linux-stable/drivers/regulator/qcom-labibb-regulator.c
Matti Vaittinen 89a6a5e56c
regulator: add property parsing and callbacks to set protection limits
Add DT property parsing code and setting callback for regulator over/under
voltage, over-current and temperature error limits.

Signed-off-by: Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
Link: https://lore.kernel.org/r/e7b8007ba9eae7076178bf3363fb942ccb1cc9a5.1622628334.git.matti.vaittinen@fi.rohmeurope.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2021-06-21 13:08:41 +01:00

905 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2020, The Linux Foundation. All rights reserved.
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/of_regulator.h>
#define REG_PERPH_TYPE 0x04
#define QCOM_LAB_TYPE 0x24
#define QCOM_IBB_TYPE 0x20
#define PMI8998_LAB_REG_BASE 0xde00
#define PMI8998_IBB_REG_BASE 0xdc00
#define PMI8998_IBB_LAB_REG_OFFSET 0x200
#define REG_LABIBB_STATUS1 0x08
#define LABIBB_STATUS1_SC_BIT BIT(6)
#define LABIBB_STATUS1_VREG_OK_BIT BIT(7)
#define REG_LABIBB_INT_SET_TYPE 0x11
#define REG_LABIBB_INT_POLARITY_HIGH 0x12
#define REG_LABIBB_INT_POLARITY_LOW 0x13
#define REG_LABIBB_INT_LATCHED_CLR 0x14
#define REG_LABIBB_INT_EN_SET 0x15
#define REG_LABIBB_INT_EN_CLR 0x16
#define LABIBB_INT_VREG_OK BIT(0)
#define LABIBB_INT_VREG_TYPE_LEVEL 0
#define REG_LABIBB_VOLTAGE 0x41
#define LABIBB_VOLTAGE_OVERRIDE_EN BIT(7)
#define LAB_VOLTAGE_SET_MASK GENMASK(3, 0)
#define IBB_VOLTAGE_SET_MASK GENMASK(5, 0)
#define REG_LABIBB_ENABLE_CTL 0x46
#define LABIBB_CONTROL_ENABLE BIT(7)
#define REG_LABIBB_PD_CTL 0x47
#define LAB_PD_CTL_MASK GENMASK(1, 0)
#define IBB_PD_CTL_MASK (BIT(0) | BIT(7))
#define LAB_PD_CTL_STRONG_PULL BIT(0)
#define IBB_PD_CTL_HALF_STRENGTH BIT(0)
#define IBB_PD_CTL_EN BIT(7)
#define REG_LABIBB_CURRENT_LIMIT 0x4b
#define LAB_CURRENT_LIMIT_MASK GENMASK(2, 0)
#define IBB_CURRENT_LIMIT_MASK GENMASK(4, 0)
#define LAB_CURRENT_LIMIT_OVERRIDE_EN BIT(3)
#define LABIBB_CURRENT_LIMIT_EN BIT(7)
#define REG_IBB_PWRUP_PWRDN_CTL_1 0x58
#define IBB_CTL_1_DISCHARGE_EN BIT(2)
#define REG_LABIBB_SOFT_START_CTL 0x5f
#define REG_LABIBB_SEC_ACCESS 0xd0
#define LABIBB_SEC_UNLOCK_CODE 0xa5
#define LAB_ENABLE_CTL_MASK BIT(7)
#define IBB_ENABLE_CTL_MASK (BIT(7) | BIT(6))
#define LABIBB_OFF_ON_DELAY 1000
#define LAB_ENABLE_TIME (LABIBB_OFF_ON_DELAY * 2)
#define IBB_ENABLE_TIME (LABIBB_OFF_ON_DELAY * 10)
#define LABIBB_POLL_ENABLED_TIME 1000
#define OCP_RECOVERY_INTERVAL_MS 500
#define SC_RECOVERY_INTERVAL_MS 250
#define LABIBB_MAX_OCP_COUNT 4
#define LABIBB_MAX_SC_COUNT 3
#define LABIBB_MAX_FATAL_COUNT 2
struct labibb_current_limits {
u32 uA_min;
u32 uA_step;
u8 ovr_val;
};
struct labibb_regulator {
struct regulator_desc desc;
struct device *dev;
struct regmap *regmap;
struct regulator_dev *rdev;
struct labibb_current_limits uA_limits;
struct delayed_work ocp_recovery_work;
struct delayed_work sc_recovery_work;
u16 base;
u8 type;
u8 dischg_sel;
u8 soft_start_sel;
int sc_irq;
int sc_count;
int ocp_irq;
