stable/arch/x86/kernel/apic/x2apic_uv_x.c
Mike Travis 26d4be3ea1 x86/platform/uv: Use x2apic enabled bit as set by BIOS to indicate APIC mode
BIOS now sets the x2apic enabled bit (and the ACPI table) for extended
APIC modes. Use that bit to indicate if extended mode is set.

 [ bp: Fixup subject prefix, merge subsequent fix
   https://lkml.kernel.org/r/20210415220626.223955-1-mike.travis@hpe.com ]

Signed-off-by: Mike Travis <mike.travis@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210408160047.1703-1-mike.travis@hpe.com
2021-04-16 12:51:03 +02:00

1829 lines
47 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV APIC functions (note: not an Intel compatible APIC)
*
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/crash_dump.h>
#include <linux/cpuhotplug.h>
#include <linux/cpumask.h>
#include <linux/proc_fs.h>
#include <linux/memory.h>
#include <linux/export.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/efi.h>
#include <asm/e820/api.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/bios.h>
#include <asm/uv/uv.h>
#include <asm/apic.h>
static enum uv_system_type uv_system_type;
static int uv_hubbed_system;
static int uv_hubless_system;
static u64 gru_start_paddr, gru_end_paddr;
static union uvh_apicid uvh_apicid;
static int uv_node_id;
/* Unpack AT/OEM/TABLE ID's to be NULL terminated strings */
static u8 uv_archtype[UV_AT_SIZE + 1];
static u8 oem_id[ACPI_OEM_ID_SIZE + 1];
static u8 oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
/* Information derived from CPUID and some UV MMRs */
static struct {
unsigned int apicid_shift;
unsigned int apicid_mask;
unsigned int socketid_shift; /* aka pnode_shift for UV2/3 */
unsigned int pnode_mask;
unsigned int nasid_shift;
unsigned int gpa_shift;
unsigned int gnode_shift;
unsigned int m_skt;
unsigned int n_skt;
} uv_cpuid;
static int uv_min_hub_revision_id;
static struct apic apic_x2apic_uv_x;
static struct uv_hub_info_s uv_hub_info_node0;
/* Set this to use hardware error handler instead of kernel panic: */
static int disable_uv_undefined_panic = 1;
unsigned long uv_undefined(char *str)
{
if (likely(!disable_uv_undefined_panic))
panic("UV: error: undefined MMR: %s\n", str);
else
pr_crit("UV: error: undefined MMR: %s\n", str);
/* Cause a machine fault: */
return ~0ul;
}
EXPORT_SYMBOL(uv_undefined);
static unsigned long __init uv_early_read_mmr(unsigned long addr)
{
unsigned long val, *mmr;
mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr));
val = *mmr;
early_iounmap(mmr, sizeof(*mmr));
return val;
}
static inline bool is_GRU_range(u64 start, u64 end)
{
if (!gru_start_paddr)
return false;
return start >= gru_start_paddr && end <= gru_end_paddr;
}
static bool uv_is_untracked_pat_range(u64 start, u64 end)
{
return is_ISA_range(start, end) || is_GRU_range(start, end);
}
static void __init early_get_pnodeid(void)
{
int pnode;
uv_cpuid.m_skt = 0;
if (UVH_RH10_GAM_ADDR_MAP_CONFIG) {
union uvh_rh10_gam_addr_map_config_u m_n_config;
m_n_config.v = uv_early_read_mmr(UVH_RH10_GAM_ADDR_MAP_CONFIG);
uv_cpuid.n_skt = m_n_config.s.n_skt;
uv_cpuid.nasid_shift = 0;
} else if (UVH_RH_GAM_ADDR_MAP_CONFIG) {
union uvh_rh_gam_addr_map_config_u m_n_config;
m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_ADDR_MAP_CONFIG);
uv_cpuid.n_skt = m_n_config.s.n_skt;
if (is_uv(UV3))
uv_cpuid.m_skt = m_n_config.s3.m_skt;
if (is_uv(UV2))
uv_cpuid.m_skt = m_n_config.s2.m_skt;
uv_cpuid.nasid_shift = 1;
} else {
unsigned long GAM_ADDR_MAP_CONFIG = 0;
WARN(GAM_ADDR_MAP_CONFIG == 0,
"UV: WARN: GAM_ADDR_MAP_CONFIG is not available\n");
uv_cpuid.n_skt = 0;
uv_cpuid.nasid_shift = 0;
}
if (is_uv(UV4|UVY))
uv_cpuid.gnode_shift = 2; /* min partition is 4 sockets */
uv_cpuid.pnode_mask = (1 << uv_cpuid.n_skt) - 1;
pnode = (uv_node_id >> uv_cpuid.nasid_shift) & uv_cpuid.pnode_mask;
uv_cpuid.gpa_shift = 46; /* Default unless changed */
pr_info("UV: n_skt:%d pnmsk:%x pn:%x\n",
uv_cpuid.n_skt, uv_cpuid.pnode_mask, pnode);
}
/* Running on a UV Hubbed system, determine which UV Hub Type it is */
static int __init early_set_hub_type(void)
{
union uvh_node_id_u node_id;
/*
* The NODE_ID MMR is always at offset 0.
* Contains the chip part # + revision.
* Node_id field started with 15 bits,
* ... now 7 but upper 8 are masked to 0.
* All blades/nodes have the same part # and hub revision.
