linux-stable/fs/f2fs/inode.c
Chao Yu 7a2af766af f2fs: enhance on-disk inode structure scalability
This patch add new flag F2FS_EXTRA_ATTR storing in inode.i_inline
to indicate that on-disk structure of current inode is extended.

In order to extend, we changed the inode structure a bit:

Original one:

struct f2fs_inode {
	...
	struct f2fs_extent i_ext;
	__le32 i_addr[DEF_ADDRS_PER_INODE];
	__le32 i_nid[DEF_NIDS_PER_INODE];
}

Extended one:

struct f2fs_inode {
        ...
        struct f2fs_extent i_ext;
	union {
		struct {
			__le16 i_extra_isize;
			__le16 i_padding;
			__le32 i_extra_end[0];
		};
		__le32 i_addr[DEF_ADDRS_PER_INODE];
	};
        __le32 i_nid[DEF_NIDS_PER_INODE];
}

Once F2FS_EXTRA_ATTR is set, we will steal four bytes in the head of
i_addr field for storing i_extra_isize and i_padding. with i_extra_isize,
we can calculate actual size of reserved space in i_addr, available
attribute fields included in total extra attribute fields for current
inode can be described as below:

  +--------------------+
  | .i_mode            |
  | ...                |
  | .i_ext             |
  +--------------------+
  | .i_extra_isize     |-----+
  | .i_padding         |     |
  | .i_prjid           |     |
  | .i_atime_extra     |     |
  | .i_ctime_extra     |     |
  | .i_mtime_extra     |<----+
  | .i_inode_cs        |<----- store blkaddr/inline from here
  | .i_xattr_cs        |
  | ...                |
  +--------------------+
  |                    |
  |    block address   |
  |                    |
  +--------------------+
  | .i_nid             |
  +--------------------+
  |   node_footer      |
  | (nid, ino, offset) |
  +--------------------+

Hence, with this patch, we would enhance scalability of f2fs inode for
storing more newly added attribute.

Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-31 16:48:30 -07:00

500 lines
13 KiB
C

/*
* fs/f2fs/inode.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include <trace/events/f2fs.h>
void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync)
{
if (f2fs_inode_dirtied(inode, sync))
return;
mark_inode_dirty_sync(inode);
}
void f2fs_set_inode_flags(struct inode *inode)
{
unsigned int flags = F2FS_I(inode)->i_flags;
unsigned int new_fl = 0;
if (flags & FS_SYNC_FL)
new_fl |= S_SYNC;
if (flags & FS_APPEND_FL)
new_fl |= S_APPEND;
if (flags & FS_IMMUTABLE_FL)
new_fl |= S_IMMUTABLE;
if (flags & FS_NOATIME_FL)
new_fl |= S_NOATIME;
if (flags & FS_DIRSYNC_FL)
new_fl |= S_DIRSYNC;
inode_set_flags(inode, new_fl,
S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
}
static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
int extra_size = get_extra_isize(inode);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
if (ri->i_addr[extra_size])
inode->i_rdev = old_decode_dev(
le32_to_cpu(ri->i_addr[extra_size]));
else
inode->i_rdev = new_decode_dev(
le32_to_cpu(ri->i_addr[extra_size + 1]));
}
}
static bool __written_first_block(struct f2fs_inode *ri)
{
block_t addr = le32_to_cpu(ri->i_addr[offset_in_addr(ri)]);
if (addr != NEW_ADDR && addr != NULL_ADDR)
return true;
return false;
}
static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
int extra_size = get_extra_isize(inode);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
if (old_valid_dev(inode->i_rdev)) {
ri->i_addr[extra_size] =
cpu_to_le32(old_encode_dev(inode->i_rdev));
ri->i_addr[extra_size + 1] = 0;
} else {
ri->i_addr[extra_size] = 0;
ri->i_addr[extra_size + 1] =
cpu_to_le32(new_encode_dev(inode->i_rdev));
ri->i_addr[extra_size + 2] = 0;
}
}
}
static void __recover_inline_status(struct inode *inode, struct page *ipage)
{
void *inline_data = inline_data_addr(inode, ipage);
__le32 *start = inline_data;
__le32 *end = start + MAX_INLINE_DATA(inode) / sizeof(__le32);
while (start < end) {
if (*start++) {
f2fs_wait_on_page_writeback(ipage, NODE, true);
set_inode_flag(inode, FI_DATA_EXIST);
set_raw_inline(inode, F2FS_INODE(ipage));
set_page_dirty(ipage);
return;
}
}
return;
}
static int do_read_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct page *node_page;
struct f2fs_inode *ri;
/* Check if ino is within scope */
if (check_nid_range(sbi, inode->i_ino)) {
f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
(unsigned long) inode->i_ino);
WARN_ON(1);
return -EINVAL;
}
node_page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
ri = F2FS_INODE(node_page);
inode->i_mode = le16_to_cpu(ri->i_mode);
i_uid_write(inode, le32_to_cpu(ri->i_uid));
i_gid_write(inode, le32_to_cpu(ri->i_gid));
set_nlink(inode, le32_to_cpu(ri->i_links));
inode->i_size = le64_to_cpu(ri->i_size);
inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1);
inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
inode->i_generation = le32_to_cpu(ri->i_generation);
fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
fi->i_flags = le32_to_cpu(ri->i_flags);
fi->flags = 0;
fi->i_advise = ri->i_advise;
fi->i_pino = le32_to_cpu(ri->i_pino);
fi->i_dir_level = ri->i_dir_level;
if (f2fs_init_extent_tree(inode, &ri->i_ext))
set_page_dirty(node_page);
get_inline_info(inode, ri);
fi->i_extra_isize = f2fs_has_extra_attr(inode) ?
le16_to_cpu(ri->i_extra_isize) : 0;
/* check data exist */
if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
__recover_inline_status(inode, node_page);
/* get rdev by using inline_info */
__get_inode_rdev(inode, ri);
if (__written_first_block(ri))
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
if (!need_inode_block_update(sbi, inode->i_ino))
fi->last_disk_size = inode->i_size;
f2fs_put_page(node_page, 1);
stat_inc_inline_xattr(inode);
stat_inc_inline_inode(inode);
stat_inc_inline_dir(inode);
return 0;
}
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct inode *inode;
int ret = 0;
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW)) {
trace_f2fs_iget(inode);
return inode;
}
if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
goto make_now;
ret = do_read_inode(inode);
if (ret)
goto bad_inode;
make_now:
if (ino == F2FS_NODE_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_node_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
} else if (ino == F2FS_META_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_meta_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
} else if (S_ISREG(inode->i_mode)) {
inode->i_op = &f2fs_file_inode_operations;
inode->i_fop = &f2fs_file_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &f2fs_dir_inode_operations;
inode->i_fop = &f2fs_dir_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
} else if (S_ISLNK(inode->i_mode)) {
if (f2fs_encrypted_inode(inode))
inode->i_op = &f2fs_encrypted_symlink_inode_operations;
else
inode->i_op = &f2fs_symlink_inode_operations;
inode_nohighmem(inode);
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
inode->i_op = &f2fs_special_inode_operations;
init_special_inode(inode, inode->i_mode, inode->i_rdev);
} else {
ret = -EIO;
goto bad_inode;
}
f2fs_set_inode_flags(inode);
unlock_new_inode(inode);
trace_f2fs_iget(inode);
return inode;
bad_inode:
iget_failed(inode);
trace_f2fs_iget_exit(inode, ret);
return ERR_PTR(ret);
}
struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino)
