linux-stable/drivers/irqchip/irq-apple-aic.c
Linus Torvalds 49d5759268 ARM:
- Provide a virtual cache topology to the guest to avoid
   inconsistencies with migration on heterogenous systems. Non secure
   software has no practical need to traverse the caches by set/way in
   the first place.
 
 - Add support for taking stage-2 access faults in parallel. This was an
   accidental omission in the original parallel faults implementation,
   but should provide a marginal improvement to machines w/o FEAT_HAFDBS
   (such as hardware from the fruit company).
 
 - A preamble to adding support for nested virtualization to KVM,
   including vEL2 register state, rudimentary nested exception handling
   and masking unsupported features for nested guests.
 
 - Fixes to the PSCI relay that avoid an unexpected host SVE trap when
   resuming a CPU when running pKVM.
 
 - VGIC maintenance interrupt support for the AIC
 
 - Improvements to the arch timer emulation, primarily aimed at reducing
   the trap overhead of running nested.
 
 - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
   interest of CI systems.
 
 - Avoid VM-wide stop-the-world operations when a vCPU accesses its own
   redistributor.
 
 - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
   in the host.
 
 - Aesthetic and comment/kerneldoc fixes
 
 - Drop the vestiges of the old Columbia mailing list and add [Oliver]
   as co-maintainer
 
 This also drags in arm64's 'for-next/sme2' branch, because both it and
 the PSCI relay changes touch the EL2 initialization code.
 
 RISC-V:
 
 - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
 
 - Correctly place the guest in S-mode after redirecting a trap to the guest
 
 - Redirect illegal instruction traps to guest
 
 - SBI PMU support for guest
 
 s390:
 
 - Two patches sorting out confusion between virtual and physical
   addresses, which currently are the same on s390.
 
 - A new ioctl that performs cmpxchg on guest memory
 
 - A few fixes
 
 x86:
 
 - Change tdp_mmu to a read-only parameter
 
 - Separate TDP and shadow MMU page fault paths
 
 - Enable Hyper-V invariant TSC control
 
 - Fix a variety of APICv and AVIC bugs, some of them real-world,
   some of them affecting architecurally legal but unlikely to
   happen in practice
 
 - Mark APIC timer as expired if its in one-shot mode and the count
   underflows while the vCPU task was being migrated
 
 - Advertise support for Intel's new fast REP string features
 
 - Fix a double-shootdown issue in the emergency reboot code
 
 - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
   similar treatment to VMX
 
 - Update Xen's TSC info CPUID sub-leaves as appropriate
 
 - Add support for Hyper-V's extended hypercalls, where "support" at this
   point is just forwarding the hypercalls to userspace
 
 - Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
   MSR filters
 
 - One-off fixes and cleanups
 
 - Fix and cleanup the range-based TLB flushing code, used when KVM is
   running on Hyper-V
 
 - Add support for filtering PMU events using a mask.  If userspace
   wants to restrict heavily what events the guest can use, it can now
   do so without needing an absurd number of filter entries
 
 - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
   support is disabled
 
 - Add PEBS support for Intel Sapphire Rapids
 
 - Fix a mostly benign overflow bug in SEV's send|receive_update_data()
 
 - Move several SVM-specific flags into vcpu_svm
 
 x86 Intel:
 
 - Handle NMI VM-Exits before leaving the noinstr region
 
 - A few trivial cleanups in the VM-Enter flows
 
 - Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
   EPTP switching (or any other VM function) for L1
 
 - Fix a crash when using eVMCS's enlighted MSR bitmaps
 
 Generic:
 
 - Clean up the hardware enable and initialization flow, which was
   scattered around multiple arch-specific hooks.  Instead, just
   let the arch code call into generic code.  Both x86 and ARM should
   benefit from not having to fight common KVM code's notion of how
   to do initialization.
 