*/
node_id.v = uv_early_read_mmr(UVH_NODE_ID);
uv_node_id = node_id.sx.node_id;
switch (node_id.s.part_number) {
case UV5_HUB_PART_NUMBER:
uv_min_hub_revision_id = node_id.s.revision
+ UV5_HUB_REVISION_BASE;
uv_hub_type_set(UV5);
break;
/* UV4/4A only have a revision difference */
case UV4_HUB_PART_NUMBER:
uv_min_hub_revision_id = node_id.s.revision
+ UV4_HUB_REVISION_BASE - 1;
uv_hub_type_set(UV4);
if (uv_min_hub_revision_id == UV4A_HUB_REVISION_BASE)
uv_hub_type_set(UV4|UV4A);
break;
case UV3_HUB_PART_NUMBER:
case UV3_HUB_PART_NUMBER_X:
uv_min_hub_revision_id = node_id.s.revision
+ UV3_HUB_REVISION_BASE;
uv_hub_type_set(UV3);
break;
case UV2_HUB_PART_NUMBER:
case UV2_HUB_PART_NUMBER_X:
uv_min_hub_revision_id = node_id.s.revision
+ UV2_HUB_REVISION_BASE - 1;
uv_hub_type_set(UV2);
break;
default:
return 0;
}
pr_info("UV: part#:%x rev:%d rev_id:%d UVtype:0x%x\n",
node_id.s.part_number, node_id.s.revision,
uv_min_hub_revision_id, is_uv(~0));
return 1;
}
static void __init uv_tsc_check_sync(void)
{
u64 mmr;
int sync_state;
int mmr_shift;
char *state;
/* Different returns from different UV BIOS versions */
mmr = uv_early_read_mmr(UVH_TSC_SYNC_MMR);
mmr_shift =
is_uv2_hub() ? UVH_TSC_SYNC_SHIFT_UV2K : UVH_TSC_SYNC_SHIFT;
sync_state = (mmr >> mmr_shift) & UVH_TSC_SYNC_MASK;
/* Check if TSC is valid for all sockets */
switch (sync_state) {
case UVH_TSC_SYNC_VALID:
state = "in sync";
mark_tsc_async_resets("UV BIOS");
break;
/* If BIOS state unknown, don't do anything */
case UVH_TSC_SYNC_UNKNOWN:
state = "unknown";
break;
/* Otherwise, BIOS indicates problem with TSC */
default:
state = "unstable";
mark_tsc_unstable("UV BIOS");
break;
}
pr_info("UV: TSC sync state from BIOS:0%d(%s)\n", sync_state, state);
}
/* Selector for (4|4A|5) structs */
#define uvxy_field(sname, field, undef) ( \
is_uv(UV4A) ? sname.s4a.field : \
is_uv(UV4) ? sname.s4.field : \
is_uv(UV3) ? sname.s3.field : \
undef)
/* [Copied from arch/x86/kernel/cpu/topology.c:detect_extended_topology()] */
#define SMT_LEVEL 0 /* Leaf 0xb SMT level */
#define INVALID_TYPE 0 /* Leaf 0xb sub-leaf types */
#define SMT_TYPE 1
#define CORE_TYPE 2
#define LEAFB_SUBTYPE(ecx) (((ecx) >> 8) & 0xff)
#define BITS_SHIFT_NEXT_LEVEL(eax) ((eax) & 0x1f)
static void set_x2apic_bits(void)
{
unsigned int eax, ebx, ecx, edx, sub_index;
unsigned int sid_shift;
cpuid(0, &eax, &ebx, &ecx, &edx);
if (eax < 0xb) {
pr_info("UV: CPU does not have CPUID.11\n");
return;
}
cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx);
if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE)) {
pr_info("UV: CPUID.11 not implemented\n");
return;
}
sid_shift = BITS_SHIFT_NEXT_LEVEL(eax);
sub_index = 1;
do {
cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx);
if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) {
sid_shift = BITS_SHIFT_NEXT_LEVEL(eax);
break;
}
sub_index++;
} while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE);
uv_cpuid.apicid_shift = 0;
uv_cpuid.apicid_mask = (~(-1 << sid_shift));
uv_cpuid.socketid_shift = sid_shift;
}
static void __init early_get_apic_socketid_shift(void)
{
if (is_uv2_hub() || is_uv3_hub())
uvh_apicid.v = uv_early_read_mmr(UVH_APICID);
set_x2apic_bits();
pr_info("UV: apicid_shift:%d apicid_mask:0x%x\n", uv_cpuid.apicid_shift, uv_cpuid.apicid_mask);
pr_info("UV: socketid_shift:%d pnode_mask:0x%x\n", uv_cpuid.socketid_shift, uv_cpuid.pnode_mask);
}
static void __init uv_stringify(int len, char *to, char *from)
{
/* Relies on 'to' being NULL chars so result will be NULL terminated */
strncpy(to, from, len-1);
/* Trim trailing spaces */
(void)strim(to);
}
/* Find UV arch type entry in UVsystab */
static unsigned long __init early_find_archtype(struct uv_systab *st)
{
int i;
for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
unsigned long ptr = st->entry[i].offset;
if (!ptr)
continue;
ptr += (unsigned long)st;
if (st->entry[i].type == UV_SYSTAB_TYPE_ARCH_TYPE)
return ptr;
}
return 0;
}
/* Validate UV arch type field in UVsystab */
static int __init decode_arch_type(unsigned long ptr)
{
struct uv_arch_type_entry *uv_ate = (struct uv_arch_type_entry *)ptr;
int n = strlen(uv_ate->archtype);
if (n > 0 && n < sizeof(uv_ate->archtype)) {
pr_info("UV: UVarchtype received from BIOS\n");
uv_stringify(sizeof(uv_archtype), uv_archtype, uv_ate->archtype);
return 1;
}
return 0;
}
/* Determine if UV arch type entry might exist in UVsystab */
static int __init early_get_arch_type(void)
{
unsigned long uvst_physaddr, uvst_size, ptr;
struct uv_systab *st;
u32 rev;
int ret;
uvst_physaddr = get_uv_systab_phys(0);
if (!uvst_physaddr)
return 0;
st = early_memremap_ro(uvst_physaddr, sizeof(struct uv_systab));
if (!st) {
pr_err("UV: Cannot access UVsystab, remap failed\n");
return 0;
}
rev = st->revision;
if (rev < UV_SYSTAB_VERSION_UV5) {
early_memunmap(st, sizeof(struct uv_systab));
return 0;
}
uvst_size = st->size;
early_memunmap(st, sizeof(struct uv_systab));
st = early_memremap_ro(uvst_physaddr, uvst_size);
if (!st) {
pr_err("UV: Cannot access UVarchtype, remap failed\n");
return 0;
}
ptr = early_find_archtype(st);
if (!ptr) {
early_memunmap(st, uvst_size);
return 0;
}
ret = decode_arch_type(ptr);
early_memunmap(st, uvst_size);
return ret;
}
/* UV system found, check which APIC MODE BIOS already selected */
static void __init early_set_apic_mode(void)
{
if (x2apic_enabled())
uv_system_type = UV_X2APIC;
else
uv_system_type = UV_LEGACY_APIC;
}
static int __init uv_set_system_type(char *_oem_id, char *_oem_table_id)
{
/* Save OEM_ID passed from ACPI MADT */
uv_stringify(sizeof(oem_id), oem_id, _oem_id);
/* Check if BIOS sent us a UVarchtype */
if (!early_get_arch_type())
/* If not use OEM ID for UVarchtype */
uv_stringify(sizeof(uv_archtype), uv_archtype, oem_id);
/* Check if not hubbed */
if (strncmp(uv_archtype, "SGI", 3) != 0) {
/* (Not hubbed), check if not hubless */
if (strncmp(uv_archtype, "NSGI", 4) != 0)
/* (Not hubless), not a UV */
return 0;
/* Is UV hubless system */
uv_hubless_system = 0x01;
/* UV5 Hubless */
if (strncmp(uv_archtype, "NSGI5", 5) == 0)
uv_hubless_system |= 0x20;
/* UV4 Hubless: CH */
else if (strncmp(uv_archtype, "NSGI4", 5) == 0)
uv_hubless_system |= 0x10;
/* UV3 Hubless: UV300/MC990X w/o hub */
else
uv_hubless_system |= 0x8;
/* Copy OEM Table ID */
uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
pr_info("UV: OEM IDs %s/%s, SystemType %d, HUBLESS ID %x\n",
oem_id, oem_table_id, uv_system_type, uv_hubless_system);
return 0;
}
if (numa_off) {
pr_err("UV: NUMA is off, disabling UV support\n");
