linux-stable/fs/exec.c
Linus Torvalds 72fda6c8e5 execve updates for v6.11-rc1
- Use value of kernel.randomize_va_space once per exec (Alexey Dobriyan)
 
 - Honor PT_LOAD alignment for static PIE
 
 - Make bprm->argmin only visible under CONFIG_MMU
 
 - Add KUnit testing of bprm_stack_limits()
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmaVTFAACgkQiXL039xt
 wCYyZw//ZcPV2hu48WqqOImL8LI9HIUaZqKQpixGQRD5VcTRb5MKg8g3Wi4EBHz+
 Kg6QvTEOQdg6NbfE9fH8VIIwcp3dAxdWN6g+3A0HHDSRdb8Ye1ucnzB2kgmEkM1l
 huBRn5tnoS0vn2fxafu1O5tj330kKAvTsemsy316cxmbKNs7ckHdfwuVgZHcuyEt
 OrOA3ZSTWwjkSiA9tatsi5iAQ34tQYGwDEosf06avlnPkQqsRzn3wNlohAPjQF6V
 kjRfX/Mxz2EHa0mjXy2OkhNyPSn6wu0OcmF0ympySHzxm726uRggG+olT5ziUc+2
 DW6Gz6TJ1P8Gu+uTEoz6AY+l5Bpo9ZLYSBm+Mp88sxAT6+Xcc68XeZsFZHmefJzs
 6g6EdmwhDEP/Xd3sIsNphdkS5q1RMgc7tdAtyK8GCaACsHUlU4CfzRYh2mWxpIg6
 hA7oM5KF9FuToLtaIS6K/yYQIVsTKAaA7t+5K/a1RUyKzcJ0O7UpMx1oEge2sPEK
 RnETCYhQs0Cxm11iJ/eqEFzWm0Puxjsjz/P/j5H5U8usx9VUoz0HuS91fNEIY3S9
 y7bn09wxuUv4QddKYgltkurxCCB//Nv7jPYo96pKIW3T56XkfsrYLvNH2W95cCNz
 OMvZImA1J/vQubSODrgeQsfMRsaJodHU3acWyYQ90HmmoWx4JS4=
 =bO7x
 -----END PGP SIGNATURE-----

Merge tag 'execve-v6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull execve updates from Kees Cook:

 - Use value of kernel.randomize_va_space once per exec (Alexey
   Dobriyan)

 - Honor PT_LOAD alignment for static PIE

 - Make bprm->argmin only visible under CONFIG_MMU

 - Add KUnit testing of bprm_stack_limits()

* tag 'execve-v6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  exec: Avoid pathological argc, envc, and bprm->p values
  execve: Keep bprm->argmin behind CONFIG_MMU
  ELF: fix kernel.randomize_va_space double read
  exec: Add KUnit test for bprm_stack_limits()
  binfmt_elf: Honor PT_LOAD alignment for static PIE
  binfmt_elf: Calculate total_size earlier
  selftests/exec: Build both static and non-static load_address tests
2024-07-16 12:59:20 -07:00

2240 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/exec.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* #!-checking implemented by tytso.
*/
/*
* Demand-loading implemented 01.12.91 - no need to read anything but
* the header into memory. The inode of the executable is put into
* "current->executable", and page faults do the actual loading. Clean.
*
* Once more I can proudly say that linux stood up to being changed: it
* was less than 2 hours work to get demand-loading completely implemented.
*
* Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
* current->executable is only used by the procfs. This allows a dispatch
* table to check for several different types of binary formats. We keep
* trying until we recognize the file or we run out of supported binary
* formats.
*/
#include <linux/kernel_read_file.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/mm.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/swap.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/sched/signal.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/task.h>
#include <linux/pagemap.h>
#include <linux/perf_event.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/key.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
#include <linux/utsname.h>
#include <linux/pid_namespace.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/audit.h>
#include <linux/kmod.h>
#include <linux/fsnotify.h>
#include <linux/fs_struct.h>
#include <linux/oom.h>
#include <linux/compat.h>
#include <linux/vmalloc.h>
#include <linux/io_uring.h>
#include <linux/syscall_user_dispatch.h>
#include <linux/coredump.h>
#include <linux/time_namespace.h>
#include <linux/user_events.h>
#include <linux/rseq.h>
#include <linux/ksm.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <trace/events/task.h>
#include "internal.h"
#include <trace/events/sched.h>
static int bprm_creds_from_file(struct linux_binprm *bprm);
int suid_dumpable = 0;
static LIST_HEAD(formats);
static DEFINE_RWLOCK(binfmt_lock);
void __register_binfmt(struct linux_binfmt * fmt, int insert)
{
write_lock(&binfmt_lock);
insert ? list_add(&fmt->lh, &formats) :
list_add_tail(&fmt->lh, &formats);
write_unlock(&binfmt_lock);
}
EXPORT_SYMBOL(__register_binfmt);
void unregister_binfmt(struct linux_binfmt * fmt)
{
write_lock(&binfmt_lock);
list_del(&fmt->lh);
write_unlock(&binfmt_lock);
}
EXPORT_SYMBOL(unregister_binfmt);
static inline void put_binfmt(struct linux_binfmt * fmt)
{
module_put(fmt->module);
}
bool path_noexec(const struct path *path)
{
return (path->mnt->mnt_flags & MNT_NOEXEC) ||
(path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
}
#ifdef CONFIG_USELIB
/*
* Note that a shared library must be both readable and executable due to
* security reasons.
*
* Also note that we take the address to load from the file itself.
*/
SYSCALL_DEFINE1(uselib, const char __user *, library)
{
struct linux_binfmt *fmt;
struct file *file;
struct filename *tmp = getname(library);
int error = PTR_ERR(tmp);
static const struct open_flags uselib_flags = {
.open_flag = O_LARGEFILE | O_RDONLY,
.acc_mode = MAY_READ | MAY_EXEC,
.intent = LOOKUP_OPEN,
.lookup_flags = LOOKUP_FOLLOW,
};
if (IS_ERR(tmp))
goto out;
file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
putname(tmp);
error = PTR_ERR(file);
if (IS_ERR(file))
goto out;
/*
* may_open() has already checked for this, so it should be
* impossible to trip now. But we need to be extra cautious
* and check again at the very end too.
*/
error = -EACCES;
if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
path_noexec(&file->f_path)))
goto exit;
error = -ENOEXEC;
read_lock(&binfmt_lock);
list_for_each_entry(fmt, &formats, lh) {
if (!fmt->load_shlib)
continue;
if (!try_module_get(fmt->module))
continue;
read_unlock(&binfmt_lock);
error = fmt->load_shlib(file);
read_lock(&binfmt_lock);
put_binfmt(fmt);
if (error != -ENOEXEC)
break;
}
read_unlock(&binfmt_lock);
exit:
fput(file);
out:
return error;
}
#endif /* #ifdef CONFIG_USELIB */
#ifdef CONFIG_MMU
/*
* The nascent bprm->mm is not visible until exec_mmap() but it can
* use a lot of memory, account these pages in current->mm temporary
* for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
* change the counter back via acct_arg_size(0).
