linux-stable/arch/x86/boot/compressed/kaslr.c
Kees Cook 33f98a9798 x86/boot/compressed: Avoid duplicate malloc() implementations
The early malloc() and free() implementation in include/linux/decompress/mm.h
(which is also included by the static decompressors) is static. This is
fine when the only thing interested in using malloc() is the decompression
code, but the x86 early boot environment may use malloc() in a couple places,
leading to a potential collision when the static copies of the available
memory region ("malloc_ptr") gets reset to the global "free_mem_ptr" value.
As it happened, the existing usage pattern was accidentally safe because each
user did 1 malloc() and 1 free() before returning and were not nested:

extract_kernel() (misc.c)
	choose_random_location() (kaslr.c)
		mem_avoid_init()
			handle_mem_options()
				malloc()
				...
				free()
	...
	parse_elf() (misc.c)
		malloc()
		...
		free()

Once the future FGKASLR series is added, however, it will insert
additional malloc() calls local to fgkaslr.c in the middle of
parse_elf()'s malloc()/free() pair:

	parse_elf() (misc.c)
		malloc()
		if (...) {
			layout_randomized_image(output, &ehdr, phdrs);
				malloc() <- boom
				...
		else
			layout_image(output, &ehdr, phdrs);
		free()

To avoid collisions, there must be a single implementation of malloc().
Adjust include/linux/decompress/mm.h so that visibility can be
controlled, provide prototypes in misc.h, and implement the functions in
misc.c. This also results in a small size savings:

$ size vmlinux.before vmlinux.after
   text    data     bss     dec     hex filename
8842314     468  178320 9021102  89a6ae vmlinux.before
8842240     468  178320 9021028  89a664 vmlinux.after

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211013175742.1197608-4-keescook@chromium.org
2021-10-27 11:07:59 +02:00

873 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* kaslr.c
*
* This contains the routines needed to generate a reasonable level of
* entropy to choose a randomized kernel base address offset in support
* of Kernel Address Space Layout Randomization (KASLR). Additionally
* handles walking the physical memory maps (and tracking memory regions
* to avoid) in order to select a physical memory location that can
* contain the entire properly aligned running kernel image.
*
*/
/*
* isspace() in linux/ctype.h is expected by next_args() to filter
* out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
* since isdigit() is implemented in both of them. Hence disable it
* here.
*/
#define BOOT_CTYPE_H
#include "misc.h"
#include "error.h"
#include "../string.h"
#include <generated/compile.h>
#include <linux/module.h>
#include <linux/uts.h>
#include <linux/utsname.h>
#include <linux/ctype.h>
#include <linux/efi.h>
#include <generated/utsrelease.h>
#include <asm/efi.h>
#define _SETUP
#include <asm/setup.h> /* For COMMAND_LINE_SIZE */
#undef _SETUP
extern unsigned long get_cmd_line_ptr(void);
/* Simplified build-specific string for starting entropy. */
static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
static unsigned long rotate_xor(unsigned long hash, const void *area,
size_t size)
{
size_t i;
unsigned long *ptr = (unsigned long *)area;
for (i = 0; i < size / sizeof(hash); i++) {
/* Rotate by odd number of bits and XOR. */
hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
hash ^= ptr[i];
}
return hash;
}
/* Attempt to create a simple but unpredictable starting entropy. */
static unsigned long get_boot_seed(void)
{
unsigned long hash = 0;
hash = rotate_xor(hash, build_str, sizeof(build_str));
hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
return hash;
}
#define KASLR_COMPRESSED_BOOT
#include "../../lib/kaslr.c"
/* Only supporting at most 4 unusable memmap regions with kaslr */
#define MAX_MEMMAP_REGIONS 4
static bool memmap_too_large;
/*
* Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
* It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
*/
static u64 mem_limit;
/* Number of immovable memory regions */
static int num_immovable_mem;
enum mem_avoid_index {
MEM_AVOID_ZO_RANGE = 0,
MEM_AVOID_INITRD,
MEM_AVOID_CMDLINE,
MEM_AVOID_BOOTPARAMS,
MEM_AVOID_MEMMAP_BEGIN,
MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
MEM_AVOID_MAX,
};
static struct mem_vector mem_avoid[MEM_AVOID_MAX];
static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
{
/* Item one is entirely before item two. */
if (one->start + one->size <= two->start)
return false;
/* Item one is entirely after item two. */
if (one->start >= two->start + two->size)
return false;
return true;
}
char *skip_spaces(const char *str)
{
while (isspace(*str))
++str;
return (char *)str;
}
#include "../../../../lib/ctype.c"
#include "../../../../lib/cmdline.c"
enum parse_mode {
PARSE_MEMMAP,
PARSE_EFI,
};
static int
parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode)
{
char *oldp;
if (!p)
return -EINVAL;
/* We don't care about this option here */
if (!strncmp(p, "exactmap", 8))
return -EINVAL;
oldp = p;
*size = memparse(p, &p);
if (p == oldp)
return -EINVAL;
switch (*p) {
case '#':
case '$':
case '!':
*start = memparse(p + 1, &p);
return 0;
case '@':
if (mode == PARSE_MEMMAP) {
/*
* memmap=nn@ss specifies usable region, should
* be skipped
*/
*size = 0;
} else {
u64 flags;
/*
* efi_fake_mem=nn@ss:attr the attr specifies
* flags that might imply a soft-reservation.