int ocp_irq_count;
int fatal_count;
};
struct labibb_regulator_data {
const char *name;
u8 type;
u16 base;
const struct regulator_desc *desc;
};
static int qcom_labibb_ocp_hw_enable(struct regulator_dev *rdev)
{
struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
int ret;
/* Clear irq latch status to avoid spurious event */
ret = regmap_update_bits(rdev->regmap,
vreg->base + REG_LABIBB_INT_LATCHED_CLR,
LABIBB_INT_VREG_OK, 1);
if (ret)
return ret;
/* Enable OCP HW interrupt */
return regmap_update_bits(rdev->regmap,
vreg->base + REG_LABIBB_INT_EN_SET,
LABIBB_INT_VREG_OK, 1);
}
static int qcom_labibb_ocp_hw_disable(struct regulator_dev *rdev)
{
struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
return regmap_update_bits(rdev->regmap,
vreg->base + REG_LABIBB_INT_EN_CLR,
LABIBB_INT_VREG_OK, 1);
}
/**
* qcom_labibb_check_ocp_status - Check the Over-Current Protection status
* @vreg: Main driver structure
*
* This function checks the STATUS1 register for the VREG_OK bit: if it is
* set, then there is no Over-Current event.
*
* Returns: Zero if there is no over-current, 1 if in over-current or
* negative number for error
*/
static int qcom_labibb_check_ocp_status(struct labibb_regulator *vreg)
{
u32 cur_status;
int ret;
ret = regmap_read(vreg->rdev->regmap, vreg->base + REG_LABIBB_STATUS1,
&cur_status);
if (ret)
return ret;
return !(cur_status & LABIBB_STATUS1_VREG_OK_BIT);
}
/**
* qcom_labibb_ocp_recovery_worker - Handle OCP event
* @work: OCP work structure
*
* This is the worker function to handle the Over Current Protection
* hardware event; This will check if the hardware is still
* signaling an over-current condition and will eventually stop
* the regulator if such condition is still signaled after
* LABIBB_MAX_OCP_COUNT times.
*
* If the driver that is consuming the regulator did not take action
* for the OCP condition, or the hardware did not stabilize, a cut
* of the LAB and IBB regulators will be forced (regulators will be
* disabled).
*
* As last, if the writes to shut down the LAB/IBB regulators fail
* for more than LABIBB_MAX_FATAL_COUNT, then a kernel panic will be
* triggered, as a last resort to protect the hardware from burning;
* this, however, is expected to never happen, but this is kept to
* try to further ensure that we protect the hardware at all costs.
*/
static void qcom_labibb_ocp_recovery_worker(struct work_struct *work)
{
struct labibb_regulator *vreg;
const struct regulator_ops *ops;
int ret;
vreg = container_of(work, struct labibb_regulator,
ocp_recovery_work.work);
ops = vreg->rdev->desc->ops;
if (vreg->ocp_irq_count >= LABIBB_MAX_OCP_COUNT) {
/*
* If we tried to disable the regulator multiple times but
* we kept failing, there's only one last hope to save our
* hardware from the death: raise a kernel bug, reboot and
* hope that the bootloader kindly saves us. This, though
* is done only as paranoid checking, because failing the
* regmap write to disable the vreg is almost impossible,
* since we got here after multiple regmap R/W.