*/
static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
{
struct mm_struct *mm = current->mm;
long diff = (long)(pages - bprm->vma_pages);
if (!mm || !diff)
return;
bprm->vma_pages = pages;
add_mm_counter(mm, MM_ANONPAGES, diff);
}
static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
int write)
{
struct page *page;
struct vm_area_struct *vma = bprm->vma;
struct mm_struct *mm = bprm->mm;
int ret;
/*
* Avoid relying on expanding the stack down in GUP (which
* does not work for STACK_GROWSUP anyway), and just do it
* by hand ahead of time.
*/
if (write && pos < vma->vm_start) {
mmap_write_lock(mm);
ret = expand_downwards(vma, pos);
if (unlikely(ret < 0)) {
mmap_write_unlock(mm);
return NULL;
}
mmap_write_downgrade(mm);
} else
mmap_read_lock(mm);
/*
* We are doing an exec(). 'current' is the process
* doing the exec and 'mm' is the new process's mm.
*/
ret = get_user_pages_remote(mm, pos, 1,
write ? FOLL_WRITE : 0,
&page, NULL);
mmap_read_unlock(mm);
if (ret <= 0)
return NULL;
if (write)
acct_arg_size(bprm, vma_pages(vma));
return page;
}
static void put_arg_page(struct page *page)
{
put_page(page);
}
static void free_arg_pages(struct linux_binprm *bprm)
{
}
static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
struct page *page)
{
flush_cache_page(bprm->vma, pos, page_to_pfn(page));
}
static int __bprm_mm_init(struct linux_binprm *bprm)
{
int err;
struct vm_area_struct *vma = NULL;
struct mm_struct *mm = bprm->mm;
bprm->vma = vma = vm_area_alloc(mm);
if (!vma)
return -ENOMEM;
vma_set_anonymous(vma);
if (mmap_write_lock_killable(mm)) {
err = -EINTR;
goto err_free;
}
/*
* Need to be called with mmap write lock
* held, to avoid race with ksmd.
*/
err = ksm_execve(mm);
if (err)
goto err_ksm;
/*
* Place the stack at the largest stack address the architecture
* supports. Later, we'll move this to an appropriate place. We don't
* use STACK_TOP because that can depend on attributes which aren't
* configured yet.
*/
BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
vma->vm_end = STACK_TOP_MAX;
vma->vm_start = vma->vm_end - PAGE_SIZE;
vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
err = insert_vm_struct(mm, vma);
if (err)
goto err;
mm->stack_vm = mm->total_vm = 1;
mmap_write_unlock(mm);
bprm->p = vma->vm_end - sizeof(void *);
return 0;
err:
ksm_exit(mm);
err_ksm:
mmap_write_unlock(mm);
err_free:
bprm->vma = NULL;
vm_area_free(vma);
return err;
}
static bool valid_arg_len(struct linux_binprm *bprm, long len)
{
return len <= MAX_ARG_STRLEN;
}
#else
static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
{
}
static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
int write)
{
struct page *page;
page = bprm->page[pos / PAGE_SIZE];
if (!page && write) {
page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
if (!page)
return NULL;
bprm->page[pos / PAGE_SIZE] = page;
}
return page;
}
static void put_arg_page(struct page *page)
{
}
static void free_arg_page(struct linux_binprm *bprm, int i)
{
if (bprm->page[i]) {
__free_page(bprm->page[i]);
bprm->page[i] = NULL;
}
}
static void free_arg_pages(struct linux_binprm *bprm)
{
int i;
for (i = 0; i < MAX_ARG_PAGES; i++)
free_arg_page(bprm, i);
}
static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
struct page *page)
{
}
static int __bprm_mm_init(struct linux_binprm *bprm)
{
bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
return 0;
}
static bool valid_arg_len(struct linux_binprm *bprm, long len)
{
return len <= bprm->p;
}
#endif /* CONFIG_MMU */
/*
* Create a new mm_struct and populate it with a temporary stack
* vm_area_struct. We don't have enough context at this point to set the stack
* flags, permissions, and offset, so we use temporary values. We'll update
* them later in setup_arg_pages().
*/
static int bprm_mm_init(struct linux_binprm *bprm)
{
int err;
struct mm_struct *mm = NULL;
bprm->mm = mm = mm_alloc();
err = -ENOMEM;
if (!mm)
goto err;
/* Save current stack limit for all calculations made during exec. */
task_lock(current->group_leader);
bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
task_unlock(current->group_leader);
err = __bprm_mm_init(bprm);
if (err)
goto err;
return 0;
err:
if (mm) {
bprm->mm = NULL;
mmdrop(mm);
}
return err;
}
struct user_arg_ptr {
#ifdef CONFIG_COMPAT
bool is_compat;
#endif
union {
const char __user *const __user *native;
#ifdef CONFIG_COMPAT
const compat_uptr_t __user *compat;
#endif
} ptr;
};
static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
{
const char __user *native;
#ifdef CONFIG_COMPAT
if (unlikely(argv.is_compat)) {
compat_uptr_t compat;
if (get_user(compat, argv.ptr.compat + nr))
return ERR_PTR(-EFAULT);
return compat_ptr(compat);
}
#endif
if (get_user(native, argv.ptr.native + nr))
return ERR_PTR(-EFAULT);
return native;
}
/*
* count() counts the number of strings in array ARGV.
*/
static int count(struct user_arg_ptr argv, int max)
{
int i = 0;
if (argv.ptr.native != NULL) {
for (;;) {
const char __user *p = get_user_arg_ptr(argv, i);
if (!p)
break;
if (IS_ERR(p))
return -EFAULT;
if (i >= max)
return -E2BIG;
++i;
if (fatal_signal_pending(current))
return -ERESTARTNOHAND;
cond_resched();
}
}
return i;
}
static int count_strings_kernel(const char *const *argv)
{
int i;
if (!argv)
return 0;
for (i = 0; argv[i]; ++i) {
if (i >= MAX_ARG_STRINGS)
return -E2BIG;
if (fatal_signal_pending(current))
return -ERESTARTNOHAND;
cond_resched();
}
return i;
}
static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
unsigned long limit)
{
#ifdef CONFIG_MMU
/* Avoid a pathological bprm->p. */
if (bprm->p < limit)
return -E2BIG;
bprm->argmin = bprm->p - limit;
#endif
return 0;
}
static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
{
#ifdef CONFIG_MMU
return bprm->p < bprm->argmin;
#else
return false;
#endif
}
/*
* Calculate bprm->argmin from:
* - _STK_LIM
* - ARG_MAX
* - bprm->rlim_stack.rlim_cur
* - bprm->argc
* - bprm->envc
* - bprm->p
*/
static int bprm_stack_limits(struct linux_binprm *bprm)
{
unsigned long limit, ptr_size;
/*
* Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
* (whichever is smaller) for the argv+env strings.
* This ensures that:
* - the remaining binfmt code will not run out of stack space,
* - the program will have a reasonable amount of stack left
* to work from.