*/
*start = memparse(p + 1, &p);
if (p && *p == ':') {
p++;
if (kstrtoull(p, 0, &flags) < 0)
*size = 0;
else if (flags & EFI_MEMORY_SP)
return 0;
}
*size = 0;
}
fallthrough;
default:
/*
* If w/o offset, only size specified, memmap=nn[KMG] has the
* same behaviour as mem=nn[KMG]. It limits the max address
* system can use. Region above the limit should be avoided.
*/
*start = 0;
return 0;
}
return -EINVAL;
}
static void mem_avoid_memmap(enum parse_mode mode, char *str)
{
static int i;
if (i >= MAX_MEMMAP_REGIONS)
return;
while (str && (i < MAX_MEMMAP_REGIONS)) {
int rc;
u64 start, size;
char *k = strchr(str, ',');
if (k)
*k++ = 0;
rc = parse_memmap(str, &start, &size, mode);
if (rc < 0)
break;
str = k;
if (start == 0) {
/* Store the specified memory limit if size > 0 */
if (size > 0 && size < mem_limit)
mem_limit = size;
continue;
}
mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
i++;
}
/* More than 4 memmaps, fail kaslr */
if ((i >= MAX_MEMMAP_REGIONS) && str)
memmap_too_large = true;
}
/* Store the number of 1GB huge pages which users specified: */
static unsigned long max_gb_huge_pages;
static void parse_gb_huge_pages(char *param, char *val)
{
static bool gbpage_sz;
char *p;
if (!strcmp(param, "hugepagesz")) {
p = val;
if (memparse(p, &p) != PUD_SIZE) {
gbpage_sz = false;
return;
}
if (gbpage_sz)
warn("Repeatedly set hugeTLB page size of 1G!\n");
gbpage_sz = true;
return;
}
if (!strcmp(param, "hugepages") && gbpage_sz) {
p = val;
max_gb_huge_pages = simple_strtoull(p, &p, 0);
return;
}
}
static void handle_mem_options(void)
{
char *args = (char *)get_cmd_line_ptr();
size_t len;
char *tmp_cmdline;
char *param, *val;
u64 mem_size;
if (!args)
return;
len = strnlen(args, COMMAND_LINE_SIZE-1);
tmp_cmdline = malloc(len + 1);
if (!tmp_cmdline)
error("Failed to allocate space for tmp_cmdline");
memcpy(tmp_cmdline, args, len);
tmp_cmdline[len] = 0;
args = tmp_cmdline;
/* Chew leading spaces */
args = skip_spaces(args);
while (*args) {
args = next_arg(args, &param, &val);
/* Stop at -- */
if (!val && strcmp(param, "--") == 0)
break;
if (!strcmp(param, "memmap")) {
mem_avoid_memmap(PARSE_MEMMAP, val);
} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
parse_gb_huge_pages(param, val);
} else if (!strcmp(param, "mem")) {
char *p = val;
if (!strcmp(p, "nopentium"))
continue;
mem_size = memparse(p, &p);
if (mem_size == 0)
break;
if (mem_size < mem_limit)
mem_limit = mem_size;
} else if (!strcmp(param, "efi_fake_mem")) {
mem_avoid_memmap(PARSE_EFI, val);
}
}
free(tmp_cmdline);
return;
}
/*
* In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
* on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
*
* The mem_avoid array is used to store the ranges that need to be avoided
* when KASLR searches for an appropriate random address. We must avoid any
* regions that are unsafe to overlap with during decompression, and other
* things like the initrd, cmdline and boot_params. This comment seeks to
* explain mem_avoid as clearly as possible since incorrect mem_avoid
* memory ranges lead to really hard to debug boot failures.