 - Account allocations in generic kvm_arch_alloc_vm()
 
 - Fix a memory leak if coalesced MMIO unregistration fails
 
 selftests:
 
 - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
   the correct hypercall instruction instead of relying on KVM to patch
   in VMMCALL
 
 - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
 mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
 9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
 duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
 VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
 /WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
 =goe1
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:

   - Provide a virtual cache topology to the guest to avoid
     inconsistencies with migration on heterogenous systems. Non secure
     software has no practical need to traverse the caches by set/way in
     the first place

   - Add support for taking stage-2 access faults in parallel. This was
     an accidental omission in the original parallel faults
     implementation, but should provide a marginal improvement to
     machines w/o FEAT_HAFDBS (such as hardware from the fruit company)

   - A preamble to adding support for nested virtualization to KVM,
     including vEL2 register state, rudimentary nested exception
     handling and masking unsupported features for nested guests

   - Fixes to the PSCI relay that avoid an unexpected host SVE trap when
     resuming a CPU when running pKVM

   - VGIC maintenance interrupt support for the AIC

   - Improvements to the arch timer emulation, primarily aimed at
     reducing the trap overhead of running nested

   - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
     interest of CI systems

   - Avoid VM-wide stop-the-world operations when a vCPU accesses its
     own redistributor

   - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
     exceptions in the host

   - Aesthetic and comment/kerneldoc fixes

   - Drop the vestiges of the old Columbia mailing list and add [Oliver]
     as co-maintainer

  RISC-V:

   - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE

   - Correctly place the guest in S-mode after redirecting a trap to the
     guest

   - Redirect illegal instruction traps to guest

   - SBI PMU support for guest

  s390:

   - Sort out confusion between virtual and physical addresses, which
     currently are the same on s390

   - A new ioctl that performs cmpxchg on guest memory

   - A few fixes

  x86:

   - Change tdp_mmu to a read-only parameter

   - Separate TDP and shadow MMU page fault paths

   - Enable Hyper-V invariant TSC control

   - Fix a variety of APICv and AVIC bugs, some of them real-world, some
     of them affecting architecurally legal but unlikely to happen in
     practice

   - Mark APIC timer as expired if its in one-shot mode and the count
     underflows while the vCPU task was being migrated

   - Advertise support for Intel's new fast REP string features

   - Fix a double-shootdown issue in the emergency reboot code

   - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
     SVM similar treatment to VMX

   - Update Xen's TSC info CPUID sub-leaves as appropriate

   - Add support for Hyper-V's extended hypercalls, where "support" at
     this point is just forwarding the hypercalls to userspace

   - Clean up the kvm->lock vs. kvm->srcu sequences when updating the
     PMU and MSR filters

   - One-off fixes and cleanups

   - Fix and cleanup the range-based TLB flushing code, used when KVM is
     running on Hyper-V

   - Add support for filtering PMU events using a mask. If userspace
     wants to restrict heavily what events the guest can use, it can now
     do so without needing an absurd number of filter entries

   - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
     support is disabled

   - Add PEBS support for Intel Sapphire Rapids

   - Fix a mostly benign overflow bug in SEV's
     send|receive_update_data()

   - Move several SVM-specific flags into vcpu_svm

  x86 Intel:

   - Handle NMI VM-Exits before leaving the noinstr region

   - A few trivial cleanups in the VM-Enter flows

   - Stop enabling VMFUNC for L1 purely to document that KVM doesn't
     support EPTP switching (or any other VM function) for L1

   - Fix a crash when using eVMCS's enlighted MSR bitmaps

  Generic:

   - Clean up the hardware enable and initialization flow, which was
     scattered around multiple arch-specific hooks. Instead, just let
     the arch code call into generic code. Both x86 and ARM should
     benefit from not having to fight common KVM code's notion of how to
     do initialization

   - Account allocations in generic kvm_arch_alloc_vm()

   - Fix a memory leak if coalesced MMIO unregistration fails

  selftests:

   - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
     emit the correct hypercall instruction instead of relying on KVM to
     patch in VMMCALL

   - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
  KVM: SVM: hyper-v: placate modpost section mismatch error
  KVM: x86/mmu: Make tdp_mmu_allowed static
  KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
  KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
  KVM: arm64: nv: Filter out unsupported features from ID regs
  KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
  KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
  KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
  KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
  KVM: arm64: nv: Handle SMCs taken from virtual EL2
  KVM: arm64: nv: Handle trapped ERET from virtual EL2
  KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
  KVM: arm64: nv: Support virtual EL2 exceptions
  KVM: arm64: nv: Handle HCR_EL2.NV system register traps
  KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
  KVM: arm64: nv: Add EL2 system registers to vcpu context
  KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
  KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
  KVM: arm64: nv: Introduce nested virtualization VCPU feature
  KVM: arm64: Use the S2 MMU context to iterate over S2 table
  ...
2023-02-25 11:30:21 -08:00