return 0;
}
/* Set hubbed type if true */
uv_hub_info->hub_revision =
!strncmp(uv_archtype, "SGI5", 4) ? UV5_HUB_REVISION_BASE :
!strncmp(uv_archtype, "SGI4", 4) ? UV4_HUB_REVISION_BASE :
!strncmp(uv_archtype, "SGI3", 4) ? UV3_HUB_REVISION_BASE :
!strcmp(uv_archtype, "SGI2") ? UV2_HUB_REVISION_BASE : 0;
switch (uv_hub_info->hub_revision) {
case UV5_HUB_REVISION_BASE:
uv_hubbed_system = 0x21;
uv_hub_type_set(UV5);
break;
case UV4_HUB_REVISION_BASE:
uv_hubbed_system = 0x11;
uv_hub_type_set(UV4);
break;
case UV3_HUB_REVISION_BASE:
uv_hubbed_system = 0x9;
uv_hub_type_set(UV3);
break;
case UV2_HUB_REVISION_BASE:
uv_hubbed_system = 0x5;
uv_hub_type_set(UV2);
break;
default:
return 0;
}
/* Get UV hub chip part number & revision */
early_set_hub_type();
/* Other UV setup functions */
early_set_apic_mode();
early_get_pnodeid();
early_get_apic_socketid_shift();
x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range;
x86_platform.nmi_init = uv_nmi_init;
uv_tsc_check_sync();
return 1;
}
/* Called early to probe for the correct APIC driver */
static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id)
{
/* Set up early hub info fields for Node 0 */
uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0;
/* If not UV, return. */
if (uv_set_system_type(_oem_id, _oem_table_id) == 0)
return 0;
/* Save for display of the OEM Table ID */
uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
pr_info("UV: OEM IDs %s/%s, System/UVType %d/0x%x, HUB RevID %d\n",
oem_id, oem_table_id, uv_system_type, is_uv(UV_ANY),
uv_min_hub_revision_id);
return 0;
}
enum uv_system_type get_uv_system_type(void)
{
return uv_system_type;
}
int uv_get_hubless_system(void)
{
return uv_hubless_system;
}
EXPORT_SYMBOL_GPL(uv_get_hubless_system);
ssize_t uv_get_archtype(char *buf, int len)
{
return scnprintf(buf, len, "%s/%s", uv_archtype, oem_table_id);
}
EXPORT_SYMBOL_GPL(uv_get_archtype);
int is_uv_system(void)
{
return uv_system_type != UV_NONE;
}
EXPORT_SYMBOL_GPL(is_uv_system);
int is_uv_hubbed(int uvtype)
{
return (uv_hubbed_system & uvtype);
}
EXPORT_SYMBOL_GPL(is_uv_hubbed);
static int is_uv_hubless(int uvtype)
{
return (uv_hubless_system & uvtype);
}
void **__uv_hub_info_list;
EXPORT_SYMBOL_GPL(__uv_hub_info_list);
DEFINE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_info);
short uv_possible_blades;
EXPORT_SYMBOL_GPL(uv_possible_blades);
unsigned long sn_rtc_cycles_per_second;
EXPORT_SYMBOL(sn_rtc_cycles_per_second);
/* The following values are used for the per node hub info struct */
static __initdata unsigned short *_node_to_pnode;
static __initdata unsigned short _min_socket, _max_socket;
static __initdata unsigned short _min_pnode, _max_pnode, _gr_table_len;
static __initdata struct uv_gam_range_entry *uv_gre_table;
static __initdata struct uv_gam_parameters *uv_gp_table;
static __initdata unsigned short *_socket_to_node;
static __initdata unsigned short *_socket_to_pnode;
static __initdata unsigned short *_pnode_to_socket;
static __initdata struct uv_gam_range_s *_gr_table;
#define SOCK_EMPTY ((unsigned short)~0)
/* Default UV memory block size is 2GB */
static unsigned long mem_block_size __initdata = (2UL << 30);
/* Kernel parameter to specify UV mem block size */
static int __init parse_mem_block_size(char *ptr)
{
unsigned long size = memparse(ptr, NULL);
/* Size will be rounded down by set_block_size() below */
mem_block_size = size;
return 0;
}
early_param("uv_memblksize", parse_mem_block_size);
static __init int adj_blksize(u32 lgre)
{
unsigned long base = (unsigned long)lgre << UV_GAM_RANGE_SHFT;
unsigned long size;
for (size = mem_block_size; size > MIN_MEMORY_BLOCK_SIZE; size >>= 1)
if (IS_ALIGNED(base, size))
break;
if (size >= mem_block_size)
return 0;
mem_block_size = size;
return 1;
}
static __init void set_block_size(void)
{
unsigned int order = ffs(mem_block_size);
if (order) {
/* adjust for ffs return of 1..64 */
set_memory_block_size_order(order - 1);
pr_info("UV: mem_block_size set to 0x%lx\n", mem_block_size);
} else {
/* bad or zero value, default to 1UL << 31 (2GB) */
pr_err("UV: mem_block_size error with 0x%lx\n", mem_block_size);
set_memory_block_size_order(31);
}
}
/* Build GAM range lookup table: */
static __init void build_uv_gr_table(void)
{
struct uv_gam_range_entry *gre = uv_gre_table;
struct uv_gam_range_s *grt;
unsigned long last_limit = 0, ram_limit = 0;
int bytes, i, sid, lsid = -1, indx = 0, lindx = -1;
if (!gre)
return;
bytes = _gr_table_len * sizeof(struct uv_gam_range_s);
grt = kzalloc(bytes, GFP_KERNEL);
BUG_ON(!grt);
_gr_table = grt;
for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
if (gre->type == UV_GAM_RANGE_TYPE_HOLE) {
if (!ram_limit) {
/* Mark hole between RAM/non-RAM: */
ram_limit = last_limit;
last_limit = gre->limit;
lsid++;
continue;
}
last_limit = gre->limit;
pr_info("UV: extra hole in GAM RE table @%d\n", (int)(gre - uv_gre_table));
continue;
}
if (_max_socket < gre->sockid) {
pr_err("UV: GAM table sockid(%d) too large(>%d) @%d\n", gre->sockid, _max_socket, (int)(gre - uv_gre_table));
continue;
}
sid = gre->sockid - _min_socket;
if (lsid < sid) {
/* New range: */
grt = &_gr_table[indx];
grt->base = lindx;
grt->nasid = gre->nasid;
grt->limit = last_limit = gre->limit;
lsid = sid;
lindx = indx++;
continue;
}
/* Update range: */
if (lsid == sid && !ram_limit) {
/* .. if contiguous: */
if (grt->limit == last_limit) {
grt->limit = last_limit = gre->limit;
continue;
}
}
/* Non-contiguous RAM range: */
if (!ram_limit) {
grt++;
grt->base = lindx;
grt->nasid = gre->nasid;
grt->limit = last_limit = gre->limit;
continue;
}
/* Non-contiguous/non-RAM: */
grt++;
/* base is this entry */
grt->base = grt - _gr_table;
grt->nasid = gre->nasid;
grt->limit = last_limit = gre->limit;
lsid++;
}
/* Shorten table if possible */
grt++;
i = grt - _gr_table;
if (i < _gr_table_len) {
void *ret;
bytes = i * sizeof(struct uv_gam_range_s);
ret = krealloc(_gr_table, bytes, GFP_KERNEL);
if (ret) {
_gr_table = ret;
_gr_table_len = i;
}
}
/* Display resultant GAM range table: */
for (i = 0, grt = _gr_table; i < _gr_table_len; i++, grt++) {
unsigned long start, end;
int gb = grt->base;
start = gb < 0 ? 0 : (unsigned long)_gr_table[gb].limit << UV_GAM_RANGE_SHFT;
end = (unsigned long)grt->limit << UV_GAM_RANGE_SHFT;
pr_info("UV: GAM Range %2d %04x 0x%013lx-0x%013lx (%d)\n", i, grt->nasid, start, end, gb);
}
}
static int uv_wakeup_secondary(int phys_apicid, unsigned long start_rip)
{
unsigned long val;
int pnode;
pnode = uv_apicid_to_pnode(phys_apicid);