*/
BUG_ON(vreg->fatal_count > LABIBB_MAX_FATAL_COUNT);
dev_err(&vreg->rdev->dev, "LABIBB: CRITICAL: Disabling regulator\n");
/* Disable the regulator immediately to avoid damage */
ret = ops->disable(vreg->rdev);
if (ret) {
vreg->fatal_count++;
goto reschedule;
}
enable_irq(vreg->ocp_irq);
vreg->fatal_count = 0;
return;
}
ret = qcom_labibb_check_ocp_status(vreg);
if (ret != 0) {
vreg->ocp_irq_count++;
goto reschedule;
}
ret = qcom_labibb_ocp_hw_enable(vreg->rdev);
if (ret) {
/* We cannot trust it without OCP enabled. */
dev_err(vreg->dev, "Cannot enable OCP IRQ\n");
vreg->ocp_irq_count++;
goto reschedule;
}
enable_irq(vreg->ocp_irq);
/* Everything went fine: reset the OCP count! */
vreg->ocp_irq_count = 0;
return;
reschedule:
mod_delayed_work(system_wq, &vreg->ocp_recovery_work,
msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
}
/**
* qcom_labibb_ocp_isr - Interrupt routine for OverCurrent Protection
* @irq: Interrupt number
* @chip: Main driver structure
*
* Over Current Protection (OCP) will signal to the client driver
* that an over-current event has happened and then will schedule
* a recovery worker.
*
* Disabling and eventually re-enabling the regulator is expected
* to be done by the driver, as some hardware may be triggering an
* over-current condition only at first initialization or it may
* be expected only for a very brief amount of time, after which
* the attached hardware may be expected to stabilize its current
* draw.
*
* Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
*/
static irqreturn_t qcom_labibb_ocp_isr(int irq, void *chip)
{
struct labibb_regulator *vreg = chip;
const struct regulator_ops *ops = vreg->rdev->desc->ops;
int ret;
/* If the regulator is not enabled, this is a fake event */
if (!ops->is_enabled(vreg->rdev))
return 0;
/* If we tried to recover for too many times it's not getting better */
if (vreg->ocp_irq_count > LABIBB_MAX_OCP_COUNT)
return IRQ_NONE;
/*
* If we (unlikely) can't read this register, to prevent hardware
* damage at all costs, we assume that the overcurrent event was
* real; Moreover, if the status register is not signaling OCP,
* it was a spurious event, so it's all ok.
*/
ret = qcom_labibb_check_ocp_status(vreg);
if (ret == 0) {
vreg->ocp_irq_count = 0;
goto end;
}
vreg->ocp_irq_count++;
/*
* Disable the interrupt temporarily, or it will fire continuously;
* we will re-enable it in the recovery worker function.
*/
disable_irq_nosync(irq);
/* Warn the user for overcurrent */
dev_warn(vreg->dev, "Over-Current interrupt fired!\n");
/* Disable the interrupt to avoid hogging */
ret = qcom_labibb_ocp_hw_disable(vreg->rdev);
if (ret)
goto end;
/* Signal overcurrent event to drivers */
regulator_notifier_call_chain(vreg->rdev,
REGULATOR_EVENT_OVER_CURRENT, NULL);
end:
/* Schedule the recovery work */
schedule_delayed_work(&vreg->ocp_recovery_work,
msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
if (ret)
return IRQ_NONE;
return IRQ_HANDLED;
}
static int qcom_labibb_set_ocp(struct regulator_dev *rdev, int lim,
int severity, bool enable)
{
struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
char *ocp_irq_name;
u32 irq_flags = IRQF_ONESHOT;
int irq_trig_low, ret;
/*
* labibb supports only protection - and does not support setting
* limit. Furthermore, we don't support disabling protection.