1081 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright The Asahi Linux Contributors
*
* Based on irq-lpc32xx:
* Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
* Based on irq-bcm2836:
* Copyright 2015 Broadcom
*/
/*
* AIC is a fairly simple interrupt controller with the following features:
*
* - 896 level-triggered hardware IRQs
* - Single mask bit per IRQ
* - Per-IRQ affinity setting
* - Automatic masking on event delivery (auto-ack)
* - Software triggering (ORed with hw line)
* - 2 per-CPU IPIs (meant as "self" and "other", but they are
* interchangeable if not symmetric)
* - Automatic prioritization (single event/ack register per CPU, lower IRQs =
* higher priority)
* - Automatic masking on ack
* - Default "this CPU" register view and explicit per-CPU views
*
* In addition, this driver also handles FIQs, as these are routed to the same
* IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
* performance counters (TODO).
*
* Implementation notes:
*
* - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
* and one for IPIs.
* - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
* and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
* - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
* - DT bindings use 3-cell form (like GIC):
* - <0 nr flags> - hwirq #nr
* - <1 nr flags> - FIQ #nr
* - nr=0 Physical HV timer
* - nr=1 Virtual HV timer
* - nr=2 Physical guest timer
* - nr=3 Virtual guest timer
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/cpuhotplug.h>
#include <linux/io.h>
#include <linux/irqchip.h>
#include <linux/irqchip/arm-vgic-info.h>
#include <linux/irqdomain.h>
#include <linux/jump_label.h>
#include <linux/limits.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <asm/apple_m1_pmu.h>
#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/sysreg.h>
#include <asm/virt.h>
#include <dt-bindings/interrupt-controller/apple-aic.h>
/*
* AIC v1 registers (MMIO)
*/
#define AIC_INFO 0x0004
#define AIC_INFO_NR_IRQ GENMASK(15, 0)
#define AIC_CONFIG 0x0010
#define AIC_WHOAMI 0x2000
#define AIC_EVENT 0x2004
#define AIC_EVENT_DIE GENMASK(31, 24)
#define AIC_EVENT_TYPE GENMASK(23, 16)
#define AIC_EVENT_NUM GENMASK(15, 0)
#define AIC_EVENT_TYPE_FIQ 0 /* Software use */
#define AIC_EVENT_TYPE_IRQ 1
#define AIC_EVENT_TYPE_IPI 4
#define AIC_EVENT_IPI_OTHER 1
#define AIC_EVENT_IPI_SELF 2
#define AIC_IPI_SEND 0x2008
#define AIC_IPI_ACK 0x200c
#define AIC_IPI_MASK_SET 0x2024
#define AIC_IPI_MASK_CLR 0x2028
#define AIC_IPI_SEND_CPU(cpu) BIT(cpu)
#define AIC_IPI_OTHER BIT(0)
#define AIC_IPI_SELF BIT(31)
#define AIC_TARGET_CPU 0x3000
#define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7))
#define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
#define AIC_MAX_IRQ 0x400
/*
* AIC v2 registers (MMIO)
*/
#define AIC2_VERSION 0x0000
#define AIC2_VERSION_VER GENMASK(7, 0)
#define AIC2_INFO1 0x0004
#define AIC2_INFO1_NR_IRQ GENMASK(15, 0)
#define AIC2_INFO1_LAST_DIE GENMASK(27, 24)
#define AIC2_INFO2 0x0008
#define AIC2_INFO3 0x000c
#define AIC2_INFO3_MAX_IRQ GENMASK(15, 0)
#define AIC2_INFO3_MAX_DIE GENMASK(27, 24)
#define AIC2_RESET 0x0010
#define AIC2_RESET_RESET BIT(0)
#define AIC2_CONFIG 0x0014
#define AIC2_CONFIG_ENABLE BIT(0)
#define AIC2_CONFIG_PREFER_PCPU BIT(28)
#define AIC2_TIMEOUT 0x0028
#define AIC2_CLUSTER_PRIO 0x0030
#define AIC2_DELAY_GROUPS 0x0100
#define AIC2_IRQ_CFG 0x2000
/*
* AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
*
* Repeat for each die:
* IRQ_CFG: u32 * MAX_IRQS
* SW_SET: u32 * (MAX_IRQS / 32)
* SW_CLR: u32 * (MAX_IRQS / 32)
* MASK_SET: u32 * (MAX_IRQS / 32)
* MASK_CLR: u32 * (MAX_IRQS / 32)
* HW_STATE: u32 * (MAX_IRQS / 32)
*
* This is followed by a set of event registers, each 16K page aligned.
* The first one is the AP event register we will use. Unfortunately,
* the actual implemented die count is not specified anywhere in the