*/
limit = _STK_LIM / 4 * 3;
limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
/*
* We've historically supported up to 32 pages (ARG_MAX)
* of argument strings even with small stacks
*/
limit = max_t(unsigned long, limit, ARG_MAX);
/* Reject totally pathological counts. */
if (bprm->argc < 0 || bprm->envc < 0)
return -E2BIG;
/*
* We must account for the size of all the argv and envp pointers to
* the argv and envp strings, since they will also take up space in
* the stack. They aren't stored until much later when we can't
* signal to the parent that the child has run out of stack space.
* Instead, calculate it here so it's possible to fail gracefully.
*
* In the case of argc = 0, make sure there is space for adding a
* empty string (which will bump argc to 1), to ensure confused
* userspace programs don't start processing from argv[1], thinking
* argc can never be 0, to keep them from walking envp by accident.
* See do_execveat_common().
*/
if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
return -E2BIG;
if (limit <= ptr_size)
return -E2BIG;
limit -= ptr_size;
return bprm_set_stack_limit(bprm, limit);
}
/*
* 'copy_strings()' copies argument/environment strings from the old
* processes's memory to the new process's stack. The call to get_user_pages()
* ensures the destination page is created and not swapped out.
*/
static int copy_strings(int argc, struct user_arg_ptr argv,
struct linux_binprm *bprm)
{
struct page *kmapped_page = NULL;
char *kaddr = NULL;
unsigned long kpos = 0;
int ret;
while (argc-- > 0) {
const char __user *str;
int len;
unsigned long pos;
ret = -EFAULT;
str = get_user_arg_ptr(argv, argc);
if (IS_ERR(str))
goto out;
len = strnlen_user(str, MAX_ARG_STRLEN);
if (!len)
goto out;
ret = -E2BIG;
if (!valid_arg_len(bprm, len))
goto out;
/* We're going to work our way backwards. */
pos = bprm->p;
str += len;
bprm->p -= len;
if (bprm_hit_stack_limit(bprm))
goto out;
while (len > 0) {
int offset, bytes_to_copy;
if (fatal_signal_pending(current)) {
ret = -ERESTARTNOHAND;
goto out;
}
cond_resched();
offset = pos % PAGE_SIZE;
if (offset == 0)
offset = PAGE_SIZE;
bytes_to_copy = offset;
if (bytes_to_copy > len)
bytes_to_copy = len;
offset -= bytes_to_copy;
pos -= bytes_to_copy;
str -= bytes_to_copy;
len -= bytes_to_copy;
if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
struct page *page;
page = get_arg_page(bprm, pos, 1);
if (!page) {
ret = -E2BIG;
goto out;
}
if (kmapped_page) {
flush_dcache_page(kmapped_page);
kunmap_local(kaddr);
put_arg_page(kmapped_page);
}
kmapped_page = page;
kaddr = kmap_local_page(kmapped_page);
kpos = pos & PAGE_MASK;
flush_arg_page(bprm, kpos, kmapped_page);
}
if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
ret = -EFAULT;
goto out;
}
}
}
ret = 0;
out:
if (kmapped_page) {
flush_dcache_page(kmapped_page);
kunmap_local(kaddr);
put_arg_page(kmapped_page);
}
return ret;
}
/*
* Copy and argument/environment string from the kernel to the processes stack.
*/
int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
{
int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
unsigned long pos = bprm->p;
if (len == 0)
return -EFAULT;
if (!valid_arg_len(bprm, len))
return -E2BIG;
/* We're going to work our way backwards. */
arg += len;
bprm->p -= len;
if (bprm_hit_stack_limit(bprm))
return -E2BIG;
while (len > 0) {
unsigned int bytes_to_copy = min_t(unsigned int, len,
min_not_zero(offset_in_page(pos), PAGE_SIZE));
struct page *page;
pos -= bytes_to_copy;
arg -= bytes_to_copy;
len -= bytes_to_copy;
page = get_arg_page(bprm, pos, 1);
if (!page)
return -E2BIG;
flush_arg_page(bprm, pos & PAGE_MASK, page);
memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
put_arg_page(page);
}
return 0;
}
EXPORT_SYMBOL(copy_string_kernel);
static int copy_strings_kernel(int argc, const char *const *argv,
struct linux_binprm *bprm)
{
while (argc-- > 0) {
int ret = copy_string_kernel(argv[argc], bprm);
if (ret < 0)
return ret;
if (fatal_signal_pending(current))
return -ERESTARTNOHAND;
cond_resched();
}
return 0;
}
#ifdef CONFIG_MMU
/*
* During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
* the binfmt code determines where the new stack should reside, we shift it to
* its final location. The process proceeds as follows:
*
* 1) Use shift to calculate the new vma endpoints.
* 2) Extend vma to cover both the old and new ranges. This ensures the
* arguments passed to subsequent functions are consistent.
* 3) Move vma's page tables to the new range.
* 4) Free up any cleared pgd range.
* 5) Shrink the vma to cover only the new range.
*/
static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long old_start = vma->vm_start;
unsigned long old_end = vma->vm_end;
unsigned long length = old_end - old_start;
unsigned long new_start = old_start - shift;
unsigned long new_end = old_end - shift;
VMA_ITERATOR(vmi, mm, new_start);
struct vm_area_struct *next;
struct mmu_gather tlb;
BUG_ON(new_start > new_end);
/*
* ensure there are no vmas between where we want to go
* and where we are
*/
if (vma != vma_next(&vmi))
return -EFAULT;
vma_iter_prev_range(&vmi);
/*
* cover the whole range: [new_start, old_end)
*/
if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
return -ENOMEM;
/*
* move the page tables downwards, on failure we rely on
* process cleanup to remove whatever mess we made.
*/
if (length != move_page_tables(vma, old_start,
vma, new_start, length, false, true))
return -ENOMEM;
lru_add_drain();
tlb_gather_mmu(&tlb, mm);
next = vma_next(&vmi);
if (new_end > old_start) {
/*
* when the old and new regions overlap clear from new_end.
*/
free_pgd_range(&tlb, new_end, old_end, new_end,
next ? next->vm_start : USER_PGTABLES_CEILING);
} else {
/*
* otherwise, clean from old_start; this is done to not touch
* the address space in [new_end, old_start) some architectures
* have constraints on va-space that make this illegal (IA64) -
* for the others its just a little faster.
*/
free_pgd_range(&tlb, old_start, old_end, new_end,
next ? next->vm_start : USER_PGTABLES_CEILING);
}
tlb_finish_mmu(&tlb);
vma_prev(&vmi);
/* Shrink the vma to just the new range */
return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
}
/*
* Finalizes the stack vm_area_struct. The flags and permissions are updated,
* the stack is optionally relocated, and some extra space is added.