*/
if (lim || severity != REGULATOR_SEVERITY_PROT || !enable)
return -EINVAL;
/* If there is no OCP interrupt, there's nothing to set */
if (vreg->ocp_irq <= 0)
return -EINVAL;
ocp_irq_name = devm_kasprintf(vreg->dev, GFP_KERNEL, "%s-over-current",
vreg->desc.name);
if (!ocp_irq_name)
return -ENOMEM;
/* IRQ polarities - LAB: trigger-low, IBB: trigger-high */
switch (vreg->type) {
case QCOM_LAB_TYPE:
irq_flags |= IRQF_TRIGGER_LOW;
irq_trig_low = 1;
break;
case QCOM_IBB_TYPE:
irq_flags |= IRQF_TRIGGER_HIGH;
irq_trig_low = 0;
break;
default:
return -EINVAL;
}
/* Activate OCP HW level interrupt */
ret = regmap_update_bits(rdev->regmap,
vreg->base + REG_LABIBB_INT_SET_TYPE,
LABIBB_INT_VREG_OK,
LABIBB_INT_VREG_TYPE_LEVEL);
if (ret)
return ret;
/* Set OCP interrupt polarity */
ret = regmap_update_bits(rdev->regmap,
vreg->base + REG_LABIBB_INT_POLARITY_HIGH,
LABIBB_INT_VREG_OK, !irq_trig_low);
if (ret)
return ret;
ret = regmap_update_bits(rdev->regmap,
vreg->base + REG_LABIBB_INT_POLARITY_LOW,
LABIBB_INT_VREG_OK, irq_trig_low);
if (ret)
return ret;
ret = qcom_labibb_ocp_hw_enable(rdev);
if (ret)
return ret;
return devm_request_threaded_irq(vreg->dev, vreg->ocp_irq, NULL,
qcom_labibb_ocp_isr, irq_flags,
ocp_irq_name, vreg);
}
/**
* qcom_labibb_check_sc_status - Check the Short Circuit Protection status
* @vreg: Main driver structure
*
* This function checks the STATUS1 register on both LAB and IBB regulators
* for the ShortCircuit bit: if it is set on *any* of them, then we have
* experienced a short-circuit event.
*
* Returns: Zero if there is no short-circuit, 1 if in short-circuit or
* negative number for error
*/
static int qcom_labibb_check_sc_status(struct labibb_regulator *vreg)
{
u32 ibb_status, ibb_reg, lab_status, lab_reg;
int ret;
/* We have to work on both regulators due to PBS... */
lab_reg = ibb_reg = vreg->base + REG_LABIBB_STATUS1;
if (vreg->type == QCOM_LAB_TYPE)
ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
else
lab_reg += PMI8998_IBB_LAB_REG_OFFSET;
ret = regmap_read(vreg->rdev->regmap, lab_reg, &lab_status);
if (ret)
return ret;
ret = regmap_read(vreg->rdev->regmap, ibb_reg, &ibb_status);
if (ret)
return ret;
return !!(lab_status & LABIBB_STATUS1_SC_BIT) ||
!!(ibb_status & LABIBB_STATUS1_SC_BIT);
}
/**
* qcom_labibb_sc_recovery_worker - Handle Short Circuit event
* @work: SC work structure
*
* This is the worker function to handle the Short Circuit Protection
* hardware event; This will check if the hardware is still
* signaling a short-circuit condition and will eventually never
* re-enable the regulator if such condition is still signaled after
* LABIBB_MAX_SC_COUNT times.
*
* If the driver that is consuming the regulator did not take action
* for the SC condition, or the hardware did not stabilize, this
* worker will stop rescheduling, leaving the regulators disabled
* as already done by the Portable Batch System (PBS).
*
* Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
*/
static void qcom_labibb_sc_recovery_worker(struct work_struct *work)
{
struct labibb_regulator *vreg;
const struct regulator_ops *ops;
u32 lab_reg, ibb_reg, lab_val, ibb_val, val;
bool pbs_cut = false;
int i, sc, ret;
vreg = container_of(work, struct labibb_regulator,
sc_recovery_work.work);
ops = vreg->rdev->desc->ops;
/*
* If we tried to check the regulator status multiple times but we
* kept failing, then just bail out, as the Portable Batch System
* (PBS) will disable the vregs for us, preventing hardware damage.