*
* The initrd, cmdline, and boot_params are trivial to identify for
* avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
* MEM_AVOID_BOOTPARAMS respectively below.
*
* What is not obvious how to avoid is the range of memory that is used
* during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
* the compressed kernel (ZO) and its run space, which is used to extract
* the uncompressed kernel (VO) and relocs.
*
* ZO's full run size sits against the end of the decompression buffer, so
* we can calculate where text, data, bss, etc of ZO are positioned more
* easily.
*
* For additional background, the decompression calculations can be found
* in header.S, and the memory diagram is based on the one found in misc.c.
*
* The following conditions are already enforced by the image layouts and
* associated code:
* - input + input_size >= output + output_size
* - kernel_total_size <= init_size
* - kernel_total_size <= output_size (see Note below)
* - output + init_size >= output + output_size
*
* (Note that kernel_total_size and output_size have no fundamental
* relationship, but output_size is passed to choose_random_location
* as a maximum of the two. The diagram is showing a case where
* kernel_total_size is larger than output_size, but this case is
* handled by bumping output_size.)
*
* The above conditions can be illustrated by a diagram:
*
* 0 output input input+input_size output+init_size
* | | | | |
* | | | | |
* |-----|--------|--------|--------------|-----------|--|-------------|
* | | |
* | | |
* output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size
*
* [output, output+init_size) is the entire memory range used for
* extracting the compressed image.
*
* [output, output+kernel_total_size) is the range needed for the
* uncompressed kernel (VO) and its run size (bss, brk, etc).
*
* [output, output+output_size) is VO plus relocs (i.e. the entire
* uncompressed payload contained by ZO). This is the area of the buffer
* written to during decompression.
*
* [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
* range of the copied ZO and decompression code. (i.e. the range
* covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
*
* [input, input+input_size) is the original copied compressed image (ZO)
* (i.e. it does not include its run size). This range must be avoided
* because it contains the data used for decompression.
*
* [input+input_size, output+init_size) is [_text, _end) for ZO. This
* range includes ZO's heap and stack, and must be avoided since it
* performs the decompression.
*
* Since the above two ranges need to be avoided and they are adjacent,
* they can be merged, resulting in: [input, output+init_size) which
* becomes the MEM_AVOID_ZO_RANGE below.
*/
static void mem_avoid_init(unsigned long input, unsigned long input_size,
unsigned long output)
{
unsigned long init_size = boot_params->hdr.init_size;
u64 initrd_start, initrd_size;
unsigned long cmd_line, cmd_line_size;
/*
* Avoid the region that is unsafe to overlap during
* decompression.
*/
mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
/* Avoid initrd. */
initrd_start = (u64)boot_params->ext_ramdisk_image << 32;
initrd_start |= boot_params->hdr.ramdisk_image;
initrd_size = (u64)boot_params->ext_ramdisk_size << 32;
initrd_size |= boot_params->hdr.ramdisk_size;
mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
/* No need to set mapping for initrd, it will be handled in VO. */
/* Avoid kernel command line. */
cmd_line = get_cmd_line_ptr();
/* Calculate size of cmd_line. */
if (cmd_line) {
cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
}
/* Avoid boot parameters. */
mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
/* We don't need to set a mapping for setup_data. */
/* Mark the memmap regions we need to avoid */
handle_mem_options();
/* Enumerate the immovable memory regions */
num_immovable_mem = count_immovable_mem_regions();
}
/*
* Does this memory vector overlap a known avoided area? If so, record the
* overlap region with the lowest address.