*/
int setup_arg_pages(struct linux_binprm *bprm,
unsigned long stack_top,
int executable_stack)
{
unsigned long ret;
unsigned long stack_shift;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = bprm->vma;
struct vm_area_struct *prev = NULL;
unsigned long vm_flags;
unsigned long stack_base;
unsigned long stack_size;
unsigned long stack_expand;
unsigned long rlim_stack;
struct mmu_gather tlb;
struct vma_iterator vmi;
#ifdef CONFIG_STACK_GROWSUP
/* Limit stack size */
stack_base = bprm->rlim_stack.rlim_max;
stack_base = calc_max_stack_size(stack_base);
/* Add space for stack randomization. */
stack_base += (STACK_RND_MASK << PAGE_SHIFT);
/* Make sure we didn't let the argument array grow too large. */
if (vma->vm_end - vma->vm_start > stack_base)
return -ENOMEM;
stack_base = PAGE_ALIGN(stack_top - stack_base);
stack_shift = vma->vm_start - stack_base;
mm->arg_start = bprm->p - stack_shift;
bprm->p = vma->vm_end - stack_shift;
#else
stack_top = arch_align_stack(stack_top);
stack_top = PAGE_ALIGN(stack_top);
if (unlikely(stack_top < mmap_min_addr) ||
unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
return -ENOMEM;
stack_shift = vma->vm_end - stack_top;
bprm->p -= stack_shift;
mm->arg_start = bprm->p;
#endif
if (bprm->loader)
bprm->loader -= stack_shift;
bprm->exec -= stack_shift;
if (mmap_write_lock_killable(mm))
return -EINTR;
vm_flags = VM_STACK_FLAGS;
/*
* Adjust stack execute permissions; explicitly enable for
* EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
* (arch default) otherwise.
*/
if (unlikely(executable_stack == EXSTACK_ENABLE_X))
vm_flags |= VM_EXEC;
else if (executable_stack == EXSTACK_DISABLE_X)
vm_flags &= ~VM_EXEC;
vm_flags |= mm->def_flags;
vm_flags |= VM_STACK_INCOMPLETE_SETUP;
vma_iter_init(&vmi, mm, vma->vm_start);
tlb_gather_mmu(&tlb, mm);
ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
vm_flags);
tlb_finish_mmu(&tlb);
if (ret)
goto out_unlock;
BUG_ON(prev != vma);
if (unlikely(vm_flags & VM_EXEC)) {
pr_warn_once("process '%pD4' started with executable stack\n",
bprm->file);
}
/* Move stack pages down in memory. */
if (stack_shift) {
ret = shift_arg_pages(vma, stack_shift);
if (ret)
goto out_unlock;
}
/* mprotect_fixup is overkill to remove the temporary stack flags */
vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
stack_size = vma->vm_end - vma->vm_start;
/*
* Align this down to a page boundary as expand_stack
* will align it up.
*/
rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
stack_expand = min(rlim_stack, stack_size + stack_expand);
#ifdef CONFIG_STACK_GROWSUP
stack_base = vma->vm_start + stack_expand;
#else
stack_base = vma->vm_end - stack_expand;
#endif
current->mm->start_stack = bprm->p;
ret = expand_stack_locked(vma, stack_base);
if (ret)
ret = -EFAULT;
out_unlock:
mmap_write_unlock(mm);
return ret;
}
EXPORT_SYMBOL(setup_arg_pages);
#else
/*
* Transfer the program arguments and environment from the holding pages
* onto the stack. The provided stack pointer is adjusted accordingly.
*/
int transfer_args_to_stack(struct linux_binprm *bprm,
unsigned long *sp_location)
{
unsigned long index, stop, sp;
int ret = 0;
stop = bprm->p >> PAGE_SHIFT;
sp = *sp_location;
for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
char *src = kmap_local_page(bprm->page[index]) + offset;
sp -= PAGE_SIZE - offset;
if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
ret = -EFAULT;
kunmap_local(src);
if (ret)
goto out;
}
bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
*sp_location = sp;
out:
return ret;
}
EXPORT_SYMBOL(transfer_args_to_stack);
#endif /* CONFIG_MMU */
/*
* On success, caller must call do_close_execat() on the returned
* struct file to close it.
*/
static struct file *do_open_execat(int fd, struct filename *name, int flags)
{
struct file *file;
int err;
struct open_flags open_exec_flags = {
.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
.acc_mode = MAY_EXEC,
.intent = LOOKUP_OPEN,
.lookup_flags = LOOKUP_FOLLOW,
};
if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
return ERR_PTR(-EINVAL);
if (flags & AT_SYMLINK_NOFOLLOW)
open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
if (flags & AT_EMPTY_PATH)
open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
file = do_filp_open(fd, name, &open_exec_flags);
if (IS_ERR(file))
goto out;
/*
* may_open() has already checked for this, so it should be
* impossible to trip now. But we need to be extra cautious
* and check again at the very end too.
*/
err = -EACCES;
if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
path_noexec(&file->f_path)))
goto exit;
out:
return file;
exit:
fput(file);
return ERR_PTR(err);
}
/**
* open_exec - Open a path name for execution
*
* @name: path name to open with the intent of executing it.
*
* Returns ERR_PTR on failure or allocated struct file on success.
*
* As this is a wrapper for the internal do_open_execat(). Also see
* do_close_execat().
*/
struct file *open_exec(const char *name)
{
struct filename *filename = getname_kernel(name);
struct file *f = ERR_CAST(filename);
if (!IS_ERR(filename)) {
f = do_open_execat(AT_FDCWD, filename, 0);
putname(filename);
}
return f;
}
EXPORT_SYMBOL(open_exec);
#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
{
ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
if (res > 0)
flush_icache_user_range(addr, addr + len);
return res;
}
EXPORT_SYMBOL(read_code);
#endif
/*
* Maps the mm_struct mm into the current task struct.
* On success, this function returns with exec_update_lock
* held for writing.
*/
static int exec_mmap(struct mm_struct *mm)
{
struct task_struct *tsk;
struct mm_struct *old_mm, *active_mm;
int ret;
/* Notify parent that we're no longer interested in the old VM */
tsk = current;
old_mm = current->mm;
exec_mm_release(tsk, old_mm);
ret = down_write_killable(&tsk->signal->exec_update_lock);
if (ret)
return ret;
if (old_mm) {
/*
* If there is a pending fatal signal perhaps a signal
* whose default action is to create a coredump get
* out and die instead of going through with the exec.
*/
ret = mmap_read_lock_killable(old_mm);
if (ret) {
up_write(&tsk->signal->exec_update_lock);
return ret;
}
}
task_lock(tsk);
membarrier_exec_mmap(mm);
local_irq_disable();
active_mm = tsk->active_mm;
tsk->active_mm = mm;
tsk->mm = mm;
mm_init_cid(mm);
/*
* This prevents preemption while active_mm is being loaded and
* it and mm are being updated, which could cause problems for
* lazy tlb mm refcounting when these are updated by context
* switches. Not all architectures can handle irqs off over
* activate_mm yet.
*/
if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
local_irq_enable();
activate_mm(active_mm, mm);
if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
local_irq_enable();
lru_gen_add_mm(mm);
task_unlock(tsk);
lru_gen_use_mm(mm);
if (old_mm) {
mmap_read_unlock(old_mm);
BUG_ON(active_mm != old_mm);
setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
mm_update_next_owner(old_mm);
mmput(old_mm);
return 0;
}
mmdrop_lazy_tlb(active_mm);
return 0;
}
static int de_thread(struct task_struct *tsk)
{
struct signal_struct *sig = tsk->signal;
struct sighand_struct *oldsighand = tsk->sighand;
spinlock_t *lock = &oldsighand->siglock;
if (thread_group_empty(tsk))
goto no_thread_group;
/*
* Kill all other threads in the thread group.