*/
if (vreg->fatal_count > LABIBB_MAX_FATAL_COUNT)
return;
/* Too many short-circuit events. Throw in the towel. */
if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
return;
/*
* The Portable Batch System (PBS) automatically disables LAB
* and IBB when a short-circuit event is detected, so we have to
* check and work on both of them at the same time.
*/
lab_reg = ibb_reg = vreg->base + REG_LABIBB_ENABLE_CTL;
if (vreg->type == QCOM_LAB_TYPE)
ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
else
lab_reg += PMI8998_IBB_LAB_REG_OFFSET;
sc = qcom_labibb_check_sc_status(vreg);
if (sc)
goto reschedule;
for (i = 0; i < LABIBB_MAX_SC_COUNT; i++) {
ret = regmap_read(vreg->regmap, lab_reg, &lab_val);
if (ret) {
vreg->fatal_count++;
goto reschedule;
}
ret = regmap_read(vreg->regmap, ibb_reg, &ibb_val);
if (ret) {
vreg->fatal_count++;
goto reschedule;
}
val = lab_val & ibb_val;
if (!(val & LABIBB_CONTROL_ENABLE)) {
pbs_cut = true;
break;
}
usleep_range(5000, 6000);
}
if (pbs_cut)
goto reschedule;
/*
* If we have reached this point, we either have successfully
* recovered from the SC condition or we had a spurious SC IRQ,
* which means that we can re-enable the regulators, if they
* have ever been disabled by the PBS.
*/
ret = ops->enable(vreg->rdev);
if (ret)
goto reschedule;
/* Everything went fine: reset the OCP count! */
vreg->sc_count = 0;
enable_irq(vreg->sc_irq);
return;
reschedule:
/*
* Now that we have done basic handling of the short-circuit,
* reschedule this worker in the regular system workqueue, as
* taking action is not truly urgent anymore.
*/
vreg->sc_count++;
mod_delayed_work(system_wq, &vreg->sc_recovery_work,
msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
}
/**
* qcom_labibb_sc_isr - Interrupt routine for Short Circuit Protection
* @irq: Interrupt number
* @chip: Main driver structure
*
* Short Circuit Protection (SCP) will signal to the client driver
* that a regulation-out event has happened and then will schedule
* a recovery worker.
*
* The LAB and IBB regulators will be automatically disabled by the
* Portable Batch System (PBS) and they will be enabled again by
* the worker function if the hardware stops signaling the short
* circuit event.
*
* Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
*/
static irqreturn_t qcom_labibb_sc_isr(int irq, void *chip)
{
struct labibb_regulator *vreg = chip;
if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
return IRQ_NONE;
/* Warn the user for short circuit */
dev_warn(vreg->dev, "Short-Circuit interrupt fired!\n");
/*
* Disable the interrupt temporarily, or it will fire continuously;
* we will re-enable it in the recovery worker function.