{
struct inode *inode;
retry:
inode = f2fs_iget(sb, ino);
if (IS_ERR(inode)) {
if (PTR_ERR(inode) == -ENOMEM) {
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto retry;
}
}
return inode;
}
int update_inode(struct inode *inode, struct page *node_page)
{
struct f2fs_inode *ri;
struct extent_tree *et = F2FS_I(inode)->extent_tree;
f2fs_inode_synced(inode);
f2fs_wait_on_page_writeback(node_page, NODE, true);
ri = F2FS_INODE(node_page);
ri->i_mode = cpu_to_le16(inode->i_mode);
ri->i_advise = F2FS_I(inode)->i_advise;
ri->i_uid = cpu_to_le32(i_uid_read(inode));
ri->i_gid = cpu_to_le32(i_gid_read(inode));
ri->i_links = cpu_to_le32(inode->i_nlink);
ri->i_size = cpu_to_le64(i_size_read(inode));
ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1);
if (et) {
read_lock(&et->lock);
set_raw_extent(&et->largest, &ri->i_ext);
read_unlock(&et->lock);
} else {
memset(&ri->i_ext, 0, sizeof(ri->i_ext));
}
set_raw_inline(inode, ri);
ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
ri->i_generation = cpu_to_le32(inode->i_generation);
ri->i_dir_level = F2FS_I(inode)->i_dir_level;
if (f2fs_has_extra_attr(inode))
ri->i_extra_isize = cpu_to_le16(F2FS_I(inode)->i_extra_isize);
__set_inode_rdev(inode, ri);
set_cold_node(inode, node_page);
/* deleted inode */
if (inode->i_nlink == 0)
clear_inline_node(node_page);
return set_page_dirty(node_page);
}
int update_inode_page(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *node_page;
int ret = 0;
retry:
node_page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page)) {
int err = PTR_ERR(node_page);
if (err == -ENOMEM) {
cond_resched();
goto retry;
} else if (err != -ENOENT) {
f2fs_stop_checkpoint(sbi, false);
}
return 0;
}
ret = update_inode(inode, node_page);
f2fs_put_page(node_page, 1);
return ret;
}
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
return 0;
if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
return 0;
/*
* We need to balance fs here to prevent from producing dirty node pages
* during the urgent cleaning time when runing out of free sections.
*/
update_inode_page(inode);
if (wbc && wbc->nr_to_write)
f2fs_balance_fs(sbi, true);
return 0;
}
/*
* Called at the last iput() if i_nlink is zero
*/
void f2fs_evict_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
int err = 0;
/* some remained atomic pages should discarded */
if (f2fs_is_atomic_file(inode))
drop_inmem_pages(inode);
trace_f2fs_evict_inode(inode);
truncate_inode_pages_final(&inode->i_data);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
goto out_clear;
f2fs_bug_on(sbi, get_dirty_pages(inode));
remove_dirty_inode(inode);
f2fs_destroy_extent_tree(inode);
if (inode->i_nlink || is_bad_inode(inode))
goto no_delete;
dquot_initialize(inode);
remove_ino_entry(sbi, inode->i_ino, APPEND_INO);
remove_ino_entry(sbi, inode->i_ino, UPDATE_INO);
sb_start_intwrite(inode->i_sb);
set_inode_flag(inode, FI_NO_ALLOC);
i_size_write(inode, 0);
retry:
if (F2FS_HAS_BLOCKS(inode))
err = f2fs_truncate(inode);
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(sbi, FAULT_EVICT_INODE)) {
f2fs_show_injection_info(FAULT_EVICT_INODE);
err = -EIO;
}
#endif
if (!err) {
f2fs_lock_op(sbi);
err = remove_inode_page(inode);
f2fs_unlock_op(sbi);
if (err == -ENOENT)
err = 0;
}
/* give more chances, if ENOMEM case */
if (err == -ENOMEM) {
err = 0;
goto retry;
}
if (err)
update_inode_page(inode);
dquot_free_inode(inode);
sb_end_intwrite(inode->i_sb);
no_delete:
dquot_drop(inode);
stat_dec_inline_xattr(inode);
stat_dec_inline_dir(inode);
stat_dec_inline_inode(inode);
/* ino == 0, if f2fs_new_inode() was failed t*/
if (inode->i_ino)
invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino,
inode->i_ino);
if (xnid)
invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
if (inode->i_nlink) {
if (is_inode_flag_set(inode, FI_APPEND_WRITE))
add_ino_entry(sbi, inode->i_ino, APPEND_INO);
if (is_inode_flag_set(inode, FI_UPDATE_WRITE))
add_ino_entry(sbi, inode->i_ino, UPDATE_INO);
}
if (is_inode_flag_set(inode, FI_FREE_NID)) {
alloc_nid_failed(sbi, inode->i_ino);
clear_inode_flag(inode, FI_FREE_NID);
} else {
f2fs_bug_on(sbi, err &&
!exist_written_data(sbi, inode->i_ino, ORPHAN_INO));
}
out_clear:
fscrypt_put_encryption_info(inode, NULL);
clear_inode(inode);
}
/* caller should call f2fs_lock_op() */
void handle_failed_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct node_info ni;
/*
* clear nlink of inode in order to release resource of inode
* immediately.
*/
clear_nlink(inode);
/*
* we must call this to avoid inode being remained as dirty, resulting
* in a panic when flushing dirty inodes in gdirty_list.
*/
update_inode_page(inode);
f2fs_inode_synced(inode);
/* don't make bad inode, since it becomes a regular file. */
unlock_new_inode(inode);
/*
* Note: we should add inode to orphan list before f2fs_unlock_op()
* so we can prevent losing this orphan when encoutering checkpoint
* and following suddenly power-off.
*/
get_node_info(sbi, inode->i_ino, &ni);
if (ni.blk_addr != NULL_ADDR) {
int err = acquire_orphan_inode(sbi);
if (err) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_msg(sbi->sb, KERN_WARNING,
"Too many orphan inodes, run fsck to fix.");
} else {
add_orphan_inode(inode);
}
alloc_nid_done(sbi, inode->i_ino);
} else {
set_inode_flag(inode, FI_FREE_NID);
}
f2fs_unlock_op(sbi);
/* iput will drop the inode object */
iput(inode);
}