*/
spin_lock_irq(lock);
if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
/*
* Another group action in progress, just
* return so that the signal is processed.
*/
spin_unlock_irq(lock);
return -EAGAIN;
}
sig->group_exec_task = tsk;
sig->notify_count = zap_other_threads(tsk);
if (!thread_group_leader(tsk))
sig->notify_count--;
while (sig->notify_count) {
__set_current_state(TASK_KILLABLE);
spin_unlock_irq(lock);
schedule();
if (__fatal_signal_pending(tsk))
goto killed;
spin_lock_irq(lock);
}
spin_unlock_irq(lock);
/*
* At this point all other threads have exited, all we have to
* do is to wait for the thread group leader to become inactive,
* and to assume its PID:
*/
if (!thread_group_leader(tsk)) {
struct task_struct *leader = tsk->group_leader;
for (;;) {
cgroup_threadgroup_change_begin(tsk);
write_lock_irq(&tasklist_lock);
/*
* Do this under tasklist_lock to ensure that
* exit_notify() can't miss ->group_exec_task
*/
sig->notify_count = -1;
if (likely(leader->exit_state))
break;
__set_current_state(TASK_KILLABLE);
write_unlock_irq(&tasklist_lock);
cgroup_threadgroup_change_end(tsk);
schedule();
if (__fatal_signal_pending(tsk))
goto killed;
}
/*
* The only record we have of the real-time age of a
* process, regardless of execs it's done, is start_time.
* All the past CPU time is accumulated in signal_struct
* from sister threads now dead. But in this non-leader
* exec, nothing survives from the original leader thread,
* whose birth marks the true age of this process now.
* When we take on its identity by switching to its PID, we
* also take its birthdate (always earlier than our own).
*/
tsk->start_time = leader->start_time;
tsk->start_boottime = leader->start_boottime;
BUG_ON(!same_thread_group(leader, tsk));
/*
* An exec() starts a new thread group with the
* TGID of the previous thread group. Rehash the
* two threads with a switched PID, and release
* the former thread group leader:
*/
/* Become a process group leader with the old leader's pid.
* The old leader becomes a thread of the this thread group.
*/
exchange_tids(tsk, leader);
transfer_pid(leader, tsk, PIDTYPE_TGID);
transfer_pid(leader, tsk, PIDTYPE_PGID);
transfer_pid(leader, tsk, PIDTYPE_SID);
list_replace_rcu(&leader->tasks, &tsk->tasks);
list_replace_init(&leader->sibling, &tsk->sibling);
tsk->group_leader = tsk;
leader->group_leader = tsk;
tsk->exit_signal = SIGCHLD;
leader->exit_signal = -1;
BUG_ON(leader->exit_state != EXIT_ZOMBIE);
leader->exit_state = EXIT_DEAD;
/*
* We are going to release_task()->ptrace_unlink() silently,
* the tracer can sleep in do_wait(). EXIT_DEAD guarantees
* the tracer won't block again waiting for this thread.
*/
if (unlikely(leader->ptrace))
__wake_up_parent(leader, leader->parent);
write_unlock_irq(&tasklist_lock);
cgroup_threadgroup_change_end(tsk);
release_task(leader);
}
sig->group_exec_task = NULL;
sig->notify_count = 0;
no_thread_group:
/* we have changed execution domain */
tsk->exit_signal = SIGCHLD;
BUG_ON(!thread_group_leader(tsk));
return 0;
killed:
/* protects against exit_notify() and __exit_signal() */
read_lock(&tasklist_lock);
sig->group_exec_task = NULL;
sig->notify_count = 0;
read_unlock(&tasklist_lock);
return -EAGAIN;
}
/*
* This function makes sure the current process has its own signal table,
* so that flush_signal_handlers can later reset the handlers without
* disturbing other processes. (Other processes might share the signal
* table via the CLONE_SIGHAND option to clone().)
*/
static int unshare_sighand(struct task_struct *me)
{
struct sighand_struct *oldsighand = me->sighand;
if (refcount_read(&oldsighand->count) != 1) {
struct sighand_struct *newsighand;
/*
* This ->sighand is shared with the CLONE_SIGHAND
* but not CLONE_THREAD task, switch to the new one.
*/
newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
if (!newsighand)
return -ENOMEM;
refcount_set(&newsighand->count, 1);
write_lock_irq(&tasklist_lock);
spin_lock(&oldsighand->siglock);
memcpy(newsighand->action, oldsighand->action,
sizeof(newsighand->action));
rcu_assign_pointer(me->sighand, newsighand);
spin_unlock(&oldsighand->siglock);
write_unlock_irq(&tasklist_lock);
__cleanup_sighand(oldsighand);
}
return 0;
}
char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
{
task_lock(tsk);
/* Always NUL terminated and zero-padded */
strscpy_pad(buf, tsk->comm, buf_size);
task_unlock(tsk);
return buf;
}
EXPORT_SYMBOL_GPL(__get_task_comm);
/*
* These functions flushes out all traces of the currently running executable
* so that a new one can be started
*/
void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
{
task_lock(tsk);
trace_task_rename(tsk, buf);
strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
task_unlock(tsk);
perf_event_comm(tsk, exec);
}
/*
* Calling this is the point of no return. None of the failures will be
* seen by userspace since either the process is already taking a fatal
* signal (via de_thread() or coredump), or will have SEGV raised
* (after exec_mmap()) by search_binary_handler (see below).
*/
int begin_new_exec(struct linux_binprm * bprm)
{
struct task_struct *me = current;
int retval;
/* Once we are committed compute the creds */
retval = bprm_creds_from_file(bprm);
if (retval)
return retval;
/*
* This tracepoint marks the point before flushing the old exec where
* the current task is still unchanged, but errors are fatal (point of
* no return). The later "sched_process_exec" tracepoint is called after
* the current task has successfully switched to the new exec.
*/
trace_sched_prepare_exec(current, bprm);
/*
* Ensure all future errors are fatal.
*/
bprm->point_of_no_return = true;
/*
* Make this the only thread in the thread group.
*/
retval = de_thread(me);
if (retval)
goto out;
/*
* Cancel any io_uring activity across execve
*/
io_uring_task_cancel();
/* Ensure the files table is not shared. */
retval = unshare_files();
if (retval)
goto out;
/*
* Must be called _before_ exec_mmap() as bprm->mm is
* not visible until then. Doing it here also ensures
* we don't race against replace_mm_exe_file().
*/
retval = set_mm_exe_file(bprm->mm, bprm->file);
if (retval)
goto out;
/* If the binary is not readable then enforce mm->dumpable=0 */
would_dump(bprm, bprm->file);
if (bprm->have_execfd)
would_dump(bprm, bprm->executable);
/*
* Release all of the old mmap stuff
*/
acct_arg_size(bprm, 0);
retval = exec_mmap(bprm->mm);
if (retval)
goto out;
bprm->mm = NULL;
retval = exec_task_namespaces();
if (retval)
goto out_unlock;
#ifdef CONFIG_POSIX_TIMERS
spin_lock_irq(&me->sighand->siglock);
posix_cpu_timers_exit(me);
spin_unlock_irq(&me->sighand->siglock);
exit_itimers(me);
flush_itimer_signals();
#endif
/*
* Make the signal table private.
