linux-stable/arch/sh/mm/pmb.c
Paul Mundt a0ab36689a sh: fixed PMB mode refactoring.
This introduces some much overdue chainsawing of the fixed PMB support.
fixed PMB was introduced initially to work around the fact that dynamic
PMB mode was relatively broken, though they were never intended to
converge. The main areas where there are differences are whether the
system is booted in 29-bit mode or 32-bit mode, and whether legacy
mappings are to be preserved. Any system booting in true 32-bit mode will
not care about legacy mappings, so these are roughly decoupled.

Regardless of the entry point, PMB and 32BIT are directly related as far
as the kernel is concerned, so we also switch back to having one select
the other.

With legacy mappings iterated through and applied in the initialization
path it's now possible to finally merge the two implementations and
permit dynamic remapping overtop of remaining entries regardless of
whether boot mappings are crafted by hand or inherited from the boot
loader.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2010-01-13 18:31:48 +09:00

483 lines
10 KiB
C

/*
* arch/sh/mm/pmb.c
*
* Privileged Space Mapping Buffer (PMB) Support.
*
* Copyright (C) 2005 - 2010 Paul Mundt
*
* P1/P2 Section mapping definitions from map32.h, which was:
*
* Copyright 2003 (c) Lineo Solutions,Inc.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sysdev.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#define NR_PMB_ENTRIES 16
static void __pmb_unmap(struct pmb_entry *);
static struct pmb_entry pmb_entry_list[NR_PMB_ENTRIES];
static unsigned long pmb_map;
static inline unsigned long mk_pmb_entry(unsigned int entry)
{
return (entry & PMB_E_MASK) << PMB_E_SHIFT;
}
static inline unsigned long mk_pmb_addr(unsigned int entry)
{
return mk_pmb_entry(entry) | PMB_ADDR;
}
static inline unsigned long mk_pmb_data(unsigned int entry)
{
return mk_pmb_entry(entry) | PMB_DATA;
}
static int pmb_alloc_entry(void)
{
unsigned int pos;
repeat:
pos = find_first_zero_bit(&pmb_map, NR_PMB_ENTRIES);
if (unlikely(pos > NR_PMB_ENTRIES))
return -ENOSPC;
if (test_and_set_bit(pos, &pmb_map))
goto repeat;
return pos;
}
static struct pmb_entry *pmb_alloc(unsigned long vpn, unsigned long ppn,
unsigned long flags, int entry)
{
struct pmb_entry *pmbe;
int pos;
if (entry == PMB_NO_ENTRY) {
pos = pmb_alloc_entry();
if (pos < 0)
return ERR_PTR(pos);
} else {
if (test_bit(entry, &pmb_map))
return ERR_PTR(-ENOSPC);
pos = entry;
}
pmbe = &pmb_entry_list[pos];
if (!pmbe)
return ERR_PTR(-ENOMEM);
pmbe->vpn = vpn;
pmbe->ppn = ppn;
pmbe->flags = flags;
pmbe->entry = pos;
return pmbe;
}
static void pmb_free(struct pmb_entry *pmbe)
{
int pos = pmbe->entry;
pmbe->vpn = 0;
pmbe->ppn = 0;
pmbe->flags = 0;
pmbe->entry = 0;
clear_bit(pos, &pmb_map);
}
/*
* Must be in P2 for __set_pmb_entry()
*/
static void __set_pmb_entry(unsigned long vpn, unsigned long ppn,
unsigned long flags, int pos)
{
ctrl_outl(vpn | PMB_V, mk_pmb_addr(pos));
#ifdef CONFIG_CACHE_WRITETHROUGH
/*
* When we are in 32-bit address extended mode, CCR.CB becomes
* invalid, so care must be taken to manually adjust cacheable
* translations.