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
APIC_DM_INIT;
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
APIC_DM_STARTUP;
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
return 0;
}
static void uv_send_IPI_one(int cpu, int vector)
{
unsigned long apicid = per_cpu(x86_cpu_to_apicid, cpu);
int pnode = uv_apicid_to_pnode(apicid);
unsigned long dmode, val;
if (vector == NMI_VECTOR)
dmode = APIC_DELIVERY_MODE_NMI;
else
dmode = APIC_DELIVERY_MODE_FIXED;
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(apicid << UVH_IPI_INT_APIC_ID_SHFT) |
(dmode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
(vector << UVH_IPI_INT_VECTOR_SHFT);
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}
static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
{
unsigned int cpu;
for_each_cpu(cpu, mask)
uv_send_IPI_one(cpu, vector);
}
static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
{
unsigned int this_cpu = smp_processor_id();
unsigned int cpu;
for_each_cpu(cpu, mask) {
if (cpu != this_cpu)
uv_send_IPI_one(cpu, vector);
}
}
static void uv_send_IPI_allbutself(int vector)
{
unsigned int this_cpu = smp_processor_id();
unsigned int cpu;
for_each_online_cpu(cpu) {
if (cpu != this_cpu)
uv_send_IPI_one(cpu, vector);
}
}
static void uv_send_IPI_all(int vector)
{
uv_send_IPI_mask(cpu_online_mask, vector);
}
static int uv_apic_id_valid(u32 apicid)
{
return 1;
}
static int uv_apic_id_registered(void)
{
return 1;
}
static void uv_init_apic_ldr(void)
{
}
static u32 apic_uv_calc_apicid(unsigned int cpu)
{
return apic_default_calc_apicid(cpu);
}
static unsigned int x2apic_get_apic_id(unsigned long id)
{
return id;
}
static u32 set_apic_id(unsigned int id)
{
return id;
}
static unsigned int uv_read_apic_id(void)
{
return x2apic_get_apic_id(apic_read(APIC_ID));
}
static int uv_phys_pkg_id(int initial_apicid, int index_msb)
{
return uv_read_apic_id() >> index_msb;
}
static void uv_send_IPI_self(int vector)
{
apic_write(APIC_SELF_IPI, vector);
}
static int uv_probe(void)
{
return apic == &apic_x2apic_uv_x;
}
static struct apic apic_x2apic_uv_x __ro_after_init = {
.name = "UV large system",
.probe = uv_probe,
.acpi_madt_oem_check = uv_acpi_madt_oem_check,
.apic_id_valid = uv_apic_id_valid,
.apic_id_registered = uv_apic_id_registered,
.delivery_mode = APIC_DELIVERY_MODE_FIXED,
.dest_mode_logical = false,
.disable_esr = 0,
.check_apicid_used = NULL,
.init_apic_ldr = uv_init_apic_ldr,
.ioapic_phys_id_map = NULL,
.setup_apic_routing = NULL,
.cpu_present_to_apicid = default_cpu_present_to_apicid,
.apicid_to_cpu_present = NULL,
.check_phys_apicid_present = default_check_phys_apicid_present,
.phys_pkg_id = uv_phys_pkg_id,
.get_apic_id = x2apic_get_apic_id,
.set_apic_id = set_apic_id,
.calc_dest_apicid = apic_uv_calc_apicid,
.send_IPI = uv_send_IPI_one,
.send_IPI_mask = uv_send_IPI_mask,
.send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself,
.send_IPI_allbutself = uv_send_IPI_allbutself,
.send_IPI_all = uv_send_IPI_all,
.send_IPI_self = uv_send_IPI_self,
.wakeup_secondary_cpu = uv_wakeup_secondary,
.inquire_remote_apic = NULL,
.read = native_apic_msr_read,
.write = native_apic_msr_write,
.eoi_write = native_apic_msr_eoi_write,
.icr_read = native_x2apic_icr_read,
.icr_write = native_x2apic_icr_write,
.wait_icr_idle = native_x2apic_wait_icr_idle,
.safe_wait_icr_idle = native_safe_x2apic_wait_icr_idle,
};
#define UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH 3
#define DEST_SHIFT UVXH_RH_GAM_ALIAS_0_REDIRECT_CONFIG_DEST_BASE_SHFT
static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
{
union uvh_rh_gam_alias_2_overlay_config_u alias;
union uvh_rh_gam_alias_2_redirect_config_u redirect;
unsigned long m_redirect;
unsigned long m_overlay;
int i;
for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) {
switch (i) {
case 0:
m_redirect = UVH_RH_GAM_ALIAS_0_REDIRECT_CONFIG;
m_overlay = UVH_RH_GAM_ALIAS_0_OVERLAY_CONFIG;
break;
case 1:
m_redirect = UVH_RH_GAM_ALIAS_1_REDIRECT_CONFIG;
m_overlay = UVH_RH_GAM_ALIAS_1_OVERLAY_CONFIG;
break;
case 2:
m_redirect = UVH_RH_GAM_ALIAS_2_REDIRECT_CONFIG;
m_overlay = UVH_RH_GAM_ALIAS_2_OVERLAY_CONFIG;
break;
}
alias.v = uv_read_local_mmr(m_overlay);
if (alias.s.enable && alias.s.base == 0) {
*size = (1UL << alias.s.m_alias);
redirect.v = uv_read_local_mmr(m_redirect);
*base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
return;
}
}
*base = *size = 0;
}
enum map_type {map_wb, map_uc};
static const char * const mt[] = { "WB", "UC" };
static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type)
{
unsigned long bytes, paddr;
paddr = base << pshift;
bytes = (1UL << bshift) * (max_pnode + 1);
if (!paddr) {
pr_info("UV: Map %s_HI base address NULL\n", id);
return;
}
if (map_type == map_uc)
init_extra_mapping_uc(paddr, bytes);
else
init_extra_mapping_wb(paddr, bytes);
pr_info("UV: Map %s_HI 0x%lx - 0x%lx %s (%d segments)\n",
id, paddr, paddr + bytes, mt[map_type], max_pnode + 1);
}
static __init void map_gru_high(int max_pnode)
{
union uvh_rh_gam_gru_overlay_config_u gru;
unsigned long mask, base;
int shift;
if (UVH_RH_GAM_GRU_OVERLAY_CONFIG) {
gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG);
shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
} else if (UVH_RH10_GAM_GRU_OVERLAY_CONFIG) {
gru.v = uv_read_local_mmr(UVH_RH10_GAM_GRU_OVERLAY_CONFIG);
shift = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
mask = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
} else {
pr_err("UV: GRU unavailable (no MMR)\n");
return;
}
if (!gru.s.enable) {
pr_info("UV: GRU disabled (by BIOS)\n");
return;
}
base = (gru.v & mask) >> shift;
map_high("GRU", base, shift, shift, max_pnode, map_wb);
gru_start_paddr = ((u64)base << shift);
gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1);
}
static __init void map_mmr_high(int max_pnode)
{
unsigned long base;
int shift;
bool enable;
if (UVH_RH10_GAM_MMR_OVERLAY_CONFIG) {
union uvh_rh10_gam_mmr_overlay_config_u mmr;
mmr.v = uv_read_local_mmr(UVH_RH10_GAM_MMR_OVERLAY_CONFIG);
enable = mmr.s.enable;
base = mmr.s.base;
shift = UVH_RH10_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
} else if (UVH_RH_GAM_MMR_OVERLAY_CONFIG) {
union uvh_rh_gam_mmr_overlay_config_u mmr;
mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG);
enable = mmr.s.enable;
base = mmr.s.base;
shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
} else {
pr_err("UV:%s:RH_GAM_MMR_OVERLAY_CONFIG MMR undefined?\n",
__func__);
return;
}
if (enable)
map_high("MMR", base, shift, shift, max_pnode, map_uc);
else