*/
retval = unshare_sighand(me);
if (retval)
goto out_unlock;
me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
PF_NOFREEZE | PF_NO_SETAFFINITY);
flush_thread();
me->personality &= ~bprm->per_clear;
clear_syscall_work_syscall_user_dispatch(me);
/*
* We have to apply CLOEXEC before we change whether the process is
* dumpable (in setup_new_exec) to avoid a race with a process in userspace
* trying to access the should-be-closed file descriptors of a process
* undergoing exec(2).
*/
do_close_on_exec(me->files);
if (bprm->secureexec) {
/* Make sure parent cannot signal privileged process. */
me->pdeath_signal = 0;
/*
* For secureexec, reset the stack limit to sane default to
* avoid bad behavior from the prior rlimits. This has to
* happen before arch_pick_mmap_layout(), which examines
* RLIMIT_STACK, but after the point of no return to avoid
* needing to clean up the change on failure.
*/
if (bprm->rlim_stack.rlim_cur > _STK_LIM)
bprm->rlim_stack.rlim_cur = _STK_LIM;
}
me->sas_ss_sp = me->sas_ss_size = 0;
/*
* Figure out dumpability. Note that this checking only of current
* is wrong, but userspace depends on it. This should be testing
* bprm->secureexec instead.
*/
if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
!(uid_eq(current_euid(), current_uid()) &&
gid_eq(current_egid(), current_gid())))
set_dumpable(current->mm, suid_dumpable);
else
set_dumpable(current->mm, SUID_DUMP_USER);
perf_event_exec();
__set_task_comm(me, kbasename(bprm->filename), true);
/* An exec changes our domain. We are no longer part of the thread
group */
WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
flush_signal_handlers(me, 0);
retval = set_cred_ucounts(bprm->cred);
if (retval < 0)
goto out_unlock;
/*
* install the new credentials for this executable
*/
security_bprm_committing_creds(bprm);
commit_creds(bprm->cred);
bprm->cred = NULL;
/*
* Disable monitoring for regular users
* when executing setuid binaries. Must
* wait until new credentials are committed
* by commit_creds() above
*/
if (get_dumpable(me->mm) != SUID_DUMP_USER)
perf_event_exit_task(me);
/*
* cred_guard_mutex must be held at least to this point to prevent
* ptrace_attach() from altering our determination of the task's
* credentials; any time after this it may be unlocked.
*/
security_bprm_committed_creds(bprm);
/* Pass the opened binary to the interpreter. */
if (bprm->have_execfd) {
retval = get_unused_fd_flags(0);
if (retval < 0)
goto out_unlock;
fd_install(retval, bprm->executable);
bprm->executable = NULL;
bprm->execfd = retval;
}
return 0;
out_unlock:
up_write(&me->signal->exec_update_lock);
if (!bprm->cred)
mutex_unlock(&me->signal->cred_guard_mutex);
out:
return retval;
}
EXPORT_SYMBOL(begin_new_exec);
void would_dump(struct linux_binprm *bprm, struct file *file)
{
struct inode *inode = file_inode(file);
struct mnt_idmap *idmap = file_mnt_idmap(file);
if (inode_permission(idmap, inode, MAY_READ) < 0) {
struct user_namespace *old, *user_ns;
bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
/* Ensure mm->user_ns contains the executable */
user_ns = old = bprm->mm->user_ns;
while ((user_ns != &init_user_ns) &&
!privileged_wrt_inode_uidgid(user_ns, idmap, inode))
user_ns = user_ns->parent;
if (old != user_ns) {
bprm->mm->user_ns = get_user_ns(user_ns);
put_user_ns(old);
}
}
}
EXPORT_SYMBOL(would_dump);
void setup_new_exec(struct linux_binprm * bprm)
{
/* Setup things that can depend upon the personality */
struct task_struct *me = current;
arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
arch_setup_new_exec();
/* Set the new mm task size. We have to do that late because it may
* depend on TIF_32BIT which is only updated in flush_thread() on
* some architectures like powerpc
*/
me->mm->task_size = TASK_SIZE;
up_write(&me->signal->exec_update_lock);
mutex_unlock(&me->signal->cred_guard_mutex);
}
EXPORT_SYMBOL(setup_new_exec);
/* Runs immediately before start_thread() takes over. */
void finalize_exec(struct linux_binprm *bprm)
{
/* Store any stack rlimit changes before starting thread. */
task_lock(current->group_leader);
current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
task_unlock(current->group_leader);
}
EXPORT_SYMBOL(finalize_exec);
/*
* Prepare credentials and lock ->cred_guard_mutex.
* setup_new_exec() commits the new creds and drops the lock.
* Or, if exec fails before, free_bprm() should release ->cred
* and unlock.
*/
static int prepare_bprm_creds(struct linux_binprm *bprm)
{
if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
return -ERESTARTNOINTR;
bprm->cred = prepare_exec_creds();
if (likely(bprm->cred))
return 0;
mutex_unlock(&current->signal->cred_guard_mutex);
return -ENOMEM;
}
/* Matches do_open_execat() */
static void do_close_execat(struct file *file)
{
if (file)
fput(file);
}
static void free_bprm(struct linux_binprm *bprm)
{
if (bprm->mm) {
acct_arg_size(bprm, 0);
mmput(bprm->mm);
}
free_arg_pages(bprm);
if (bprm->cred) {
mutex_unlock(&current->signal->cred_guard_mutex);
abort_creds(bprm->cred);
}
do_close_execat(bprm->file);
if (bprm->executable)
fput(bprm->executable);
/* If a binfmt changed the interp, free it. */
if (bprm->interp != bprm->filename)
kfree(bprm->interp);
kfree(bprm->fdpath);
kfree(bprm);
}
static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
{
struct linux_binprm *bprm;
struct file *file;
int retval = -ENOMEM;
file = do_open_execat(fd, filename, flags);
if (IS_ERR(file))
return ERR_CAST(file);
bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
if (!bprm) {
do_close_execat(file);
return ERR_PTR(-ENOMEM);
}
bprm->file = file;
if (fd == AT_FDCWD || filename->name[0] == '/') {
bprm->filename = filename->name;
} else {
if (filename->name[0] == '\0')
bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
else
bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
fd, filename->name);
if (!bprm->fdpath)
goto out_free;
/*
* Record that a name derived from an O_CLOEXEC fd will be
* inaccessible after exec. This allows the code in exec to
* choose to fail when the executable is not mmaped into the
* interpreter and an open file descriptor is not passed to
* the interpreter. This makes for a better user experience
* than having the interpreter start and then immediately fail
* when it finds the executable is inaccessible.