*/
disable_irq_nosync(irq);
/* Signal out of regulation event to drivers */
regulator_notifier_call_chain(vreg->rdev,
REGULATOR_EVENT_REGULATION_OUT, NULL);
/* Schedule the short-circuit handling as high-priority work */
mod_delayed_work(system_highpri_wq, &vreg->sc_recovery_work,
msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
return IRQ_HANDLED;
}
static int qcom_labibb_set_current_limit(struct regulator_dev *rdev,
int min_uA, int max_uA)
{
struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
struct regulator_desc *desc = &vreg->desc;
struct labibb_current_limits *lim = &vreg->uA_limits;
u32 mask, val;
int i, ret, sel = -1;
if (min_uA < lim->uA_min || max_uA < lim->uA_min)
return -EINVAL;
for (i = 0; i < desc->n_current_limits; i++) {
int uA_limit = (lim->uA_step * i) + lim->uA_min;
if (max_uA >= uA_limit && min_uA <= uA_limit)
sel = i;
}
if (sel < 0)
return -EINVAL;
/* Current limit setting needs secure access */
ret = regmap_write(vreg->regmap, vreg->base + REG_LABIBB_SEC_ACCESS,
LABIBB_SEC_UNLOCK_CODE);
if (ret)
return ret;
mask = desc->csel_mask | lim->ovr_val;
mask |= LABIBB_CURRENT_LIMIT_EN;
val = (u32)sel | lim->ovr_val;
val |= LABIBB_CURRENT_LIMIT_EN;
return regmap_update_bits(vreg->regmap, desc->csel_reg, mask, val);
}
static int qcom_labibb_get_current_limit(struct regulator_dev *rdev)
{
struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
struct regulator_desc *desc = &vreg->desc;
struct labibb_current_limits *lim = &vreg->uA_limits;
unsigned int cur_step;
int ret;
ret = regmap_read(vreg->regmap, desc->csel_reg, &cur_step);
if (ret)
return ret;
cur_step &= desc->csel_mask;
return (cur_step * lim->uA_step) + lim->uA_min;
}
static int qcom_labibb_set_soft_start(struct regulator_dev *rdev)
{
struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
u32 val = 0;
if (vreg->type == QCOM_IBB_TYPE)
val = vreg->dischg_sel;
else
val = vreg->soft_start_sel;
return regmap_write(rdev->regmap, rdev->desc->soft_start_reg, val);
}
static int qcom_labibb_get_table_sel(const int *table, int sz, u32 value)
{
int i;
for (i = 0; i < sz; i++)
if (table[i] == value)
return i;
return -EINVAL;
}
/* IBB discharge resistor values in KOhms */
static const int dischg_resistor_values[] = { 300, 64, 32, 16 };
/* Soft start time in microseconds */
static const int soft_start_values[] = { 200, 400, 600, 800 };
static int qcom_labibb_of_parse_cb(struct device_node *np,
const struct regulator_desc *desc,
struct regulator_config *config)
{
struct labibb_regulator *vreg = config->driver_data;
u32 dischg_kohms, soft_start_time;
int ret;
ret = of_property_read_u32(np, "qcom,discharge-resistor-kohms",
&dischg_kohms);
if (ret)
dischg_kohms = 300;
ret = qcom_labibb_get_table_sel(dischg_resistor_values,
ARRAY_SIZE(dischg_resistor_values),
dischg_kohms);
if (ret < 0)
return ret;
vreg->dischg_sel = (u8)ret;
ret = of_property_read_u32(np, "qcom,soft-start-us",
&soft_start_time);
if (ret)
soft_start_time = 200;
ret = qcom_labibb_get_table_sel(soft_start_values,
ARRAY_SIZE(soft_start_values),
soft_start_time);
if (ret < 0)
return ret;
vreg->soft_start_sel = (u8)ret;
return 0;
}
static const struct regulator_ops qcom_labibb_ops = {
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.set_voltage_sel = regulator_set_voltage_sel_regmap,
.get_voltage_sel = regulator_get_voltage_sel_regmap,
.list_voltage = regulator_list_voltage_linear,
.map_voltage = regulator_map_voltage_linear,
.set_active_discharge = regulator_set_active_discharge_regmap,
.set_pull_down = regulator_set_pull_down_regmap,
.set_current_limit = qcom_labibb_set_current_limit,