*/
if (likely(flags & PMB_C))
flags |= PMB_WT;
#endif
ctrl_outl(ppn | flags | PMB_V, mk_pmb_data(pos));
}
static void __uses_jump_to_uncached set_pmb_entry(struct pmb_entry *pmbe)
{
jump_to_uncached();
__set_pmb_entry(pmbe->vpn, pmbe->ppn, pmbe->flags, pmbe->entry);
back_to_cached();
}
static void __uses_jump_to_uncached clear_pmb_entry(struct pmb_entry *pmbe)
{
unsigned int entry = pmbe->entry;
unsigned long addr;
if (unlikely(entry >= NR_PMB_ENTRIES))
return;
jump_to_uncached();
/* Clear V-bit */
addr = mk_pmb_addr(entry);
ctrl_outl(ctrl_inl(addr) & ~PMB_V, addr);
addr = mk_pmb_data(entry);
ctrl_outl(ctrl_inl(addr) & ~PMB_V, addr);
back_to_cached();
}
static struct {
unsigned long size;
int flag;
} pmb_sizes[] = {
{ .size = 0x20000000, .flag = PMB_SZ_512M, },
{ .size = 0x08000000, .flag = PMB_SZ_128M, },
{ .size = 0x04000000, .flag = PMB_SZ_64M, },
{ .size = 0x01000000, .flag = PMB_SZ_16M, },
};
long pmb_remap(unsigned long vaddr, unsigned long phys,
unsigned long size, unsigned long flags)
{
struct pmb_entry *pmbp, *pmbe;
unsigned long wanted;
int pmb_flags, i;
long err;
/* Convert typical pgprot value to the PMB equivalent */
if (flags & _PAGE_CACHABLE) {
if (flags & _PAGE_WT)
pmb_flags = PMB_WT;
else
pmb_flags = PMB_C;
} else
pmb_flags = PMB_WT | PMB_UB;
pmbp = NULL;
wanted = size;
again:
for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++) {
if (size < pmb_sizes[i].size)
continue;
pmbe = pmb_alloc(vaddr, phys, pmb_flags | pmb_sizes[i].flag,
PMB_NO_ENTRY);
if (IS_ERR(pmbe)) {
err = PTR_ERR(pmbe);
goto out;
}
set_pmb_entry(pmbe);
phys += pmb_sizes[i].size;
vaddr += pmb_sizes[i].size;
size -= pmb_sizes[i].size;
/*
* Link adjacent entries that span multiple PMB entries
* for easier tear-down.
*/
if (likely(pmbp))
pmbp->link = pmbe;
pmbp = pmbe;
/*
* Instead of trying smaller sizes on every iteration
* (even if we succeed in allocating space), try using
* pmb_sizes[i].size again.
*/
i--;
}
if (size >= 0x1000000)
goto again;
return wanted - size;
out:
if (pmbp)
__pmb_unmap(pmbp);
return err;
}
void pmb_unmap(unsigned long addr)
{
struct pmb_entry *pmbe = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
if (test_bit(i, &pmb_map)) {
pmbe = &pmb_entry_list[i];
if (pmbe->vpn == addr)
break;
}
}
if (unlikely(!pmbe))
return;
__pmb_unmap(pmbe);
}
static void __pmb_unmap(struct pmb_entry *pmbe)
{
BUG_ON(!test_bit(pmbe->entry, &pmb_map));
do {
struct pmb_entry *pmblink = pmbe;
/*
* We may be called before this pmb_entry has been
* entered into the PMB table via set_pmb_entry(), but
* that's OK because we've allocated a unique slot for
* this entry in pmb_alloc() (even if we haven't filled
* it yet).
*
* Therefore, calling clear_pmb_entry() is safe as no
* other mapping can be using that slot.
*/
clear_pmb_entry(pmbe);
pmbe = pmblink->link;
pmb_free(pmblink);
} while (pmbe);
}
#ifdef CONFIG_PMB_LEGACY
static int pmb_apply_legacy_mappings(void)
{
int i;
unsigned long addr, data;
unsigned int applied = 0;
for (i = 0; i < PMB_ENTRY_MAX; i++) {
struct pmb_entry *pmbe;
unsigned long vpn, ppn, flags;
addr = PMB_DATA + (i << PMB_E_SHIFT);
data = ctrl_inl(addr);
if (!(data & PMB_V))
continue;
if (data & PMB_C) {
#if defined(CONFIG_CACHE_WRITETHROUGH)
data |= PMB_WT;
#elif defined(CONFIG_CACHE_WRITEBACK)
data &= ~PMB_WT;
#else
data &= ~(PMB_C | PMB_WT);
#endif
}
ctrl_outl(data, addr);
ppn = data & PMB_PFN_MASK;
flags = data & (PMB_C | PMB_WT | PMB_UB);
flags |= data & PMB_SZ_MASK;
addr = PMB_ADDR + (i << PMB_E_SHIFT);
data = ctrl_inl(addr);
vpn = data & PMB_PFN_MASK;
pmbe = pmb_alloc(vpn, ppn, flags, i);
WARN_ON(IS_ERR(pmbe));
applied++;
}
return (applied == 0);
}
#else
static inline int pmb_apply_legacy_mappings(void)
{
return 1;
}
#endif
int __uses_jump_to_uncached pmb_init(void)
{
unsigned int i;
unsigned long size, ret;
jump_to_uncached();
/*
* Attempt to apply the legacy boot mappings if configured. If
* this is successful then we simply carry on with those and
* don't bother establishing additional memory mappings. Dynamic
* device mappings through pmb_remap() can still be bolted on
* after this.