* capability registers, so we have to explicitly specify the event
* register as a second reg entry in the device tree to remain
* forward-compatible.
*/
#define AIC2_IRQ_CFG_TARGET GENMASK(3, 0)
#define AIC2_IRQ_CFG_DELAY_IDX GENMASK(7, 5)
#define MASK_REG(x) (4 * ((x) >> 5))
#define MASK_BIT(x) BIT((x) & GENMASK(4, 0))
/*
* IMP-DEF sysregs that control FIQ sources
*/
/* IPI request registers */
#define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0)
#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1)
#define IPI_RR_CPU GENMASK(7, 0)
/* Cluster only used for the GLOBAL register */
#define IPI_RR_CLUSTER GENMASK(23, 16)
#define IPI_RR_TYPE GENMASK(29, 28)
#define IPI_RR_IMMEDIATE 0
#define IPI_RR_RETRACT 1
#define IPI_RR_DEFERRED 2
#define IPI_RR_NOWAKE 3
/* IPI status register */
#define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1)
#define IPI_SR_PENDING BIT(0)
/* Guest timer FIQ enable register */
#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3)
#define VM_TMR_FIQ_ENABLE_V BIT(0)
#define VM_TMR_FIQ_ENABLE_P BIT(1)
/* Deferred IPI countdown register */
#define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1)
/* Uncore PMC control register */
#define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4)
#define UPMCR0_IMODE GENMASK(18, 16)
#define UPMCR0_IMODE_OFF 0
#define UPMCR0_IMODE_AIC 2
#define UPMCR0_IMODE_HALT 3
#define UPMCR0_IMODE_FIQ 4
/* Uncore PMC status register */
#define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4)
#define UPMSR_IACT BIT(0)
/* MPIDR fields */
#define MPIDR_CPU(x) MPIDR_AFFINITY_LEVEL(x, 0)
#define MPIDR_CLUSTER(x) MPIDR_AFFINITY_LEVEL(x, 1)
#define AIC_IRQ_HWIRQ(die, irq) (FIELD_PREP(AIC_EVENT_DIE, die) | \
FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
FIELD_PREP(AIC_EVENT_NUM, irq))
#define AIC_FIQ_HWIRQ(x) (FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
FIELD_PREP(AIC_EVENT_NUM, x))
#define AIC_HWIRQ_IRQ(x) FIELD_GET(AIC_EVENT_NUM, x)
#define AIC_HWIRQ_DIE(x) FIELD_GET(AIC_EVENT_DIE, x)
#define AIC_NR_SWIPI 32
/*
* FIQ hwirq index definitions: FIQ sources use the DT binding defines
* directly, except that timers are special. At the irqchip level, the
* two timer types are represented by their access method: _EL0 registers
* or _EL02 registers. In the DT binding, the timers are represented
* by their purpose (HV or guest). This mapping is for when the kernel is
* running at EL2 (with VHE). When the kernel is running at EL1, the
* mapping differs and aic_irq_domain_translate() performs the remapping.
*/
enum fiq_hwirq {
/* Must be ordered as in apple-aic.h */
AIC_TMR_EL0_PHYS = AIC_TMR_HV_PHYS,
AIC_TMR_EL0_VIRT = AIC_TMR_HV_VIRT,
AIC_TMR_EL02_PHYS = AIC_TMR_GUEST_PHYS,
AIC_TMR_EL02_VIRT = AIC_TMR_GUEST_VIRT,
AIC_CPU_PMU_Effi = AIC_CPU_PMU_E,
AIC_CPU_PMU_Perf = AIC_CPU_PMU_P,
/* No need for this to be discovered from DT */
AIC_VGIC_MI,
AIC_NR_FIQ
};
static DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
struct aic_info {
int version;
/* Register offsets */
u32 event;
u32 target_cpu;
u32 irq_cfg;
u32 sw_set;
u32 sw_clr;
u32 mask_set;
u32 mask_clr;
u32 die_stride;
/* Features */
bool fast_ipi;
};
static const struct aic_info aic1_info __initconst = {
.version = 1,
.event = AIC_EVENT,
.target_cpu = AIC_TARGET_CPU,
};
static const struct aic_info aic1_fipi_info __initconst = {
.version = 1,
.event = AIC_EVENT,
.target_cpu = AIC_TARGET_CPU,
.fast_ipi = true,
};
static const struct aic_info aic2_info __initconst = {
.version = 2,
.irq_cfg = AIC2_IRQ_CFG,
.fast_ipi = true,
};
static const struct of_device_id aic_info_match[] = {
{
.compatible = "apple,t8103-aic",
.data = &aic1_fipi_info,
},
{
.compatible = "apple,aic",
.data = &aic1_info,
},
{
.compatible = "apple,aic2",
.data = &aic2_info,
},
{}
};
struct aic_irq_chip {
void __iomem *base;
void __iomem *event;
struct irq_domain *hw_domain;
struct {
cpumask_t aff;
} *fiq_aff[AIC_NR_FIQ];
int nr_irq;