pr_info("UV: MMR disabled\n");
}
/* Arch specific ENUM cases */
enum mmioh_arch {
UV2_MMIOH = -1,
UVY_MMIOH0, UVY_MMIOH1,
UVX_MMIOH0, UVX_MMIOH1,
};
/* Calculate and Map MMIOH Regions */
static void __init calc_mmioh_map(enum mmioh_arch index,
int min_pnode, int max_pnode,
int shift, unsigned long base, int m_io, int n_io)
{
unsigned long mmr, nasid_mask;
int nasid, min_nasid, max_nasid, lnasid, mapped;
int i, fi, li, n, max_io;
char id[8];
/* One (UV2) mapping */
if (index == UV2_MMIOH) {
strncpy(id, "MMIOH", sizeof(id));
max_io = max_pnode;
mapped = 0;
goto map_exit;
}
/* small and large MMIOH mappings */
switch (index) {
case UVY_MMIOH0:
mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0;
nasid_mask = UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0_BASE_MASK;
n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
min_nasid = min_pnode;
max_nasid = max_pnode;
mapped = 1;
break;
case UVY_MMIOH1:
mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1;
nasid_mask = UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1_BASE_MASK;
n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
min_nasid = min_pnode;
max_nasid = max_pnode;
mapped = 1;
break;
case UVX_MMIOH0:
mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0;
nasid_mask = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_BASE_MASK;
n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
min_nasid = min_pnode * 2;
max_nasid = max_pnode * 2;
mapped = 1;
break;
case UVX_MMIOH1:
mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1;
nasid_mask = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_BASE_MASK;
n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
min_nasid = min_pnode * 2;
max_nasid = max_pnode * 2;
mapped = 1;
break;
default:
pr_err("UV:%s:Invalid mapping type:%d\n", __func__, index);
return;
}
/* enum values chosen so (index mod 2) is MMIOH 0/1 (low/high) */
snprintf(id, sizeof(id), "MMIOH%d", index%2);
max_io = lnasid = fi = li = -1;
for (i = 0; i < n; i++) {
unsigned long m_redirect = mmr + i * 8;
unsigned long redirect = uv_read_local_mmr(m_redirect);
nasid = redirect & nasid_mask;
if (i == 0)
pr_info("UV: %s redirect base 0x%lx(@0x%lx) 0x%04x\n",
id, redirect, m_redirect, nasid);
/* Invalid NASID check */
if (nasid < min_nasid || max_nasid < nasid) {
pr_err("UV:%s:Invalid NASID:%x (range:%x..%x)\n",
__func__, index, min_nasid, max_nasid);
nasid = -1;
}
if (nasid == lnasid) {
li = i;
/* Last entry check: */
if (i != n-1)
continue;
}
/* Check if we have a cached (or last) redirect to print: */
if (lnasid != -1 || (i == n-1 && nasid != -1)) {
unsigned long addr1, addr2;
int f, l;
if (lnasid == -1) {
f = l = i;
lnasid = nasid;
} else {
f = fi;
l = li;
}
addr1 = (base << shift) + f * (1ULL << m_io);
addr2 = (base << shift) + (l + 1) * (1ULL << m_io);
pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n",
id, fi, li, lnasid, addr1, addr2);
if (max_io < l)
max_io = l;
}
fi = li = i;
lnasid = nasid;
}
map_exit:
pr_info("UV: %s base:0x%lx shift:%d m_io:%d max_io:%d max_pnode:0x%x\n",
id, base, shift, m_io, max_io, max_pnode);
if (max_io >= 0 && !mapped)
map_high(id, base, shift, m_io, max_io, map_uc);
}
static __init void map_mmioh_high(int min_pnode, int max_pnode)
{
/* UVY flavor */
if (UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0) {
union uvh_rh10_gam_mmioh_overlay_config0_u mmioh0;
union uvh_rh10_gam_mmioh_overlay_config1_u mmioh1;
mmioh0.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0);
if (unlikely(mmioh0.s.enable == 0))
pr_info("UV: MMIOH0 disabled\n");
else
calc_mmioh_map(UVY_MMIOH0, min_pnode, max_pnode,
UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
mmioh0.s.base, mmioh0.s.m_io, mmioh0.s.n_io);
mmioh1.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1);
if (unlikely(mmioh1.s.enable == 0))
pr_info("UV: MMIOH1 disabled\n");
else
calc_mmioh_map(UVY_MMIOH1, min_pnode, max_pnode,
UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
mmioh1.s.base, mmioh1.s.m_io, mmioh1.s.n_io);
return;
}
/* UVX flavor */
if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0) {
union uvh_rh_gam_mmioh_overlay_config0_u mmioh0;
union uvh_rh_gam_mmioh_overlay_config1_u mmioh1;
mmioh0.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0);
if (unlikely(mmioh0.s.enable == 0))
pr_info("UV: MMIOH0 disabled\n");
else {
unsigned long base = uvxy_field(mmioh0, base, 0);
int m_io = uvxy_field(mmioh0, m_io, 0);
int n_io = uvxy_field(mmioh0, n_io, 0);
calc_mmioh_map(UVX_MMIOH0, min_pnode, max_pnode,
UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
base, m_io, n_io);
}
mmioh1.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1);
if (unlikely(mmioh1.s.enable == 0))
pr_info("UV: MMIOH1 disabled\n");
else {
unsigned long base = uvxy_field(mmioh1, base, 0);
int m_io = uvxy_field(mmioh1, m_io, 0);
int n_io = uvxy_field(mmioh1, n_io, 0);
calc_mmioh_map(UVX_MMIOH1, min_pnode, max_pnode,
UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
base, m_io, n_io);
}
return;
}
/* UV2 flavor */
if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG) {
union uvh_rh_gam_mmioh_overlay_config_u mmioh;
mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG);
if (unlikely(mmioh.s2.enable == 0))
pr_info("UV: MMIOH disabled\n");
else
calc_mmioh_map(UV2_MMIOH, min_pnode, max_pnode,
UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_BASE_SHFT,
mmioh.s2.base, mmioh.s2.m_io, mmioh.s2.n_io);
return;
}
}
static __init void map_low_mmrs(void)
{
if (UV_GLOBAL_MMR32_BASE)
init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
if (UV_LOCAL_MMR_BASE)
init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
}
static __init void uv_rtc_init(void)
{
long status;
u64 ticks_per_sec;
status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec);
if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
pr_warn("UV: unable to determine platform RTC clock frequency, guessing.\n");
/* BIOS gives wrong value for clock frequency, so guess: */
sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
} else {
sn_rtc_cycles_per_second = ticks_per_sec;
}
}
/* Direct Legacy VGA I/O traffic to designated IOH */
static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags)
{
int domain, bus, rc;
if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
return 0;
if ((command_bits & PCI_COMMAND_IO) == 0)
return 0;
domain = pci_domain_nr(pdev->bus);
bus = pdev->bus->number;
rc = uv_bios_set_legacy_vga_target(decode, domain, bus);
return rc;
}
/*
* Called on each CPU to initialize the per_cpu UV data area.