*/
static bool mem_avoid_overlap(struct mem_vector *img,
struct mem_vector *overlap)
{
int i;
struct setup_data *ptr;
u64 earliest = img->start + img->size;
bool is_overlapping = false;
for (i = 0; i < MEM_AVOID_MAX; i++) {
if (mem_overlaps(img, &mem_avoid[i]) &&
mem_avoid[i].start < earliest) {
*overlap = mem_avoid[i];
earliest = overlap->start;
is_overlapping = true;
}
}
/* Avoid all entries in the setup_data linked list. */
ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
while (ptr) {
struct mem_vector avoid;
avoid.start = (unsigned long)ptr;
avoid.size = sizeof(*ptr) + ptr->len;
if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
*overlap = avoid;
earliest = overlap->start;
is_overlapping = true;
}
if (ptr->type == SETUP_INDIRECT &&
((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
avoid.start = ((struct setup_indirect *)ptr->data)->addr;
avoid.size = ((struct setup_indirect *)ptr->data)->len;
if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
*overlap = avoid;
earliest = overlap->start;
is_overlapping = true;
}
}
ptr = (struct setup_data *)(unsigned long)ptr->next;
}
return is_overlapping;
}
struct slot_area {
u64 addr;
unsigned long num;
};
#define MAX_SLOT_AREA 100
static struct slot_area slot_areas[MAX_SLOT_AREA];
static unsigned int slot_area_index;
static unsigned long slot_max;
static void store_slot_info(struct mem_vector *region, unsigned long image_size)
{
struct slot_area slot_area;
if (slot_area_index == MAX_SLOT_AREA)
return;
slot_area.addr = region->start;
slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
slot_areas[slot_area_index++] = slot_area;
slot_max += slot_area.num;
}
/*
* Skip as many 1GB huge pages as possible in the passed region
* according to the number which users specified:
*/
static void
process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
{
u64 pud_start, pud_end;
unsigned long gb_huge_pages;
struct mem_vector tmp;
if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
store_slot_info(region, image_size);
return;
}
/* Are there any 1GB pages in the region? */
pud_start = ALIGN(region->start, PUD_SIZE);
pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
/* No good 1GB huge pages found: */
if (pud_start >= pud_end) {
store_slot_info(region, image_size);
return;
}
/* Check if the head part of the region is usable. */
if (pud_start >= region->start + image_size) {
tmp.start = region->start;
tmp.size = pud_start - region->start;
store_slot_info(&tmp, image_size);
}
/* Skip the good 1GB pages. */
gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
if (gb_huge_pages > max_gb_huge_pages) {
pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
max_gb_huge_pages = 0;
} else {
max_gb_huge_pages -= gb_huge_pages;
}
/* Check if the tail part of the region is usable. */
if (region->start + region->size >= pud_end + image_size) {
tmp.start = pud_end;
tmp.size = region->start + region->size - pud_end;
store_slot_info(&tmp, image_size);
}
}
static u64 slots_fetch_random(void)
{
unsigned long slot;
unsigned int i;
/* Handle case of no slots stored. */
if (slot_max == 0)
return 0;
slot = kaslr_get_random_long("Physical") % slot_max;
for (i = 0; i < slot_area_index; i++) {
if (slot >= slot_areas[i].num) {
slot -= slot_areas[i].num;
continue;
}
return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
}
if (i == slot_area_index)
debug_putstr("slots_fetch_random() failed!?\n");
return 0;
}
static void __process_mem_region(struct mem_vector *entry,
unsigned long minimum,
unsigned long image_size)
{
struct mem_vector region, overlap;
u64 region_end;
/* Enforce minimum and memory limit. */
region.start = max_t(u64, entry->start, minimum);
region_end = min(entry->start + entry->size, mem_limit);
/* Give up if slot area array is full. */
while (slot_area_index < MAX_SLOT_AREA) {
/* Potentially raise address to meet alignment needs. */
region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
/* Did we raise the address above the passed in memory entry? */
if (region.start > region_end)
return;
/* Reduce size by any delta from the original address. */
region.size = region_end - region.start;
/* Return if region can't contain decompressed kernel */
if (region.size < image_size)
return;
/* If nothing overlaps, store the region and return. */
if (!mem_avoid_overlap(&region, &overlap)) {
process_gb_huge_pages(&region, image_size);
return;
}
/* Store beginning of region if holds at least image_size. */
if (overlap.start >= region.start + image_size) {
region.size = overlap.start - region.start;
process_gb_huge_pages(&region, image_size);
}
/* Clip off the overlapping region and start over. */
region.start = overlap.start + overlap.size;
}
}
static bool process_mem_region(struct mem_vector *region,
unsigned long minimum,
unsigned long image_size)
{
int i;
/*
* If no immovable memory found, or MEMORY_HOTREMOVE disabled,
* use @region directly.
*/
if (!num_immovable_mem) {
__process_mem_region(region, minimum, image_size);
if (slot_area_index == MAX_SLOT_AREA) {
debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
return true;
}
return false;
}
#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
/*
* If immovable memory found, filter the intersection between
* immovable memory and @region.
*/
for (i = 0; i < num_immovable_mem; i++) {
u64 start, end, entry_end, region_end;
struct mem_vector entry;
if (!mem_overlaps(region, &immovable_mem[i]))
continue;
start = immovable_mem[i].start;
end = start + immovable_mem[i].size;
region_end = region->start + region->size;
entry.start = clamp(region->start, start, end);
entry_end = clamp(region_end, start, end);
entry.size = entry_end - entry.start;
__process_mem_region(&entry, minimum, image_size);
if (slot_area_index == MAX_SLOT_AREA) {
debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
return true;
}
}
#endif
return 0;
}
#ifdef CONFIG_EFI
/*
* Returns true if we processed the EFI memmap, which we prefer over the E820
* table if it is available.