int max_irq;
int nr_die;
int max_die;
struct aic_info info;
};
static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
static struct aic_irq_chip *aic_irqc;
static void aic_handle_ipi(struct pt_regs *regs);
static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
{
return readl_relaxed(ic->base + reg);
}
static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
{
writel_relaxed(val, ic->base + reg);
}
/*
* IRQ irqchip
*/
static void aic_irq_mask(struct irq_data *d)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
u32 irq = AIC_HWIRQ_IRQ(hwirq);
aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
}
static void aic_irq_unmask(struct irq_data *d)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
u32 irq = AIC_HWIRQ_IRQ(hwirq);
aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
}
static void aic_irq_eoi(struct irq_data *d)
{
/*
* Reading the interrupt reason automatically acknowledges and masks
* the IRQ, so we just unmask it here if needed.
*/
if (!irqd_irq_masked(d))
aic_irq_unmask(d);
}
static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
{
struct aic_irq_chip *ic = aic_irqc;
u32 event, type, irq;
do {
/*
* We cannot use a relaxed read here, as reads from DMA buffers
* need to be ordered after the IRQ fires.
*/
event = readl(ic->event + ic->info.event);
type = FIELD_GET(AIC_EVENT_TYPE, event);
irq = FIELD_GET(AIC_EVENT_NUM, event);
if (type == AIC_EVENT_TYPE_IRQ)
generic_handle_domain_irq(aic_irqc->hw_domain, event);
else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
aic_handle_ipi(regs);
else if (event != 0)
pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
} while (event);
/*
* vGIC maintenance interrupts end up here too, so we need to check
* for them separately. It should however only trigger when NV is
* in use, and be cleared when coming back from the handler.
*/
if (is_kernel_in_hyp_mode() &&
(read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_VGIC_MI));
if (unlikely((read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
read_sysreg_s(SYS_ICH_MISR_EL2))) {
pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
}
}
}
static int aic_irq_set_affinity(struct irq_data *d,
const struct cpumask *mask_val, bool force)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
int cpu;
BUG_ON(!ic->info.target_cpu);
if (force)
cpu = cpumask_first(mask_val);
else
cpu = cpumask_any_and(mask_val, cpu_online_mask);
aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
irq_data_update_effective_affinity(d, cpumask_of(cpu));
return IRQ_SET_MASK_OK;
}
static int aic_irq_set_type(struct irq_data *d, unsigned int type)
{
/*
* Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
* have a way to find out the type of any given IRQ, so just allow both.
*/
return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
}
static struct irq_chip aic_chip = {
.name = "AIC",
.irq_mask = aic_irq_mask,
.irq_unmask = aic_irq_unmask,
.irq_eoi = aic_irq_eoi,
.irq_set_affinity = aic_irq_set_affinity,
.irq_set_type = aic_irq_set_type,
};
static struct irq_chip aic2_chip = {
.name = "AIC2",
.irq_mask = aic_irq_mask,
.irq_unmask = aic_irq_unmask,
.irq_eoi = aic_irq_eoi,
.irq_set_type = aic_irq_set_type,
};
/*
* FIQ irqchip
*/
static unsigned long aic_fiq_get_idx(struct irq_data *d)
{
return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
}
static void aic_fiq_set_mask(struct irq_data *d)
{
/* Only the guest timers have real mask bits, unfortunately. */
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
isb();
break;
default:
break;
}
}
static void aic_fiq_clear_mask(struct irq_data *d)
{
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
isb();
break;
default:
break;
}
}
static void aic_fiq_mask(struct irq_data *d)
{
aic_fiq_set_mask(d);
__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_unmask(struct irq_data *d)
{
aic_fiq_clear_mask(d);
__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_eoi(struct irq_data *d)
{