.get_current_limit = qcom_labibb_get_current_limit,
.set_soft_start = qcom_labibb_set_soft_start,
.set_over_current_protection = qcom_labibb_set_ocp,
};
static const struct regulator_desc pmi8998_lab_desc = {
.enable_mask = LAB_ENABLE_CTL_MASK,
.enable_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_ENABLE_CTL),
.enable_val = LABIBB_CONTROL_ENABLE,
.enable_time = LAB_ENABLE_TIME,
.poll_enabled_time = LABIBB_POLL_ENABLED_TIME,
.soft_start_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
.pull_down_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_PD_CTL),
.pull_down_mask = LAB_PD_CTL_MASK,
.pull_down_val_on = LAB_PD_CTL_STRONG_PULL,
.vsel_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
.vsel_mask = LAB_VOLTAGE_SET_MASK,
.apply_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
.apply_bit = LABIBB_VOLTAGE_OVERRIDE_EN,
.csel_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
.csel_mask = LAB_CURRENT_LIMIT_MASK,
.n_current_limits = 8,
.off_on_delay = LABIBB_OFF_ON_DELAY,
.owner = THIS_MODULE,
.type = REGULATOR_VOLTAGE,
.min_uV = 4600000,
.uV_step = 100000,
.n_voltages = 16,
.ops = &qcom_labibb_ops,
.of_parse_cb = qcom_labibb_of_parse_cb,
};
static const struct regulator_desc pmi8998_ibb_desc = {
.enable_mask = IBB_ENABLE_CTL_MASK,
.enable_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_ENABLE_CTL),
.enable_val = LABIBB_CONTROL_ENABLE,
.enable_time = IBB_ENABLE_TIME,
.poll_enabled_time = LABIBB_POLL_ENABLED_TIME,
.soft_start_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
.active_discharge_off = 0,
.active_discharge_on = IBB_CTL_1_DISCHARGE_EN,
.active_discharge_mask = IBB_CTL_1_DISCHARGE_EN,
.active_discharge_reg = (PMI8998_IBB_REG_BASE + REG_IBB_PWRUP_PWRDN_CTL_1),
.pull_down_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_PD_CTL),
.pull_down_mask = IBB_PD_CTL_MASK,
.pull_down_val_on = IBB_PD_CTL_HALF_STRENGTH | IBB_PD_CTL_EN,
.vsel_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
.vsel_mask = IBB_VOLTAGE_SET_MASK,
.apply_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
.apply_bit = LABIBB_VOLTAGE_OVERRIDE_EN,
.csel_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
.csel_mask = IBB_CURRENT_LIMIT_MASK,
.n_current_limits = 32,
.off_on_delay = LABIBB_OFF_ON_DELAY,
.owner = THIS_MODULE,
.type = REGULATOR_VOLTAGE,
.min_uV = 1400000,
.uV_step = 100000,
.n_voltages = 64,
.ops = &qcom_labibb_ops,
.of_parse_cb = qcom_labibb_of_parse_cb,
};
static const struct labibb_regulator_data pmi8998_labibb_data[] = {
{"lab", QCOM_LAB_TYPE, PMI8998_LAB_REG_BASE, &pmi8998_lab_desc},
{"ibb", QCOM_IBB_TYPE, PMI8998_IBB_REG_BASE, &pmi8998_ibb_desc},
{ },
};
static const struct of_device_id qcom_labibb_match[] = {
{ .compatible = "qcom,pmi8998-lab-ibb", .data = &pmi8998_labibb_data},
{ },
};
MODULE_DEVICE_TABLE(of, qcom_labibb_match);
static int qcom_labibb_regulator_probe(struct platform_device *pdev)
{
struct labibb_regulator *vreg;
struct device *dev = &pdev->dev;
struct regulator_config cfg = {};
struct device_node *reg_node;
const struct of_device_id *match;
const struct labibb_regulator_data *reg_data;
struct regmap *reg_regmap;
unsigned int type;
int ret;
reg_regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!reg_regmap) {
dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
return -ENODEV;
}
match = of_match_device(qcom_labibb_match, &pdev->dev);
if (!match)
return -ENODEV;
for (reg_data = match->data; reg_data->name; reg_data++) {
char *sc_irq_name;
int irq = 0;
/* Validate if the type of regulator is indeed
* what's mentioned in DT.