* FIXME: hotplug not supported yet
*/
void uv_cpu_init(void)
{
/* CPU 0 initialization will be done via uv_system_init. */
if (smp_processor_id() == 0)
return;
uv_hub_info->nr_online_cpus++;
}
struct mn {
unsigned char m_val;
unsigned char n_val;
unsigned char m_shift;
unsigned char n_lshift;
};
/* Initialize caller's MN struct and fill in values */
static void get_mn(struct mn *mnp)
{
memset(mnp, 0, sizeof(*mnp));
mnp->n_val = uv_cpuid.n_skt;
if (is_uv(UV4|UVY)) {
mnp->m_val = 0;
mnp->n_lshift = 0;
} else if (is_uv3_hub()) {
union uvyh_gr0_gam_gr_config_u m_gr_config;
mnp->m_val = uv_cpuid.m_skt;
m_gr_config.v = uv_read_local_mmr(UVH_GR0_GAM_GR_CONFIG);
mnp->n_lshift = m_gr_config.s3.m_skt;
} else if (is_uv2_hub()) {
mnp->m_val = uv_cpuid.m_skt;
mnp->n_lshift = mnp->m_val == 40 ? 40 : 39;
}
mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0;
}
static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
{
struct mn mn;
get_mn(&mn);
hi->gpa_mask = mn.m_val ?
(1UL << (mn.m_val + mn.n_val)) - 1 :
(1UL << uv_cpuid.gpa_shift) - 1;
hi->m_val = mn.m_val;
hi->n_val = mn.n_val;
hi->m_shift = mn.m_shift;
hi->n_lshift = mn.n_lshift ? mn.n_lshift : 0;
hi->hub_revision = uv_hub_info->hub_revision;
hi->hub_type = uv_hub_info->hub_type;
hi->pnode_mask = uv_cpuid.pnode_mask;
hi->nasid_shift = uv_cpuid.nasid_shift;
hi->min_pnode = _min_pnode;
hi->min_socket = _min_socket;
hi->pnode_to_socket = _pnode_to_socket;
hi->socket_to_node = _socket_to_node;
hi->socket_to_pnode = _socket_to_pnode;
hi->gr_table_len = _gr_table_len;
hi->gr_table = _gr_table;
uv_cpuid.gnode_shift = max_t(unsigned int, uv_cpuid.gnode_shift, mn.n_val);
hi->gnode_extra = (uv_node_id & ~((1 << uv_cpuid.gnode_shift) - 1)) >> 1;
if (mn.m_val)
hi->gnode_upper = (u64)hi->gnode_extra << mn.m_val;
if (uv_gp_table) {
hi->global_mmr_base = uv_gp_table->mmr_base;
hi->global_mmr_shift = uv_gp_table->mmr_shift;
hi->global_gru_base = uv_gp_table->gru_base;
hi->global_gru_shift = uv_gp_table->gru_shift;
hi->gpa_shift = uv_gp_table->gpa_shift;
hi->gpa_mask = (1UL << hi->gpa_shift) - 1;
} else {
hi->global_mmr_base =
uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG) &
~UV_MMR_ENABLE;
hi->global_mmr_shift = _UV_GLOBAL_MMR64_PNODE_SHIFT;
}
get_lowmem_redirect(&hi->lowmem_remap_base, &hi->lowmem_remap_top);
hi->apic_pnode_shift = uv_cpuid.socketid_shift;
/* Show system specific info: */
pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hi->n_val, hi->m_val, hi->m_shift, hi->n_lshift);
pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n", hi->gpa_mask, hi->gpa_shift, hi->pnode_mask, hi->apic_pnode_shift);
pr_info("UV: mmr_base/shift:0x%lx/%ld\n", hi->global_mmr_base, hi->global_mmr_shift);
if (hi->global_gru_base)
pr_info("UV: gru_base/shift:0x%lx/%ld\n",
hi->global_gru_base, hi->global_gru_shift);
pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hi->gnode_upper, hi->gnode_extra);
}
static void __init decode_gam_params(unsigned long ptr)
{
uv_gp_table = (struct uv_gam_parameters *)ptr;
pr_info("UV: GAM Params...\n");
pr_info("UV: mmr_base/shift:0x%llx/%d gru_base/shift:0x%llx/%d gpa_shift:%d\n",
uv_gp_table->mmr_base, uv_gp_table->mmr_shift,
uv_gp_table->gru_base, uv_gp_table->gru_shift,
uv_gp_table->gpa_shift);
}
static void __init decode_gam_rng_tbl(unsigned long ptr)
{
struct uv_gam_range_entry *gre = (struct uv_gam_range_entry *)ptr;
unsigned long lgre = 0;
int index = 0;
int sock_min = 999999, pnode_min = 99999;
int sock_max = -1, pnode_max = -1;
uv_gre_table = gre;
for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
unsigned long size = ((unsigned long)(gre->limit - lgre)
<< UV_GAM_RANGE_SHFT);
int order = 0;
char suffix[] = " KMGTPE";
int flag = ' ';
while (size > 9999 && order < sizeof(suffix)) {
size /= 1024;
order++;
}
/* adjust max block size to current range start */
if (gre->type == 1 || gre->type == 2)
if (adj_blksize(lgre))
flag = '*';
if (!index) {
pr_info("UV: GAM Range Table...\n");
pr_info("UV: # %20s %14s %6s %4s %5s %3s %2s\n", "Range", "", "Size", "Type", "NASID", "SID", "PN");
}
pr_info("UV: %2d: 0x%014lx-0x%014lx%c %5lu%c %3d %04x %02x %02x\n",
index++,
(unsigned long)lgre << UV_GAM_RANGE_SHFT,
(unsigned long)gre->limit << UV_GAM_RANGE_SHFT,
flag, size, suffix[order],
gre->type, gre->nasid, gre->sockid, gre->pnode);
/* update to next range start */
lgre = gre->limit;
if (sock_min > gre->sockid)
sock_min = gre->sockid;
if (sock_max < gre->sockid)
sock_max = gre->sockid;
if (pnode_min > gre->pnode)
pnode_min = gre->pnode;
if (pnode_max < gre->pnode)
pnode_max = gre->pnode;
}
_min_socket = sock_min;
_max_socket = sock_max;
_min_pnode = pnode_min;
_max_pnode = pnode_max;
_gr_table_len = index;
pr_info("UV: GRT: %d entries, sockets(min:%x,max:%x) pnodes(min:%x,max:%x)\n", index, _min_socket, _max_socket, _min_pnode, _max_pnode);
}
/* Walk through UVsystab decoding the fields */
static int __init decode_uv_systab(void)
{
struct uv_systab *st;
int i;
/* Get mapped UVsystab pointer */
st = uv_systab;
/* If UVsystab is version 1, there is no extended UVsystab */
if (st && st->revision == UV_SYSTAB_VERSION_1)