*/
ret = pmb_apply_legacy_mappings();
if (ret == 0) {
back_to_cached();
return 0;
}
/*
* Insert PMB entries for the P1 and P2 areas so that, after
* we've switched the MMU to 32-bit mode, the semantics of P1
* and P2 are the same as in 29-bit mode, e.g.
*
* P1 - provides a cached window onto physical memory
* P2 - provides an uncached window onto physical memory
*/
size = (unsigned long)__MEMORY_START + __MEMORY_SIZE;
ret = pmb_remap(P1SEG, 0x00000000, size, PMB_C);
BUG_ON(ret != size);
ret = pmb_remap(P2SEG, 0x00000000, size, PMB_WT | PMB_UB);
BUG_ON(ret != size);
ctrl_outl(0, PMB_IRMCR);
/* PMB.SE and UB[7] */
ctrl_outl(PASCR_SE | (1 << 7), PMB_PASCR);
/* Flush out the TLB */
i = ctrl_inl(MMUCR);
i |= MMUCR_TI;
ctrl_outl(i, MMUCR);
back_to_cached();
return 0;
}
static int pmb_seq_show(struct seq_file *file, void *iter)
{
int i;
seq_printf(file, "V: Valid, C: Cacheable, WT: Write-Through\n"
"CB: Copy-Back, B: Buffered, UB: Unbuffered\n");
seq_printf(file, "ety vpn ppn size flags\n");
for (i = 0; i < NR_PMB_ENTRIES; i++) {
unsigned long addr, data;
unsigned int size;
char *sz_str = NULL;
addr = ctrl_inl(mk_pmb_addr(i));
data = ctrl_inl(mk_pmb_data(i));
size = data & PMB_SZ_MASK;
sz_str = (size == PMB_SZ_16M) ? " 16MB":
(size == PMB_SZ_64M) ? " 64MB":
(size == PMB_SZ_128M) ? "128MB":
"512MB";
/* 02: V 0x88 0x08 128MB C CB B */
seq_printf(file, "%02d: %c 0x%02lx 0x%02lx %s %c %s %s\n",
i, ((addr & PMB_V) && (data & PMB_V)) ? 'V' : ' ',
(addr >> 24) & 0xff, (data >> 24) & 0xff,
sz_str, (data & PMB_C) ? 'C' : ' ',
(data & PMB_WT) ? "WT" : "CB",
(data & PMB_UB) ? "UB" : " B");
}
return 0;
}
static int pmb_debugfs_open(struct inode *inode, struct file *file)
{
return single_open(file, pmb_seq_show, NULL);
}
static const struct file_operations pmb_debugfs_fops = {
.owner = THIS_MODULE,
.open = pmb_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init pmb_debugfs_init(void)
{
struct dentry *dentry;
dentry = debugfs_create_file("pmb", S_IFREG | S_IRUGO,
sh_debugfs_root, NULL, &pmb_debugfs_fops);
if (!dentry)
return -ENOMEM;
if (IS_ERR(dentry))
return PTR_ERR(dentry);
return 0;
}
postcore_initcall(pmb_debugfs_init);
#ifdef CONFIG_PM
static int pmb_sysdev_suspend(struct sys_device *dev, pm_message_t state)
{
static pm_message_t prev_state;
int i;
/* Restore the PMB after a resume from hibernation */
if (state.event == PM_EVENT_ON &&
prev_state.event == PM_EVENT_FREEZE) {
struct pmb_entry *pmbe;
for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
if (test_bit(i, &pmb_map)) {
pmbe = &pmb_entry_list[i];
set_pmb_entry(pmbe);
}
}
}
prev_state = state;
return 0;
}
static int pmb_sysdev_resume(struct sys_device *dev)
{
return pmb_sysdev_suspend(dev, PMSG_ON);
}
static struct sysdev_driver pmb_sysdev_driver = {
.suspend = pmb_sysdev_suspend,
.resume = pmb_sysdev_resume,
};
static int __init pmb_sysdev_init(void)
{
return sysdev_driver_register(&cpu_sysdev_class, &pmb_sysdev_driver);
}
subsys_initcall(pmb_sysdev_init);
#endif