*/
if (get_close_on_exec(fd))
bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
bprm->filename = bprm->fdpath;
}
bprm->interp = bprm->filename;
retval = bprm_mm_init(bprm);
if (!retval)
return bprm;
out_free:
free_bprm(bprm);
return ERR_PTR(retval);
}
int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
{
/* If a binfmt changed the interp, free it first. */
if (bprm->interp != bprm->filename)
kfree(bprm->interp);
bprm->interp = kstrdup(interp, GFP_KERNEL);
if (!bprm->interp)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(bprm_change_interp);
/*
* determine how safe it is to execute the proposed program
* - the caller must hold ->cred_guard_mutex to protect against
* PTRACE_ATTACH or seccomp thread-sync
*/
static void check_unsafe_exec(struct linux_binprm *bprm)
{
struct task_struct *p = current, *t;
unsigned n_fs;
if (p->ptrace)
bprm->unsafe |= LSM_UNSAFE_PTRACE;
/*
* This isn't strictly necessary, but it makes it harder for LSMs to
* mess up.
*/
if (task_no_new_privs(current))
bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
/*
* If another task is sharing our fs, we cannot safely
* suid exec because the differently privileged task
* will be able to manipulate the current directory, etc.
* It would be nice to force an unshare instead...
*/
n_fs = 1;
spin_lock(&p->fs->lock);
rcu_read_lock();
for_other_threads(p, t) {
if (t->fs == p->fs)
n_fs++;
}
rcu_read_unlock();
/* "users" and "in_exec" locked for copy_fs() */
if (p->fs->users > n_fs)
bprm->unsafe |= LSM_UNSAFE_SHARE;
else
p->fs->in_exec = 1;
spin_unlock(&p->fs->lock);
}
static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
{
/* Handle suid and sgid on files */
struct mnt_idmap *idmap;
struct inode *inode = file_inode(file);
unsigned int mode;
vfsuid_t vfsuid;
vfsgid_t vfsgid;
if (!mnt_may_suid(file->f_path.mnt))
return;
if (task_no_new_privs(current))
return;
mode = READ_ONCE(inode->i_mode);
if (!(mode & (S_ISUID|S_ISGID)))
return;
idmap = file_mnt_idmap(file);
/* Be careful if suid/sgid is set */
inode_lock(inode);
/* reload atomically mode/uid/gid now that lock held */
mode = inode->i_mode;
vfsuid = i_uid_into_vfsuid(idmap, inode);
vfsgid = i_gid_into_vfsgid(idmap, inode);
inode_unlock(inode);
/* We ignore suid/sgid if there are no mappings for them in the ns */
if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
!vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
return;
if (mode & S_ISUID) {
bprm->per_clear |= PER_CLEAR_ON_SETID;
bprm->cred->euid = vfsuid_into_kuid(vfsuid);
}
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
bprm->per_clear |= PER_CLEAR_ON_SETID;
bprm->cred->egid = vfsgid_into_kgid(vfsgid);
}
}
/*
* Compute brpm->cred based upon the final binary.
*/
static int bprm_creds_from_file(struct linux_binprm *bprm)
{
/* Compute creds based on which file? */
struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
bprm_fill_uid(bprm, file);
return security_bprm_creds_from_file(bprm, file);
}
/*
* Fill the binprm structure from the inode.
* Read the first BINPRM_BUF_SIZE bytes
*
* This may be called multiple times for binary chains (scripts for example).
*/
static int prepare_binprm(struct linux_binprm *bprm)
{
loff_t pos = 0;
memset(bprm->buf, 0, BINPRM_BUF_SIZE);
return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
}
/*
* Arguments are '\0' separated strings found at the location bprm->p
* points to; chop off the first by relocating brpm->p to right after
* the first '\0' encountered.
*/
int remove_arg_zero(struct linux_binprm *bprm)
{
unsigned long offset;
char *kaddr;
struct page *page;
if (!bprm->argc)
return 0;
do {
offset = bprm->p & ~PAGE_MASK;
page = get_arg_page(bprm, bprm->p, 0);
if (!page)
return -EFAULT;
kaddr = kmap_local_page(page);
for (; offset < PAGE_SIZE && kaddr[offset];
offset++, bprm->p++)
;
kunmap_local(kaddr);
put_arg_page(page);
} while (offset == PAGE_SIZE);
bprm->p++;
bprm->argc--;
return 0;
}
EXPORT_SYMBOL(remove_arg_zero);
#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
/*
* cycle the list of binary formats handler, until one recognizes the image
*/
static int search_binary_handler(struct linux_binprm *bprm)
{
bool need_retry = IS_ENABLED(CONFIG_MODULES);
struct linux_binfmt *fmt;
int retval;
retval = prepare_binprm(bprm);
if (retval < 0)
return retval;
retval = security_bprm_check(bprm);
if (retval)
return retval;
retval = -ENOENT;
retry:
read_lock(&binfmt_lock);
list_for_each_entry(fmt, &formats, lh) {
if (!try_module_get(fmt->module))
continue;
read_unlock(&binfmt_lock);
retval = fmt->load_binary(bprm);
read_lock(&binfmt_lock);
put_binfmt(fmt);
if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
read_unlock(&binfmt_lock);
return retval;
}
}
read_unlock(&binfmt_lock);
if (need_retry) {
if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
printable(bprm->buf[2]) && printable(bprm->buf[3]))
return retval;
if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
return retval;
need_retry = false;
goto retry;
}
return retval;
}
/* binfmt handlers will call back into begin_new_exec() on success. */
static int exec_binprm(struct linux_binprm *bprm)
{
pid_t old_pid, old_vpid;
int ret, depth;
/* Need to fetch pid before load_binary changes it */
old_pid = current->pid;
rcu_read_lock();
old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
rcu_read_unlock();
/* This allows 4 levels of binfmt rewrites before failing hard. */
for (depth = 0;; depth++) {
struct file *exec;
if (depth > 5)
return -ELOOP;
ret = search_binary_handler(bprm);
if (ret < 0)
return ret;
if (!bprm->interpreter)
break;
exec = bprm->file;
bprm->file = bprm->interpreter;
bprm->interpreter = NULL;
if (unlikely(bprm->have_execfd)) {
if (bprm->executable) {
fput(exec);
return -ENOEXEC;
}
bprm->executable = exec;
} else
fput(exec);
}
audit_bprm(bprm);
trace_sched_process_exec(current, old_pid, bprm);
ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
proc_exec_connector(current);
return 0;
}
static int bprm_execve(struct linux_binprm *bprm)
{
int retval;
retval = prepare_bprm_creds(bprm);
if (retval)
return retval;
/*
* Check for unsafe execution states before exec_binprm(), which
* will call back into begin_new_exec(), into bprm_creds_from_file(),
* where setuid-ness is evaluated.
*/
check_unsafe_exec(bprm);
current->in_execve = 1;
sched_mm_cid_before_execve(current);
sched_exec();
/* Set the unchanging part of bprm->cred */
retval = security_bprm_creds_for_exec(bprm);
if (retval)
goto out;
retval = exec_binprm(bprm);
if (retval < 0)
goto out;
sched_mm_cid_after_execve(current);
/* execve succeeded */
current->fs->in_exec = 0;
current->in_execve = 0;
rseq_execve(current);
user_events_execve(current);
acct_update_integrals(current);
task_numa_free(current, false);
return retval;
out:
/*
* If past the point of no return ensure the code never
* returns to the userspace process. Use an existing fatal
* signal if present otherwise terminate the process with
* SIGSEGV.