*/
ret = regmap_read(reg_regmap, reg_data->base + REG_PERPH_TYPE,
&type);
if (ret < 0) {
dev_err(dev,
"Peripheral type read failed ret=%d\n",
ret);
return -EINVAL;
}
if (WARN_ON((type != QCOM_LAB_TYPE) && (type != QCOM_IBB_TYPE)) ||
WARN_ON(type != reg_data->type))
return -EINVAL;
vreg = devm_kzalloc(&pdev->dev, sizeof(*vreg),
GFP_KERNEL);
if (!vreg)
return -ENOMEM;
sc_irq_name = devm_kasprintf(dev, GFP_KERNEL,
"%s-short-circuit",
reg_data->name);
if (!sc_irq_name)
return -ENOMEM;
reg_node = of_get_child_by_name(pdev->dev.of_node,
reg_data->name);
if (!reg_node)
return -EINVAL;
/* The Short Circuit interrupt is critical */
irq = of_irq_get_byname(reg_node, "sc-err");
if (irq <= 0) {
if (irq == 0)
irq = -EINVAL;
return dev_err_probe(vreg->dev, irq,
"Short-circuit irq not found.\n");
}
vreg->sc_irq = irq;
/* OverCurrent Protection IRQ is optional */
irq = of_irq_get_byname(reg_node, "ocp");
vreg->ocp_irq = irq;
vreg->ocp_irq_count = 0;
of_node_put(reg_node);
vreg->regmap = reg_regmap;
vreg->dev = dev;
vreg->base = reg_data->base;
vreg->type = reg_data->type;
INIT_DELAYED_WORK(&vreg->sc_recovery_work,
qcom_labibb_sc_recovery_worker);
if (vreg->ocp_irq > 0)
INIT_DELAYED_WORK(&vreg->ocp_recovery_work,
qcom_labibb_ocp_recovery_worker);
switch (vreg->type) {
case QCOM_LAB_TYPE:
/* LAB Limits: 200-1600mA */
vreg->uA_limits.uA_min = 200000;
vreg->uA_limits.uA_step = 200000;
vreg->uA_limits.ovr_val = LAB_CURRENT_LIMIT_OVERRIDE_EN;
break;
case QCOM_IBB_TYPE:
/* IBB Limits: 0-1550mA */
vreg->uA_limits.uA_min = 0;
vreg->uA_limits.uA_step = 50000;
vreg->uA_limits.ovr_val = 0; /* No override bit */
break;
default:
return -EINVAL;
}
memcpy(&vreg->desc, reg_data->desc, sizeof(vreg->desc));
vreg->desc.of_match = reg_data->name;
vreg->desc.name = reg_data->name;
cfg.dev = vreg->dev;
cfg.driver_data = vreg;
cfg.regmap = vreg->regmap;
vreg->rdev = devm_regulator_register(vreg->dev, &vreg->desc,
&cfg);
if (IS_ERR(vreg->rdev)) {
dev_err(dev, "qcom_labibb: error registering %s : %d\n",
reg_data->name, ret);
return PTR_ERR(vreg->rdev);
}
ret = devm_request_threaded_irq(vreg->dev, vreg->sc_irq, NULL,
qcom_labibb_sc_isr,
IRQF_ONESHOT |
IRQF_TRIGGER_RISING,
sc_irq_name, vreg);
if (ret)
return ret;
}
return 0;
}
static struct platform_driver qcom_labibb_regulator_driver = {
.driver = {
.name = "qcom-lab-ibb-regulator",
.of_match_table = qcom_labibb_match,
},
.probe = qcom_labibb_regulator_probe,
};
module_platform_driver(qcom_labibb_regulator_driver);
MODULE_DESCRIPTION("Qualcomm labibb driver");
MODULE_AUTHOR("Nisha Kumari <nishakumari@codeaurora.org>");
MODULE_AUTHOR("Sumit Semwal <sumit.semwal@linaro.org>");
MODULE_LICENSE("GPL v2");