return 0;
if ((!st) || (st->revision < UV_SYSTAB_VERSION_UV4_LATEST)) {
int rev = st ? st->revision : 0;
pr_err("UV: BIOS UVsystab mismatch, (%x < %x)\n",
rev, UV_SYSTAB_VERSION_UV4_LATEST);
pr_err("UV: Does not support UV, switch to non-UV x86_64\n");
uv_system_type = UV_NONE;
return -EINVAL;
}
for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
unsigned long ptr = st->entry[i].offset;
if (!ptr)
continue;
/* point to payload */
ptr += (unsigned long)st;
switch (st->entry[i].type) {
case UV_SYSTAB_TYPE_GAM_PARAMS:
decode_gam_params(ptr);
break;
case UV_SYSTAB_TYPE_GAM_RNG_TBL:
decode_gam_rng_tbl(ptr);
break;
case UV_SYSTAB_TYPE_ARCH_TYPE:
/* already processed in early startup */
break;
default:
pr_err("UV:%s:Unrecognized UV_SYSTAB_TYPE:%d, skipped\n",
__func__, st->entry[i].type);
break;
}
}
return 0;
}
/* Set up physical blade translations from UVH_NODE_PRESENT_TABLE */
static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info)
{
unsigned long np;
int i, uv_pb = 0;
if (UVH_NODE_PRESENT_TABLE) {
pr_info("UV: NODE_PRESENT_DEPTH = %d\n",
UVH_NODE_PRESENT_TABLE_DEPTH);
for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np);
uv_pb += hweight64(np);
}
}
if (UVH_NODE_PRESENT_0) {
np = uv_read_local_mmr(UVH_NODE_PRESENT_0);
pr_info("UV: NODE_PRESENT_0 = 0x%016lx\n", np);
uv_pb += hweight64(np);
}
if (UVH_NODE_PRESENT_1) {
np = uv_read_local_mmr(UVH_NODE_PRESENT_1);
pr_info("UV: NODE_PRESENT_1 = 0x%016lx\n", np);
uv_pb += hweight64(np);
}
if (uv_possible_blades != uv_pb)
uv_possible_blades = uv_pb;
pr_info("UV: number nodes/possible blades %d\n", uv_pb);
}
static void __init build_socket_tables(void)
{
struct uv_gam_range_entry *gre = uv_gre_table;
int num, nump;
int cpu, i, lnid;
int minsock = _min_socket;
int maxsock = _max_socket;
int minpnode = _min_pnode;
int maxpnode = _max_pnode;
size_t bytes;
if (!gre) {
if (is_uv2_hub() || is_uv3_hub()) {
pr_info("UV: No UVsystab socket table, ignoring\n");
return;
}
pr_err("UV: Error: UVsystab address translations not available!\n");
BUG();
}
/* Build socket id -> node id, pnode */
num = maxsock - minsock + 1;
bytes = num * sizeof(_socket_to_node[0]);
_socket_to_node = kmalloc(bytes, GFP_KERNEL);
_socket_to_pnode = kmalloc(bytes, GFP_KERNEL);
nump = maxpnode - minpnode + 1;
bytes = nump * sizeof(_pnode_to_socket[0]);
_pnode_to_socket = kmalloc(bytes, GFP_KERNEL);
BUG_ON(!_socket_to_node || !_socket_to_pnode || !_pnode_to_socket);
for (i = 0; i < num; i++)
_socket_to_node[i] = _socket_to_pnode[i] = SOCK_EMPTY;
for (i = 0; i < nump; i++)
_pnode_to_socket[i] = SOCK_EMPTY;
/* Fill in pnode/node/addr conversion list values: */
pr_info("UV: GAM Building socket/pnode conversion tables\n");
for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
if (gre->type == UV_GAM_RANGE_TYPE_HOLE)
continue;
i = gre->sockid - minsock;
/* Duplicate: */
if (_socket_to_pnode[i] != SOCK_EMPTY)
continue;
_socket_to_pnode[i] = gre->pnode;
i = gre->pnode - minpnode;
_pnode_to_socket[i] = gre->sockid;
pr_info("UV: sid:%02x type:%d nasid:%04x pn:%02x pn2s:%2x\n",
gre->sockid, gre->type, gre->nasid,
_socket_to_pnode[gre->sockid - minsock],
_pnode_to_socket[gre->pnode - minpnode]);
}
/* Set socket -> node values: */
lnid = NUMA_NO_NODE;
for_each_present_cpu(cpu) {
int nid = cpu_to_node(cpu);
int apicid, sockid;
if (lnid == nid)
continue;
lnid = nid;
apicid = per_cpu(x86_cpu_to_apicid, cpu);
sockid = apicid >> uv_cpuid.socketid_shift;
_socket_to_node[sockid - minsock] = nid;
pr_info("UV: sid:%02x: apicid:%04x node:%2d\n",
sockid, apicid, nid);
}
/* Set up physical blade to pnode translation from GAM Range Table: */
bytes = num_possible_nodes() * sizeof(_node_to_pnode[0]);
_node_to_pnode = kmalloc(bytes, GFP_KERNEL);
BUG_ON(!_node_to_pnode);
for (lnid = 0; lnid < num_possible_nodes(); lnid++) {
unsigned short sockid;
for (sockid = minsock; sockid <= maxsock; sockid++) {
if (lnid == _socket_to_node[sockid - minsock]) {
_node_to_pnode[lnid] = _socket_to_pnode[sockid - minsock];
break;
}
}
if (sockid > maxsock) {
pr_err("UV: socket for node %d not found!\n", lnid);
BUG();
}
}
/*
* If socket id == pnode or socket id == node for all nodes,
* system runs faster by removing corresponding conversion table.
*/
pr_info("UV: Checking socket->node/pnode for identity maps\n");
if (minsock == 0) {
for (i = 0; i < num; i++)
if (_socket_to_node[i] == SOCK_EMPTY || i != _socket_to_node[i])
break;
if (i >= num) {
kfree(_socket_to_node);
_socket_to_node = NULL;
pr_info("UV: 1:1 socket_to_node table removed\n");
}
}
if (minsock == minpnode) {
for (i = 0; i < num; i++)
if (_socket_to_pnode[i] != SOCK_EMPTY &&
_socket_to_pnode[i] != i + minpnode)
break;
if (i >= num) {
kfree(_socket_to_pnode);
_socket_to_pnode = NULL;
pr_info("UV: 1:1 socket_to_pnode table removed\n");
}
}
}
/* Check which reboot to use */
static void check_efi_reboot(void)
{
/* If EFI reboot not available, use ACPI reboot */
if (!efi_enabled(EFI_BOOT))
reboot_type = BOOT_ACPI;
}
/*
* User proc fs file handling now deprecated.
* Recommend using /sys/firmware/sgi_uv/... instead.