*/
if (bprm->point_of_no_return && !fatal_signal_pending(current))
force_fatal_sig(SIGSEGV);
sched_mm_cid_after_execve(current);
current->fs->in_exec = 0;
current->in_execve = 0;
return retval;
}
static int do_execveat_common(int fd, struct filename *filename,
struct user_arg_ptr argv,
struct user_arg_ptr envp,
int flags)
{
struct linux_binprm *bprm;
int retval;
if (IS_ERR(filename))
return PTR_ERR(filename);
/*
* We move the actual failure in case of RLIMIT_NPROC excess from
* set*uid() to execve() because too many poorly written programs
* don't check setuid() return code. Here we additionally recheck
* whether NPROC limit is still exceeded.
*/
if ((current->flags & PF_NPROC_EXCEEDED) &&
is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
retval = -EAGAIN;
goto out_ret;
}
/* We're below the limit (still or again), so we don't want to make
* further execve() calls fail. */
current->flags &= ~PF_NPROC_EXCEEDED;
bprm = alloc_bprm(fd, filename, flags);
if (IS_ERR(bprm)) {
retval = PTR_ERR(bprm);
goto out_ret;
}
retval = count(argv, MAX_ARG_STRINGS);
if (retval == 0)
pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
current->comm, bprm->filename);
if (retval < 0)
goto out_free;
bprm->argc = retval;
retval = count(envp, MAX_ARG_STRINGS);
if (retval < 0)
goto out_free;
bprm->envc = retval;
retval = bprm_stack_limits(bprm);
if (retval < 0)
goto out_free;
retval = copy_string_kernel(bprm->filename, bprm);
if (retval < 0)
goto out_free;
bprm->exec = bprm->p;
retval = copy_strings(bprm->envc, envp, bprm);
if (retval < 0)
goto out_free;
retval = copy_strings(bprm->argc, argv, bprm);
if (retval < 0)
goto out_free;
/*
* When argv is empty, add an empty string ("") as argv[0] to
* ensure confused userspace programs that start processing
* from argv[1] won't end up walking envp. See also
* bprm_stack_limits().
*/
if (bprm->argc == 0) {
retval = copy_string_kernel("", bprm);
if (retval < 0)
goto out_free;
bprm->argc = 1;
}
retval = bprm_execve(bprm);
out_free:
free_bprm(bprm);
out_ret:
putname(filename);
return retval;
}
int kernel_execve(const char *kernel_filename,
const char *const *argv, const char *const *envp)
{
struct filename *filename;
struct linux_binprm *bprm;
int fd = AT_FDCWD;
int retval;
/* It is non-sense for kernel threads to call execve */
if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
return -EINVAL;
filename = getname_kernel(kernel_filename);
if (IS_ERR(filename))
return PTR_ERR(filename);
bprm = alloc_bprm(fd, filename, 0);
if (IS_ERR(bprm)) {
retval = PTR_ERR(bprm);
goto out_ret;
}
retval = count_strings_kernel(argv);
if (WARN_ON_ONCE(retval == 0))
retval = -EINVAL;
if (retval < 0)
goto out_free;
bprm->argc = retval;
retval = count_strings_kernel(envp);
if (retval < 0)
goto out_free;
bprm->envc = retval;
retval = bprm_stack_limits(bprm);
if (retval < 0)
goto out_free;
retval = copy_string_kernel(bprm->filename, bprm);
if (retval < 0)
goto out_free;
bprm->exec = bprm->p;
retval = copy_strings_kernel(bprm->envc, envp, bprm);
if (retval < 0)
goto out_free;
retval = copy_strings_kernel(bprm->argc, argv, bprm);
if (retval < 0)
goto out_free;
retval = bprm_execve(bprm);
out_free:
free_bprm(bprm);
out_ret:
putname(filename);
return retval;
}
static int do_execve(struct filename *filename,
const char __user *const __user *__argv,
const char __user *const __user *__envp)
{
struct user_arg_ptr argv = { .ptr.native = __argv };
struct user_arg_ptr envp = { .ptr.native = __envp };
return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
}
static int do_execveat(int fd, struct filename *filename,
const char __user *const __user *__argv,
const char __user *const __user *__envp,
int flags)
{
struct user_arg_ptr argv = { .ptr.native = __argv };
struct user_arg_ptr envp = { .ptr.native = __envp };
return do_execveat_common(fd, filename, argv, envp, flags);
}
#ifdef CONFIG_COMPAT
static int compat_do_execve(struct filename *filename,
const compat_uptr_t __user *__argv,
const compat_uptr_t __user *__envp)
{
struct user_arg_ptr argv = {
.is_compat = true,
.ptr.compat = __argv,
};
struct user_arg_ptr envp = {
.is_compat = true,
.ptr.compat = __envp,
};
return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
}
static int compat_do_execveat(int fd, struct filename *filename,
const compat_uptr_t __user *__argv,
const compat_uptr_t __user *__envp,
int flags)
{
struct user_arg_ptr argv = {
.is_compat = true,
.ptr.compat = __argv,
};
struct user_arg_ptr envp = {
.is_compat = true,
.ptr.compat = __envp,
};
return do_execveat_common(fd, filename, argv, envp, flags);
}
#endif
void set_binfmt(struct linux_binfmt *new)
{
struct mm_struct *mm = current->mm;
if (mm->binfmt)
module_put(mm->binfmt->module);
mm->binfmt = new;
if (new)
__module_get(new->module);
}
EXPORT_SYMBOL(set_binfmt);
/*
* set_dumpable stores three-value SUID_DUMP_* into mm->flags.
*/
void set_dumpable(struct mm_struct *mm, int value)
{
if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
return;
set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
}
SYSCALL_DEFINE3(execve,
const char __user *, filename,
const char __user *const __user *, argv,
const char __user *const __user *, envp)
{
return do_execve(getname(filename), argv, envp);
}
SYSCALL_DEFINE5(execveat,
int, fd, const char __user *, filename,
const char __user *const __user *, argv,
const char __user *const __user *, envp,
int, flags)
{
return do_execveat(fd,
getname_uflags(filename, flags),
argv, envp, flags);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
const compat_uptr_t __user *, argv,
const compat_uptr_t __user *, envp)
{
return compat_do_execve(getname(filename), argv, envp);
}
COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
const char __user *, filename,
const compat_uptr_t __user *, argv,
const compat_uptr_t __user *, envp,
int, flags)
{
return compat_do_execveat(fd,
getname_uflags(filename, flags),
argv, envp, flags);
}
#endif
#ifdef CONFIG_SYSCTL
static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!error)
validate_coredump_safety();
return error;
}
static struct ctl_table fs_exec_sysctls[] = {
{
.procname = "suid_dumpable",
.data = &suid_dumpable,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax_coredump,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_TWO,
},
};
static int __init init_fs_exec_sysctls(void)
{
register_sysctl_init("fs", fs_exec_sysctls);
return 0;
}
fs_initcall(init_fs_exec_sysctls);
#endif /* CONFIG_SYSCTL */
#ifdef CONFIG_EXEC_KUNIT_TEST
#include "exec_test.c"
#endif