/* We mask to ack (where we can), so we need to unmask at EOI. */
if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
aic_fiq_clear_mask(d);
}
#define TIMER_FIRING(x) \
(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \
ARCH_TIMER_CTRL_IT_STAT)) == \
(ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
{
/*
* It would be really nice if we had a system register that lets us get
* the FIQ source state without having to peek down into sources...
* but such a register does not seem to exist.
*
* So, we have these potential sources to test for:
* - Fast IPIs (not yet used)
* - The 4 timers (CNTP, CNTV for each of HV and guest)
* - Per-core PMCs (not yet supported)
* - Per-cluster uncore PMCs (not yet supported)
*
* Since not dealing with any of these results in a FIQ storm,
* we check for everything here, even things we don't support yet.
*/
if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
if (static_branch_likely(&use_fast_ipi)) {
aic_handle_ipi(regs);
} else {
pr_err_ratelimited("Fast IPI fired. Acking.\n");
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
}
}
if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
if (is_kernel_in_hyp_mode()) {
uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
}
if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) {
int irq;
if (cpumask_test_cpu(smp_processor_id(),
&aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff))
irq = AIC_CPU_PMU_P;
else
irq = AIC_CPU_PMU_E;
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(irq));
}
if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
/* Same story with uncore PMCs */
pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
}
}
static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
{
return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
}
static struct irq_chip fiq_chip = {
.name = "AIC-FIQ",
.irq_mask = aic_fiq_mask,
.irq_unmask = aic_fiq_unmask,
.irq_ack = aic_fiq_set_mask,
.irq_eoi = aic_fiq_eoi,
.irq_set_type = aic_fiq_set_type,
};
/*
* Main IRQ domain
*/
static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
irq_hw_number_t hw)
{
struct aic_irq_chip *ic = id->host_data;
u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
struct irq_chip *chip = &aic_chip;
if (ic->info.version == 2)
chip = &aic2_chip;
if (type == AIC_EVENT_TYPE_IRQ) {
irq_domain_set_info(id, irq, hw, chip, id->host_data,
handle_fasteoi_irq, NULL, NULL);
irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
} else {
int fiq = FIELD_GET(AIC_EVENT_NUM, hw);
switch (fiq) {
case AIC_CPU_PMU_P:
case AIC_CPU_PMU_E:
irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff);
break;
default:
irq_set_percpu_devid(irq);
break;
}
irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
handle_percpu_devid_irq, NULL, NULL);
}
return 0;
}
static int aic_irq_domain_translate(struct irq_domain *id,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
struct aic_irq_chip *ic = id->host_data;
u32 *args;
u32 die = 0;
if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
!is_of_node(fwspec->fwnode))
return -EINVAL;
args = &fwspec->param[1];
if (fwspec->param_count == 4) {
die = args[0];
args++;
}
switch (fwspec->param[0]) {
case AIC_IRQ:
if (die >= ic->nr_die)
return -EINVAL;
if (args[0] >= ic->nr_irq)
return -EINVAL;
*hwirq = AIC_IRQ_HWIRQ(die, args[0]);
break;
case AIC_FIQ:
if (die != 0)
return -EINVAL;
if (args[0] >= AIC_NR_FIQ)
return -EINVAL;
*hwirq = AIC_FIQ_HWIRQ(args[0]);
/*
* In EL1 the non-redirected registers are the guest's,
* not EL2's, so remap the hwirqs to match.
*/
if (!is_kernel_in_hyp_mode()) {
switch (args[0]) {
case AIC_TMR_GUEST_PHYS:
*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
break;
case AIC_TMR_GUEST_VIRT:
*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
break;
case AIC_TMR_HV_PHYS:
case AIC_TMR_HV_VIRT:
return -ENOENT;
default:
break;
}
}
break;
default:
return -EINVAL;