*/
static int __maybe_unused proc_hubbed_show(struct seq_file *file, void *data)
{
pr_notice_once("%s: using deprecated /proc/sgi_uv/hubbed, use /sys/firmware/sgi_uv/hub_type\n",
current->comm);
seq_printf(file, "0x%x\n", uv_hubbed_system);
return 0;
}
static int __maybe_unused proc_hubless_show(struct seq_file *file, void *data)
{
pr_notice_once("%s: using deprecated /proc/sgi_uv/hubless, use /sys/firmware/sgi_uv/hubless\n",
current->comm);
seq_printf(file, "0x%x\n", uv_hubless_system);
return 0;
}
static int __maybe_unused proc_archtype_show(struct seq_file *file, void *data)
{
pr_notice_once("%s: using deprecated /proc/sgi_uv/archtype, use /sys/firmware/sgi_uv/archtype\n",
current->comm);
seq_printf(file, "%s/%s\n", uv_archtype, oem_table_id);
return 0;
}
static __init void uv_setup_proc_files(int hubless)
{
struct proc_dir_entry *pde;
pde = proc_mkdir(UV_PROC_NODE, NULL);
proc_create_single("archtype", 0, pde, proc_archtype_show);
if (hubless)
proc_create_single("hubless", 0, pde, proc_hubless_show);
else
proc_create_single("hubbed", 0, pde, proc_hubbed_show);
}
/* Initialize UV hubless systems */
static __init int uv_system_init_hubless(void)
{
int rc;
/* Setup PCH NMI handler */
uv_nmi_setup_hubless();
/* Init kernel/BIOS interface */
rc = uv_bios_init();
if (rc < 0)
return rc;
/* Process UVsystab */
rc = decode_uv_systab();
if (rc < 0)
return rc;
/* Set section block size for current node memory */
set_block_size();
/* Create user access node */
if (rc >= 0)
uv_setup_proc_files(1);
check_efi_reboot();
return rc;
}
static void __init uv_system_init_hub(void)
{
struct uv_hub_info_s hub_info = {0};
int bytes, cpu, nodeid;
unsigned short min_pnode = 9999, max_pnode = 0;
char *hub = is_uv5_hub() ? "UV500" :
is_uv4_hub() ? "UV400" :
is_uv3_hub() ? "UV300" :
is_uv2_hub() ? "UV2000/3000" : NULL;
if (!hub) {
pr_err("UV: Unknown/unsupported UV hub\n");
return;
}
pr_info("UV: Found %s hub\n", hub);
map_low_mmrs();
/* Get uv_systab for decoding, setup UV BIOS calls */
uv_bios_init();
/* If there's an UVsystab problem then abort UV init: */
if (decode_uv_systab() < 0) {
pr_err("UV: Mangled UVsystab format\n");
return;
}
build_socket_tables();
build_uv_gr_table();
set_block_size();
uv_init_hub_info(&hub_info);
uv_possible_blades = num_possible_nodes();
if (!_node_to_pnode)
boot_init_possible_blades(&hub_info);
/* uv_num_possible_blades() is really the hub count: */
pr_info("UV: Found %d hubs, %d nodes, %d CPUs\n", uv_num_possible_blades(), num_possible_nodes(), num_possible_cpus());
uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, &sn_region_size, &system_serial_number);
hub_info.coherency_domain_number = sn_coherency_id;
uv_rtc_init();
bytes = sizeof(void *) * uv_num_possible_blades();
__uv_hub_info_list = kzalloc(bytes, GFP_KERNEL);
BUG_ON(!__uv_hub_info_list);
bytes = sizeof(struct uv_hub_info_s);
for_each_node(nodeid) {
struct uv_hub_info_s *new_hub;
if (__uv_hub_info_list[nodeid]) {
pr_err("UV: Node %d UV HUB already initialized!?\n", nodeid);
BUG();
}
/* Allocate new per hub info list */
new_hub = (nodeid == 0) ? &uv_hub_info_node0 : kzalloc_node(bytes, GFP_KERNEL, nodeid);
BUG_ON(!new_hub);
__uv_hub_info_list[nodeid] = new_hub;
new_hub = uv_hub_info_list(nodeid);
BUG_ON(!new_hub);
*new_hub = hub_info;
/* Use information from GAM table if available: */
if (_node_to_pnode)
new_hub->pnode = _node_to_pnode[nodeid];
else /* Or fill in during CPU loop: */
new_hub->pnode = 0xffff;
new_hub->numa_blade_id = uv_node_to_blade_id(nodeid);
new_hub->memory_nid = NUMA_NO_NODE;
new_hub->nr_possible_cpus = 0;
new_hub->nr_online_cpus = 0;
}
/* Initialize per CPU info: */
for_each_possible_cpu(cpu) {
int apicid = per_cpu(x86_cpu_to_apicid, cpu);
int numa_node_id;
unsigned short pnode;
nodeid = cpu_to_node(cpu);
numa_node_id = numa_cpu_node(cpu);
pnode = uv_apicid_to_pnode(apicid);
uv_cpu_info_per(cpu)->p_uv_hub_info = uv_hub_info_list(nodeid);
uv_cpu_info_per(cpu)->blade_cpu_id = uv_cpu_hub_info(cpu)->nr_possible_cpus++;
if (uv_cpu_hub_info(cpu)->memory_nid == NUMA_NO_NODE)
uv_cpu_hub_info(cpu)->memory_nid = cpu_to_node(cpu);
/* Init memoryless node: */
if (nodeid != numa_node_id &&
uv_hub_info_list(numa_node_id)->pnode == 0xffff)
uv_hub_info_list(numa_node_id)->pnode = pnode;
else if (uv_cpu_hub_info(cpu)->pnode == 0xffff)
uv_cpu_hub_info(cpu)->pnode = pnode;
}
for_each_node(nodeid) {
unsigned short pnode = uv_hub_info_list(nodeid)->pnode;
/* Add pnode info for pre-GAM list nodes without CPUs: */
if (pnode == 0xffff) {
unsigned long paddr;
paddr = node_start_pfn(nodeid) << PAGE_SHIFT;
pnode = uv_gpa_to_pnode(uv_soc_phys_ram_to_gpa(paddr));
uv_hub_info_list(nodeid)->pnode = pnode;
}
min_pnode = min(pnode, min_pnode);
max_pnode = max(pnode, max_pnode);
pr_info("UV: UVHUB node:%2d pn:%02x nrcpus:%d\n",
nodeid,
uv_hub_info_list(nodeid)->pnode,
uv_hub_info_list(nodeid)->nr_possible_cpus);
}
pr_info("UV: min_pnode:%02x max_pnode:%02x\n", min_pnode, max_pnode);
map_gru_high(max_pnode);
map_mmr_high(max_pnode);
map_mmioh_high(min_pnode, max_pnode);
uv_nmi_setup();
uv_cpu_init();
uv_setup_proc_files(0);
/* Register Legacy VGA I/O redirection handler: */
pci_register_set_vga_state(uv_set_vga_state);
check_efi_reboot();
}
/*
* There is a different code path needed to initialize a UV system that does
* not have a "UV HUB" (referred to as "hubless").
*/
void __init uv_system_init(void)
{
if (likely(!is_uv_system() && !is_uv_hubless(1)))
return;
if (is_uv_system())
uv_system_init_hub();
else
uv_system_init_hubless();
}
apic_driver(apic_x2apic_uv_x);