*/
static bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
struct efi_info *e = &boot_params->efi_info;
bool efi_mirror_found = false;
struct mem_vector region;
efi_memory_desc_t *md;
unsigned long pmap;
char *signature;
u32 nr_desc;
int i;
signature = (char *)&e->efi_loader_signature;
if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
return false;
#ifdef CONFIG_X86_32
/* Can't handle data above 4GB at this time */
if (e->efi_memmap_hi) {
warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
return false;
}
pmap = e->efi_memmap;
#else
pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
#endif
nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
for (i = 0; i < nr_desc; i++) {
md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
efi_mirror_found = true;
break;
}
}
for (i = 0; i < nr_desc; i++) {
md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
/*
* Here we are more conservative in picking free memory than
* the EFI spec allows:
*
* According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
* free memory and thus available to place the kernel image into,
* but in practice there's firmware where using that memory leads
* to crashes.
*
* Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
*/
if (md->type != EFI_CONVENTIONAL_MEMORY)
continue;
if (efi_soft_reserve_enabled() &&
(md->attribute & EFI_MEMORY_SP))
continue;
if (efi_mirror_found &&
!(md->attribute & EFI_MEMORY_MORE_RELIABLE))
continue;
region.start = md->phys_addr;
region.size = md->num_pages << EFI_PAGE_SHIFT;
if (process_mem_region(&region, minimum, image_size))
break;
}
return true;
}
#else
static inline bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
return false;
}
#endif
static void process_e820_entries(unsigned long minimum,
unsigned long image_size)
{
int i;
struct mem_vector region;
struct boot_e820_entry *entry;
/* Verify potential e820 positions, appending to slots list. */
for (i = 0; i < boot_params->e820_entries; i++) {
entry = &boot_params->e820_table[i];
/* Skip non-RAM entries. */
if (entry->type != E820_TYPE_RAM)
continue;
region.start = entry->addr;
region.size = entry->size;
if (process_mem_region(&region, minimum, image_size))
break;
}
}
static unsigned long find_random_phys_addr(unsigned long minimum,
unsigned long image_size)
{
u64 phys_addr;
/* Bail out early if it's impossible to succeed. */
if (minimum + image_size > mem_limit)
return 0;
/* Check if we had too many memmaps. */
if (memmap_too_large) {
debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
return 0;
}
if (!process_efi_entries(minimum, image_size))
process_e820_entries(minimum, image_size);
phys_addr = slots_fetch_random();
/* Perform a final check to make sure the address is in range. */
if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
warn("Invalid physical address chosen!\n");
return 0;
}
return (unsigned long)phys_addr;
}
static unsigned long find_random_virt_addr(unsigned long minimum,
unsigned long image_size)
{
unsigned long slots, random_addr;
/*
* There are how many CONFIG_PHYSICAL_ALIGN-sized slots
* that can hold image_size within the range of minimum to
* KERNEL_IMAGE_SIZE?
*/
slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
random_addr = kaslr_get_random_long("Virtual") % slots;
return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
}
/*
* Since this function examines addresses much more numerically,
* it takes the input and output pointers as 'unsigned long'.
*/
void choose_random_location(unsigned long input,
unsigned long input_size,
unsigned long *output,
unsigned long output_size,
unsigned long *virt_addr)
{
unsigned long random_addr, min_addr;
if (cmdline_find_option_bool("nokaslr")) {
warn("KASLR disabled: 'nokaslr' on cmdline.");
return;
}
boot_params->hdr.loadflags |= KASLR_FLAG;
if (IS_ENABLED(CONFIG_X86_32))
mem_limit = KERNEL_IMAGE_SIZE;
else
mem_limit = MAXMEM;
/* Record the various known unsafe memory ranges. */
mem_avoid_init(input, input_size, *output);
/*
* Low end of the randomization range should be the
* smaller of 512M or the initial kernel image
* location:
*/
min_addr = min(*output, 512UL << 20);
/* Make sure minimum is aligned. */
min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
/* Walk available memory entries to find a random address. */
random_addr = find_random_phys_addr(min_addr, output_size);
if (!random_addr) {
warn("Physical KASLR disabled: no suitable memory region!");
} else {
/* Update the new physical address location. */
if (*output != random_addr)
*output = random_addr;
}
/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
if (IS_ENABLED(CONFIG_X86_64))
random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
*virt_addr = random_addr;
}