}
*type = args[1] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
irq_hw_number_t hwirq;
int i, ret;
ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++) {
ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
int i;
for (i = 0; i < nr_irqs; i++) {
struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
irq_set_handler(virq + i, NULL);
irq_domain_reset_irq_data(d);
}
}
static const struct irq_domain_ops aic_irq_domain_ops = {
.translate = aic_irq_domain_translate,
.alloc = aic_irq_domain_alloc,
.free = aic_irq_domain_free,
};
/*
* IPI irqchip
*/
static void aic_ipi_send_fast(int cpu)
{
u64 mpidr = cpu_logical_map(cpu);
u64 my_mpidr = read_cpuid_mpidr();
u64 cluster = MPIDR_CLUSTER(mpidr);
u64 idx = MPIDR_CPU(mpidr);
if (MPIDR_CLUSTER(my_mpidr) == cluster)
write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx),
SYS_IMP_APL_IPI_RR_LOCAL_EL1);
else
write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
isb();
}
static void aic_handle_ipi(struct pt_regs *regs)
{
/*
* Ack the IPI. We need to order this after the AIC event read, but
* that is enforced by normal MMIO ordering guarantees.
*
* For the Fast IPI case, this needs to be ordered before the vIPI
* handling below, so we need to isb();
*/
if (static_branch_likely(&use_fast_ipi)) {
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
isb();
} else {
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
}
ipi_mux_process();
/*
* No ordering needed here; at worst this just changes the timing of
* when the next IPI will be delivered.
*/
if (!static_branch_likely(&use_fast_ipi))
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
}
static void aic_ipi_send_single(unsigned int cpu)
{
if (static_branch_likely(&use_fast_ipi))
aic_ipi_send_fast(cpu);
else
aic_ic_write(aic_irqc, AIC_IPI_SEND, AIC_IPI_SEND_CPU(cpu));
}
static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
{
int base_ipi;
base_ipi = ipi_mux_create(AIC_NR_SWIPI, aic_ipi_send_single);
if (WARN_ON(base_ipi <= 0))
return -ENODEV;
set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
return 0;
}
static int aic_init_cpu(unsigned int cpu)
{
/* Mask all hard-wired per-CPU IRQ/FIQ sources */
/* Pending Fast IPI FIQs */
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
/* Timer FIQs */
sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
/* EL2-only (VHE mode) IRQ sources */
if (is_kernel_in_hyp_mode()) {
/* Guest timers */
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
/* vGIC maintenance IRQ */
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
}
/* PMC FIQ */
sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
/* Uncore PMC FIQ */
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
/* Commit all of the above */
isb();
if (aic_irqc->info.version == 1) {
/*
* Make sure the kernel's idea of logical CPU order is the same as AIC's
* If we ever end up with a mismatch here, we will have to introduce
* a mapping table similar to what other irqchip drivers do.
*/
WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
/*
* Always keep IPIs unmasked at the hardware level (except auto-masking
* by AIC during processing). We manage masks at the vIPI level.
* These registers only exist on AICv1, AICv2 always uses fast IPIs.
*/
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
if (static_branch_likely(&use_fast_ipi)) {
aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
} else {
aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
}
}
/* Initialize the local mask state */
__this_cpu_write(aic_fiq_unmasked, 0);
return 0;
}
static struct gic_kvm_info vgic_info __initdata = {
.type = GIC_V3,
.no_maint_irq_mask = true,
.no_hw_deactivation = true,
};
static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
{
int i, n;
u32 fiq;
if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
return;
n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
if (WARN_ON(n < 0))
return;
ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
if (!ic->fiq_aff[fiq])
return;
for (i = 0; i < n; i++) {
struct device_node *cpu_node;
u32 cpu_phandle;
int cpu;
if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
continue;
cpu_node = of_find_node_by_phandle(cpu_phandle);
if (WARN_ON(!cpu_node))
continue;
cpu = of_cpu_node_to_id(cpu_node);
of_node_put(cpu_node);
if (WARN_ON(cpu < 0))
continue;
cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
}
}
static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
{
int i, die;
u32 off, start_off;
void __iomem *regs;
struct aic_irq_chip *irqc;
struct device_node *affs;
const struct of_device_id *match;
regs = of_iomap(node, 0);
if (WARN_ON(!regs))
return -EIO;
irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
if (!irqc) {
iounmap(regs);
return -ENOMEM;
}
irqc->base = regs;
match = of_match_node(aic_info_match, node);
if (!match)
goto err_unmap;
irqc->info = *(struct aic_info *)match->data;
aic_irqc = irqc;
switch (irqc->info.version) {
case 1: {
u32 info;
info = aic_ic_read(irqc, AIC_INFO);
irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
irqc->max_irq = AIC_MAX_IRQ;
irqc->nr_die = irqc->max_die = 1;
off = start_off = irqc->info.target_cpu;
off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
irqc->event = irqc->base;
break;
}
case 2: {
u32 info1, info3;
info1 = aic_ic_read(irqc, AIC2_INFO1);
info3 = aic_ic_read(irqc, AIC2_INFO3);
irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
off = start_off = irqc->info.irq_cfg;
off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
irqc->event = of_iomap(node, 1);
if (WARN_ON(!irqc->event))
goto err_unmap;
break;
}
}
irqc->info.sw_set = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
irqc->info.sw_clr = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
irqc->info.mask_set = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
irqc->info.mask_clr = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
if (irqc->info.fast_ipi)
static_branch_enable(&use_fast_ipi);
else
static_branch_disable(&use_fast_ipi);
irqc->info.die_stride = off - start_off;
irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node),
&aic_irq_domain_ops, irqc);
if (WARN_ON(!irqc->hw_domain))
goto err_unmap;
irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
if (aic_init_smp(irqc, node))
goto err_remove_domain;
affs = of_get_child_by_name(node, "affinities");
if (affs) {
struct device_node *chld;
for_each_child_of_node(affs, chld)
build_fiq_affinity(irqc, chld);
}
of_node_put(affs);
set_handle_irq(aic_handle_irq);
set_handle_fiq(aic_handle_fiq);
off = 0;
for (die = 0; die < irqc->nr_die; die++) {
for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
if (irqc->info.target_cpu)
for (i = 0; i < irqc->nr_irq; i++)
aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
off += irqc->info.die_stride;
}
if (irqc->info.version == 2) {
u32 config = aic_ic_read(irqc, AIC2_CONFIG);
config |= AIC2_CONFIG_ENABLE;
aic_ic_write(irqc, AIC2_CONFIG, config);
}
if (!is_kernel_in_hyp_mode())
pr_info("Kernel running in EL1, mapping interrupts");
if (static_branch_likely(&use_fast_ipi))
pr_info("Using Fast IPIs");
cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
"irqchip/apple-aic/ipi:starting",
aic_init_cpu, NULL);
if (is_kernel_in_hyp_mode()) {
struct irq_fwspec mi = {
.fwnode = of_node_to_fwnode(node),
.param_count = 3,
.param = {
[0] = AIC_FIQ, /* This is a lie */
[1] = AIC_VGIC_MI,
[2] = IRQ_TYPE_LEVEL_HIGH,
},
};
vgic_info.maint_irq = irq_create_fwspec_mapping(&mi);
WARN_ON(!vgic_info.maint_irq);
}
vgic_set_kvm_info(&vgic_info);
pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
return 0;
err_remove_domain:
irq_domain_remove(irqc->hw_domain);
err_unmap:
if (irqc->event && irqc->event != irqc->base)
iounmap(irqc->event);
iounmap(irqc->base);
kfree(irqc);
return -ENODEV;
}
IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);